org.apache.parquet.avro.AvroParquetInputFormat Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.parquet.avro;
import org.apache.avro.Schema;
import org.apache.hadoop.mapreduce.Job;
import org.apache.parquet.hadoop.ParquetInputFormat;
import org.apache.parquet.hadoop.util.ContextUtil;
/**
* A Hadoop {@link org.apache.hadoop.mapreduce.InputFormat} for Parquet files.
*
* @param the Java type of objects produced by this InputFormat
*/
public class AvroParquetInputFormat extends ParquetInputFormat {
public AvroParquetInputFormat() {
super(AvroReadSupport.class);
}
/**
* Set the subset of columns to read (projection pushdown). Specified as an Avro
* schema, the requested projection is converted into a Parquet schema for Parquet
* column projection.
*
* This is useful if the full schema is large and you only want to read a few
* columns, since it saves time by not reading unused columns.
*
* If a requested projection is set, then the Avro schema used for reading
* must be compatible with the projection. For instance, if a column is not included
* in the projection then it must either not be included or be optional in the read
* schema. Use {@link #setAvroReadSchema(org.apache.hadoop.mapreduce.Job,
* org.apache.avro.Schema)} to set a read schema, if needed.
*
* @param job a job
* @param requestedProjection the requested projection schema
* @see #setAvroReadSchema(org.apache.hadoop.mapreduce.Job, org.apache.avro.Schema)
* @see org.apache.parquet.avro.AvroParquetOutputFormat#setSchema(org.apache.hadoop.mapreduce.Job, org.apache.avro.Schema)
*/
public static void setRequestedProjection(Job job, Schema requestedProjection) {
AvroReadSupport.setRequestedProjection(ContextUtil.getConfiguration(job), requestedProjection);
}
/**
* Override the Avro schema to use for reading. If not set, the Avro schema used for
* writing is used.
*
* Differences between the read and write schemas are resolved using
* Avro's schema resolution rules.
*
* @param job a job
* @param avroReadSchema the requested schema
* @see #setRequestedProjection(org.apache.hadoop.mapreduce.Job, org.apache.avro.Schema)
* @see org.apache.parquet.avro.AvroParquetOutputFormat#setSchema(org.apache.hadoop.mapreduce.Job, org.apache.avro.Schema)
*/
public static void setAvroReadSchema(Job job, Schema avroReadSchema) {
AvroReadSupport.setAvroReadSchema(ContextUtil.getConfiguration(job), avroReadSchema);
}
/**
* Uses an instance of the specified {@link AvroDataSupplier} class to control how the
* {@link org.apache.avro.specific.SpecificData} instance that is used to find
* Avro specific records is created.
*
* @param job a job
* @param supplierClass an avro data supplier class
*/
public static void setAvroDataSupplier(Job job, Class extends AvroDataSupplier> supplierClass) {
AvroReadSupport.setAvroDataSupplier(ContextUtil.getConfiguration(job), supplierClass);
}
}