All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.paimon.spark.sources.StreamHelper.scala Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.paimon.spark.sources

import org.apache.paimon.CoreOptions
import org.apache.paimon.data.BinaryRow
import org.apache.paimon.spark.SparkTypeUtils
import org.apache.paimon.table.DataTable
import org.apache.paimon.table.source.{DataSplit, StreamDataTableScan}
import org.apache.paimon.table.source.TableScan.Plan
import org.apache.paimon.table.source.snapshot.StartingContext
import org.apache.paimon.utils.{InternalRowPartitionComputer, TypeUtils}

import org.apache.spark.sql.connector.read.streaming.ReadLimit
import org.apache.spark.sql.execution.datasources.PartitioningUtils
import org.apache.spark.sql.types.StructType

import scala.collection.JavaConverters._
import scala.collection.mutable

case class IndexedDataSplit(snapshotId: Long, index: Long, entry: DataSplit)

private[spark] trait StreamHelper {

  def table: DataTable

  val initOffset: PaimonSourceOffset

  var lastTriggerMillis: Long

  private lazy val streamScan: StreamDataTableScan =
    table.newStreamScan().dropStats().asInstanceOf[StreamDataTableScan]

  private lazy val partitionSchema: StructType =
    SparkTypeUtils.fromPaimonRowType(TypeUtils.project(table.rowType(), table.partitionKeys()))

  private lazy val partitionComputer: InternalRowPartitionComputer = {
    val options = new CoreOptions(table.options)
    new InternalRowPartitionComputer(
      options.partitionDefaultName,
      TypeUtils.project(table.rowType(), table.partitionKeys()),
      table.partitionKeys().asScala.toArray,
      options.legacyPartitionName()
    )
  }

  // Used to get the initial offset.
  lazy val streamScanStartingContext: StartingContext = streamScan.startingContext()

  def getLatestOffset(
      startOffset: PaimonSourceOffset,
      endOffset: Option[PaimonSourceOffset],
      limit: ReadLimit): Option[PaimonSourceOffset] = {
    val indexedDataSplits = getBatch(startOffset, endOffset, Some(limit))
    indexedDataSplits.lastOption
      .map(
        ids =>
          PaimonSourceOffset(
            ids.snapshotId,
            ids.index,
            scanSnapshot =
              startOffset.scanSnapshot && ids.snapshotId.equals(startOffset.snapshotId)))
  }

  def getBatch(
      startOffset: PaimonSourceOffset,
      endOffset: Option[PaimonSourceOffset],
      limit: Option[ReadLimit]): Array[IndexedDataSplit] = {
    if (startOffset != null) {
      streamScan.restore(startOffset.snapshotId, startOffset.scanSnapshot)
    }

    val readLimitGuard = limit.flatMap(PaimonReadLimits(_, lastTriggerMillis))
    var hasSplits = true
    def continue: Boolean = {
      hasSplits && readLimitGuard.forall(_.hasCapacity) && endOffset.forall(
        streamScan.checkpoint() <= _.snapshotId)
    }

    val indexedDataSplits = mutable.ArrayBuffer.empty[IndexedDataSplit]
    while (continue) {
      val plan = streamScan.plan()
      if (plan.splits.isEmpty) {
        hasSplits = false
      } else {
        indexedDataSplits ++= convertPlanToIndexedSplits(plan)
          // Filter by (start, end]
          .filter(ids => inRange(ids, startOffset, endOffset))
          // Filter splits by read limits other than ReadMinRows.
          .takeWhile(s => readLimitGuard.forall(_.admit(s)))
      }
    }

    // Filter splits by ReadMinRows read limit if exists.
    // If this batch doesn't meet the condition of ReadMinRows, then nothing will be returned.
    if (readLimitGuard.exists(_.skipBatch)) {
      Array.empty
    } else {
      indexedDataSplits.toArray
    }
  }

  private def needToScanCurrentSnapshot(snapshotId: Long): Boolean = {
    snapshotId == initOffset.snapshotId && initOffset.scanSnapshot
  }

  /** Sort the [[DataSplit]] list and index them. */
  private def convertPlanToIndexedSplits(plan: Plan): Array[IndexedDataSplit] = {
    val dataSplits =
      plan.splits().asScala.collect { case dataSplit: DataSplit => dataSplit }.toArray
    val snapshotId = dataSplits.head.snapshotId()

    dataSplits
      .sortWith((ds1, ds2) => compareByPartitionAndBucket(ds1, ds2) < 0)
      .zipWithIndex
      .map {
        case (split, idx) =>
          IndexedDataSplit(snapshotId, idx, split)
      }
  }

  private def compareByPartitionAndBucket(dataSplit1: DataSplit, dataSplit2: DataSplit): Int = {
    val res = compareBinaryRow(dataSplit1.partition, dataSplit2.partition)
    if (res == 0) {
      dataSplit1.bucket - dataSplit2.bucket
    } else {
      res
    }
  }

  private def compareBinaryRow(row1: BinaryRow, ror2: BinaryRow): Int = {
    val partitionPath1 = PartitioningUtils.getPathFragment(
      partitionComputer.generatePartValues(row1).asScala.toMap,
      partitionSchema)
    val partitionPath2 = PartitioningUtils.getPathFragment(
      partitionComputer.generatePartValues(ror2).asScala.toMap,
      partitionSchema)
    partitionPath1.compareTo(partitionPath2)
  }

  private def inRange(
      indexedDataSplit: IndexedDataSplit,
      start: PaimonSourceOffset,
      end: Option[PaimonSourceOffset]): Boolean = {
    PaimonSourceOffset.gt(indexedDataSplit, start) && end.forall(
      PaimonSourceOffset.le(indexedDataSplit, _))
  }

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy