All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.parquet.bytes.CapacityByteArrayOutputStream Maven / Gradle / Ivy

There is a newer version: 1.15.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package org.apache.parquet.bytes;

import static java.lang.Math.max;
import static java.lang.Math.pow;
import static java.lang.String.format;
import static org.apache.parquet.Preconditions.checkArgument;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.List;
import org.apache.parquet.OutputStreamCloseException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * Similar to a {@link ByteArrayOutputStream}, but uses a different strategy for growing that does not involve copying.
 * Where ByteArrayOutputStream is backed by a single array that "grows" by copying into a new larger array, this output
 * stream grows by allocating a new array (slab) and adding it to a list of previous arrays.
 * 

* Each new slab is allocated to be the same size as all the previous slabs combined, so these allocations become * exponentially less frequent, just like ByteArrayOutputStream, with one difference. This output stream accepts a * max capacity hint, which is a hint describing the max amount of data that will be written to this stream. As the * total size of this stream nears this max, this stream starts to grow linearly instead of exponentially. * So new slabs are allocated to be 1/5th of the max capacity hint, * instead of equal to the total previous size of all slabs. This is useful because it prevents allocating roughly * twice the needed space when a new slab is added just before the stream is done being used. *

* When reusing this stream it will adjust the initial slab size based on the previous data size, aiming for fewer * allocations, with the assumption that a similar amount of data will be written to this stream on re-use. * See ({@link CapacityByteArrayOutputStream#reset()}). */ public class CapacityByteArrayOutputStream extends OutputStream { private static final Logger LOG = LoggerFactory.getLogger(CapacityByteArrayOutputStream.class); private static final ByteBuffer EMPTY_SLAB = ByteBuffer.wrap(new byte[0]); private int initialSlabSize; private final int maxCapacityHint; private final List slabs = new ArrayList(); private ByteBuffer currentSlab; private int bytesAllocated = 0; private int bytesUsed = 0; private ByteBufferAllocator allocator; /** * Return an initial slab size such that a CapacityByteArrayOutputStream constructed with it * will end up allocating targetNumSlabs in order to reach targetCapacity. This aims to be * a balance between the overhead of creating new slabs and wasting memory by eagerly making * initial slabs too big. *

* Note that targetCapacity here need not match maxCapacityHint in the constructor of * CapacityByteArrayOutputStream, though often that would make sense. * * @param minSlabSize no matter what we shouldn't make slabs any smaller than this * @param targetCapacity after we've allocated targetNumSlabs how much capacity should we have? * @param targetNumSlabs how many slabs should it take to reach targetCapacity? * @return an initial slab size */ public static int initialSlabSizeHeuristic(int minSlabSize, int targetCapacity, int targetNumSlabs) { // initialSlabSize = (targetCapacity / (2^targetNumSlabs)) means we double targetNumSlabs times // before reaching the targetCapacity // eg for page size of 1MB we start at 1024 bytes. // we also don't want to start too small, so we also apply a minimum. return max(minSlabSize, ((int) (targetCapacity / pow(2, targetNumSlabs)))); } public static CapacityByteArrayOutputStream withTargetNumSlabs( int minSlabSize, int maxCapacityHint, int targetNumSlabs) { return withTargetNumSlabs(minSlabSize, maxCapacityHint, targetNumSlabs, new HeapByteBufferAllocator()); } /** * Construct a CapacityByteArrayOutputStream configured such that its initial slab size is * determined by {@link #initialSlabSizeHeuristic}, with targetCapacity == maxCapacityHint * * @param minSlabSize a minimum slab size * @param maxCapacityHint a hint for the maximum required capacity * @param targetNumSlabs the target number of slabs * @param allocator an allocator to use when creating byte buffers for slabs * @return a capacity baos */ public static CapacityByteArrayOutputStream withTargetNumSlabs( int minSlabSize, int maxCapacityHint, int targetNumSlabs, ByteBufferAllocator allocator) { return new CapacityByteArrayOutputStream( initialSlabSizeHeuristic(minSlabSize, maxCapacityHint, targetNumSlabs), maxCapacityHint, allocator); } /** * Defaults maxCapacityHint to 1MB * * @param initialSlabSize an initial slab size * @deprecated use {@link CapacityByteArrayOutputStream#CapacityByteArrayOutputStream(int, int, ByteBufferAllocator)} */ @Deprecated public CapacityByteArrayOutputStream(int initialSlabSize) { this(initialSlabSize, 1024 * 1024, new HeapByteBufferAllocator()); } /** * Defaults maxCapacityHint to 1MB * * @param initialSlabSize an initial slab size * @param allocator an allocator to use when creating byte buffers for slabs * @deprecated use {@link CapacityByteArrayOutputStream#CapacityByteArrayOutputStream(int, int, ByteBufferAllocator)} */ @Deprecated public CapacityByteArrayOutputStream(int initialSlabSize, ByteBufferAllocator allocator) { this(initialSlabSize, 1024 * 1024, allocator); } /** * @param initialSlabSize the size to make the first slab * @param maxCapacityHint a hint (not guarantee) of the max amount of data written to this stream * @deprecated use {@link CapacityByteArrayOutputStream#CapacityByteArrayOutputStream(int, int, ByteBufferAllocator)} */ @Deprecated public CapacityByteArrayOutputStream(int initialSlabSize, int maxCapacityHint) { this(initialSlabSize, maxCapacityHint, new HeapByteBufferAllocator()); } /** * @param initialSlabSize the size to make the first slab * @param maxCapacityHint a hint (not guarantee) of the max amount of data written to this stream * @param allocator an allocator to use when creating byte buffers for slabs */ public CapacityByteArrayOutputStream(int initialSlabSize, int maxCapacityHint, ByteBufferAllocator allocator) { checkArgument(initialSlabSize > 0, "initialSlabSize must be > 0"); checkArgument(maxCapacityHint > 0, "maxCapacityHint must be > 0"); checkArgument( maxCapacityHint >= initialSlabSize, "maxCapacityHint can't be less than initialSlabSize %s %s", initialSlabSize, maxCapacityHint); this.initialSlabSize = initialSlabSize; this.maxCapacityHint = maxCapacityHint; this.allocator = allocator; reset(); } /** * the new slab is guaranteed to be at least minimumSize * * @param minimumSize the size of the data we want to copy in the new slab */ private void addSlab(int minimumSize) { int nextSlabSize; // check for overflow try { Math.addExact(bytesUsed, minimumSize); } catch (ArithmeticException e) { // This is interpreted as a request for a value greater than Integer.MAX_VALUE // We throw OOM because that is what java.io.ByteArrayOutputStream also does throw new OutOfMemoryError("Size of data exceeded Integer.MAX_VALUE (" + e.getMessage() + ")"); } if (bytesUsed == 0) { nextSlabSize = initialSlabSize; } else if (bytesUsed > maxCapacityHint / 5) { // to avoid an overhead of up to twice the needed size, we get linear when approaching target page size nextSlabSize = maxCapacityHint / 5; } else { // double the size every time nextSlabSize = bytesUsed; } if (nextSlabSize < minimumSize) { LOG.debug("slab size {} too small for value of size {}. Bumping up slab size", nextSlabSize, minimumSize); nextSlabSize = minimumSize; } LOG.debug("used {} slabs, adding new slab of size {}", slabs.size(), nextSlabSize); this.currentSlab = allocator.allocate(nextSlabSize); this.slabs.add(currentSlab); this.bytesAllocated = Math.addExact(this.bytesAllocated, nextSlabSize); } @Override public void write(int b) { if (!currentSlab.hasRemaining()) { addSlab(1); } currentSlab.put((byte) b); bytesUsed = Math.addExact(bytesUsed, 1); } @Override public void write(byte b[], int off, int len) { if ((off < 0) || (off > b.length) || (len < 0) || ((off + len) - b.length > 0)) { throw new IndexOutOfBoundsException(String.format( "Given byte array of size %d, with requested length(%d) and offset(%d)", b.length, len, off)); } if (len > currentSlab.remaining()) { final int length1 = currentSlab.remaining(); currentSlab.put(b, off, length1); final int length2 = len - length1; addSlab(length2); currentSlab.put(b, off + length1, length2); } else { currentSlab.put(b, off, len); } bytesUsed = Math.addExact(bytesUsed, len); } private void writeToOutput(OutputStream out, ByteBuffer buf, int len) throws IOException { if (buf.hasArray()) { out.write(buf.array(), buf.arrayOffset(), len); } else { // The OutputStream interface only takes a byte[], unfortunately this means that a ByteBuffer // not backed by a byte array must be copied to fulfil this interface byte[] copy = new byte[len]; buf.flip(); buf.get(copy); out.write(copy); } } /** * Writes the complete contents of this buffer to the specified output stream argument. the output * stream's write method out.write(slab, 0, slab.length)) will be called once per slab. * * @param out the output stream to which to write the data. * @throws IOException if an I/O error occurs. */ public void writeTo(OutputStream out) throws IOException { for (ByteBuffer slab : slabs) { writeToOutput(out, slab, slab.position()); } } /** * It is expected that the buffer is large enough to fit the content of this. */ void writeInto(ByteBuffer buffer) { for (ByteBuffer slab : slabs) { slab.flip(); buffer.put(slab); } } /** * @return The total size in bytes of data written to this stream. */ public long size() { return bytesUsed; } /** * @return The total size in bytes currently allocated for this stream. */ public int getCapacity() { return bytesAllocated; } /** * When re-using an instance with reset, it will adjust slab size based on previous data size. * The intent is to reuse the same instance for the same type of data (for example, the same column). * The assumption is that the size in the buffer will be consistent. */ public void reset() { // readjust slab size. // 7 = 2^3 - 1 so that doubling the initial size 3 times will get to the same size this.initialSlabSize = max(bytesUsed / 7, initialSlabSize); LOG.debug("initial slab of size {}", initialSlabSize); for (ByteBuffer slab : slabs) { allocator.release(slab); } this.slabs.clear(); this.bytesAllocated = 0; this.bytesUsed = 0; this.currentSlab = EMPTY_SLAB; } /** * @return the index of the last value written to this stream, which * can be passed to {@link #setByte(long, byte)} in order to change it */ public long getCurrentIndex() { checkArgument(bytesUsed > 0, "This is an empty stream"); return bytesUsed - 1; } /** * Replace the byte stored at position index in this stream with value * * @param index which byte to replace * @param value the value to replace it with */ public void setByte(long index, byte value) { checkArgument(index < bytesUsed, "Index: %d is >= the current size of: %d", index, bytesUsed); long seen = 0; for (int i = 0; i < slabs.size(); i++) { ByteBuffer slab = slabs.get(i); if (index < seen + slab.limit()) { // ok found index slab.put((int) (index - seen), value); break; } seen += slab.limit(); } } /** * @param prefix a prefix to be used for every new line in the string * @return a text representation of the memory usage of this structure */ public String memUsageString(String prefix) { return format("%s %s %d slabs, %,d bytes", prefix, getClass().getSimpleName(), slabs.size(), getCapacity()); } /** * @return the total number of allocated slabs */ int getSlabCount() { return slabs.size(); } ByteBuffer getInternalByteBuffer() { if (slabs.size() == 1) { ByteBuffer buf = slabs.get(0).duplicate(); buf.flip(); return buf.slice(); } return null; } @Override public void close() { for (ByteBuffer slab : slabs) { allocator.release(slab); } slabs.clear(); try { super.close(); } catch (IOException e) { throw new OutputStreamCloseException(e); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy