All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.pdfbox.util.Matrix Maven / Gradle / Ivy

Go to download

The Apache PDFBox library is an open source Java tool for working with PDF documents.

There is a newer version: 3.0.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.pdfbox.util;

import org.apache.pdfbox.cos.COSArray;
import org.apache.pdfbox.cos.COSFloat;
import org.apache.pdfbox.cos.COSNumber;

import java.awt.geom.AffineTransform;
import java.awt.geom.Point2D;

/**
 * This class will be used for matrix manipulation.
 *
 * @author Ben Litchfield
 */
public final class Matrix implements Cloneable
{
    static final float[] DEFAULT_SINGLE =
    {
        1,0,0,  //  a  b  0     sx hy 0    note: hx and hy are reversed vs. the PDF spec as we use
        0,1,0,  //  c  d  0  =  hx sy 0          AffineTransform's definition x and y shear
        0,0,1   //  tx ty 1     tx ty 1
    };

    private final float[] single;

    /**
     * Constructor.
     */
    public Matrix()
    {
        single = new float[DEFAULT_SINGLE.length];
        System.arraycopy(DEFAULT_SINGLE, 0, single, 0, DEFAULT_SINGLE.length);
    }

    /**
     * Creates a matrix from a 6-element COS array.
     */
    public Matrix(COSArray array)
    {
        single = new float[DEFAULT_SINGLE.length];
        single[0] = ((COSNumber)array.get(0)).floatValue();
        single[1] = ((COSNumber)array.get(1)).floatValue();
        single[3] = ((COSNumber)array.get(2)).floatValue();
        single[4] = ((COSNumber)array.get(3)).floatValue();
        single[6] = ((COSNumber)array.get(4)).floatValue();
        single[7] = ((COSNumber)array.get(5)).floatValue();
        single[8] = 1;
    }

    /**
     * Creates a matrix with the given 6 elements.
     */
    public Matrix(float a, float b, float c, float d, float e, float f)
    {
        single = new float[DEFAULT_SINGLE.length];
        single[0] = a;
        single[1] = b;
        single[3] = c;
        single[4] = d;
        single[6] = e;
        single[7] = f;
        single[8] = 1;
    }

    /**
     * Creates a matrix with the same elements as the given AffineTransform.
     */
    public Matrix(AffineTransform at)
    {
        single = new float[DEFAULT_SINGLE.length];
        System.arraycopy(DEFAULT_SINGLE, 0, single, 0, DEFAULT_SINGLE.length);
        single[0] = (float)at.getScaleX();
        single[1] = (float)at.getShearY();
        single[3] = (float)at.getShearX();
        single[4] = (float)at.getScaleY();
        single[6] = (float)at.getTranslateX();
        single[7] = (float)at.getTranslateY();
    }

    /**
     * This method resets the numbers in this Matrix to the original values, which are
     * the values that a newly constructed Matrix would have.
     *
     * @deprecated This method will be removed.
     */
    @Deprecated
    public void reset()
    {
        System.arraycopy(DEFAULT_SINGLE, 0, single, 0, DEFAULT_SINGLE.length);
    }

    /**
     * Create an affine transform from this matrix's values.
     *
     * @return An affine transform with this matrix's values.
     */
    public AffineTransform createAffineTransform()
    {
        return new AffineTransform(
            single[0], single[1],   // m00 m10 = scaleX shearY
            single[3], single[4],   // m01 m11 = shearX scaleY
            single[6], single[7] ); // m02 m12 = tx ty
    }

    /**
     * Set the values of the matrix from the AffineTransform.
     *
     * @param af The transform to get the values from.
     * @deprecated Use the {@link #Matrix(AffineTransform)} constructor instead.
     */
    @Deprecated
    public void setFromAffineTransform( AffineTransform af )
    {
        single[0] = (float)af.getScaleX();
        single[1] = (float)af.getShearY();
        single[3] = (float)af.getShearX();
        single[4] = (float)af.getScaleY();
        single[6] = (float)af.getTranslateX();
        single[7] = (float)af.getTranslateY();
    }

    /**
     * This will get a matrix value at some point.
     *
     * @param row The row to get the value from.
     * @param column The column to get the value from.
     *
     * @return The value at the row/column position.
     */
    public float getValue( int row, int column )
    {
        return single[row*3+column];
    }

    /**
     * This will set a value at a position.
     *
     * @param row The row to set the value at.
     * @param column the column to set the value at.
     * @param value The value to set at the position.
     */
    public void setValue( int row, int column, float value )
    {
        single[row*3+column] = value;
    }

    /**
     * Return a single dimension array of all values in the matrix.
     *
     * @return The values of this matrix.
     */
    public float[][] getValues()
    {
        float[][] retval = new float[3][3];
        retval[0][0] = single[0];
        retval[0][1] = single[1];
        retval[0][2] = single[2];
        retval[1][0] = single[3];
        retval[1][1] = single[4];
        retval[1][2] = single[5];
        retval[2][0] = single[6];
        retval[2][1] = single[7];
        retval[2][2] = single[8];
        return retval;
    }

    /**
     * Return a single dimension array of all values in the matrix.
     *
     * @return The values ot this matrix.
     * @deprecated Use {@link #getValues()} instead.
     */
    @Deprecated
    public double[][] getValuesAsDouble()
    {
        double[][] retval = new double[3][3];
        retval[0][0] = single[0];
        retval[0][1] = single[1];
        retval[0][2] = single[2];
        retval[1][0] = single[3];
        retval[1][1] = single[4];
        retval[1][2] = single[5];
        retval[2][0] = single[6];
        retval[2][1] = single[7];
        retval[2][2] = single[8];
        return retval;
    }

    /**
     * Concatenates (premultiplies) the given matrix to this matrix.
     *
     * @param matrix The matrix to concatenate.
     */
    public void concatenate(Matrix matrix)
    {
        matrix.multiply(this, this);
    }

    /**
     * Translates this matrix by the given vector.
     *
     * @param vector 2D vector
     */
    public void translate(Vector vector)
    {
        Matrix m = Matrix.getTranslateInstance(vector.getX(), vector.getY());
        concatenate(m);
    }

    /**
     * Translates this matrix by the given ammount.
     *
     * @param tx x-translation
     * @param ty y-translation
     */
    public void translate(float tx, float ty)
    {
        Matrix m = Matrix.getTranslateInstance(tx, ty);
        concatenate(m);
    }

    /**
     * Scales this matrix by the given factors.
     *
     * @param sx x-scale
     * @param sy y-scale
     */
    public void scale(float sx, float sy)
    {
        Matrix m = Matrix.getScaleInstance(sx, sy);
        concatenate(m);
    }

    /**
     * Rotares this matrix by the given factors.
     *
     * @param theta The angle of rotation measured in radians
     */
    public void rotate(double theta)
    {
        Matrix m = Matrix.getRotateInstance(theta, 0, 0);
        concatenate(m);
    }

    /**
     * This will take the current matrix and multiply it with a matrix that is passed in.
     *
     * @param b The matrix to multiply by.
     *
     * @return The result of the two multiplied matrices.
     */
    public Matrix multiply( Matrix b )
    {
        return this.multiply(b, new Matrix());
    }

    /**
     * This method multiplies this Matrix with the specified other Matrix, storing the product in the specified
     * result Matrix. By reusing Matrix instances like this, multiplication chains can be executed without having
     * to create many temporary Matrix objects.
     * 

* It is allowed to have (other == this) or (result == this) or indeed (other == result) but if this is done, * the backing float[] matrix values may be copied in order to ensure a correct product. * * @param other the second operand Matrix in the multiplication * @param result the Matrix instance into which the result should be stored. If result is null, a new Matrix * instance is created. * @return the product of the two matrices. */ public Matrix multiply( Matrix other, Matrix result ) { if (result == null) { result = new Matrix(); } if (other != null && other.single != null) { // the operands float[] thisOperand = this.single; float[] otherOperand = other.single; // We're multiplying 2 sets of floats together to produce a third, but we allow // any of these float[] instances to be the same objects. // There is the possibility then to overwrite one of the operands with result values // and therefore corrupt the result. // If either of these operands are the same float[] instance as the result, then // they need to be copied. if (this == result) { final float[] thisOrigVals = new float[this.single.length]; System.arraycopy(this.single, 0, thisOrigVals, 0, this.single.length); thisOperand = thisOrigVals; } if (other == result) { final float[] otherOrigVals = new float[other.single.length]; System.arraycopy(other.single, 0, otherOrigVals, 0, other.single.length); otherOperand = otherOrigVals; } result.single[0] = thisOperand[0] * otherOperand[0] + thisOperand[1] * otherOperand[3] + thisOperand[2] * otherOperand[6]; result.single[1] = thisOperand[0] * otherOperand[1] + thisOperand[1] * otherOperand[4] + thisOperand[2] * otherOperand[7]; result.single[2] = thisOperand[0] * otherOperand[2] + thisOperand[1] * otherOperand[5] + thisOperand[2] * otherOperand[8]; result.single[3] = thisOperand[3] * otherOperand[0] + thisOperand[4] * otherOperand[3] + thisOperand[5] * otherOperand[6]; result.single[4] = thisOperand[3] * otherOperand[1] + thisOperand[4] * otherOperand[4] + thisOperand[5] * otherOperand[7]; result.single[5] = thisOperand[3] * otherOperand[2] + thisOperand[4] * otherOperand[5] + thisOperand[5] * otherOperand[8]; result.single[6] = thisOperand[6] * otherOperand[0] + thisOperand[7] * otherOperand[3] + thisOperand[8] * otherOperand[6]; result.single[7] = thisOperand[6] * otherOperand[1] + thisOperand[7] * otherOperand[4] + thisOperand[8] * otherOperand[7]; result.single[8] = thisOperand[6] * otherOperand[2] + thisOperand[7] * otherOperand[5] + thisOperand[8] * otherOperand[8]; } return result; } /** * Transforms the given point by this matrix. * * @param point point to transform */ public void transform(Point2D point) { float x = (float)point.getX(); float y = (float)point.getY(); float a = single[0]; float b = single[1]; float c = single[3]; float d = single[4]; float e = single[6]; float f = single[7]; point.setLocation(x * a + y * c + e, x * b + y * d + f); } /** * Transforms the given point by this matrix. * * @param x x-coordinate * @param y y-coordinate */ public Point2D.Float transformPoint(float x, float y) { float a = single[0]; float b = single[1]; float c = single[3]; float d = single[4]; float e = single[6]; float f = single[7]; return new Point2D.Float(x * a + y * c + e, x * b + y * d + f); } /** * Transforms the given point by this matrix. * * @param vector @2D vector */ public Vector transform(Vector vector) { float a = single[0]; float b = single[1]; float c = single[3]; float d = single[4]; float e = single[6]; float f = single[7]; float x = vector.getX(); float y = vector.getY(); return new Vector(x * a + y * c + e, x * b + y * d + f); } /** * Create a new matrix with just the scaling operators. * * @return A new matrix with just the scaling operators. * @deprecated This method is due to be removed, please contact us if you make use of it. */ @Deprecated public Matrix extractScaling() { Matrix matrix = new Matrix(); matrix.single[0] = this.single[0]; matrix.single[4] = this.single[4]; return matrix; } /** * Convenience method to create a scaled instance. * * @param sx The xscale operator. * @param sy The yscale operator. * @return A new matrix with just the x/y scaling */ public static Matrix getScaleInstance(float sx, float sy) { Matrix matrix = new Matrix(); matrix.single[0] = sx; matrix.single[4] = sy; return matrix; } /** * Create a new matrix with just the translating operators. * * @return A new matrix with just the translating operators. * @deprecated This method is due to be removed, please contact us if you make use of it. */ @Deprecated public Matrix extractTranslating() { Matrix matrix = new Matrix(); matrix.single[6] = this.single[6]; matrix.single[7] = this.single[7]; return matrix; } /** * Convenience method to create a translating instance. * * @param tx The x translating operator. * @param ty The y translating operator. * @return A new matrix with just the x/y translating. * @deprecated Use {@link #getTranslateInstance} instead. */ @Deprecated public static Matrix getTranslatingInstance(float tx, float ty) { return getTranslateInstance(tx, ty); } /** * Convenience method to create a translating instance. * * @param tx The x translating operator. * @param ty The y translating operator. * @return A new matrix with just the x/y translating. */ public static Matrix getTranslateInstance(float tx, float ty) { Matrix matrix = new Matrix(); matrix.single[6] = tx; matrix.single[7] = ty; return matrix; } /** * Convenience method to create a rotated instance. * * @param theta The angle of rotation measured in radians * @param tx The x translation. * @param ty The y translation. * @return A new matrix with the rotation and the x/y translating. */ public static Matrix getRotateInstance(double theta, float tx, float ty) { float cosTheta = (float)Math.cos(theta); float sinTheta = (float)Math.sin(theta); Matrix matrix = new Matrix(); matrix.single[0] = cosTheta; matrix.single[1] = sinTheta; matrix.single[3] = -sinTheta; matrix.single[4] = cosTheta; matrix.single[6] = tx; matrix.single[7] = ty; return matrix; } /** * Produces a copy of the first matrix, with the second matrix concatenated. * * @param a The matrix to copy. * @param b The matrix to concatenate. */ public static Matrix concatenate(Matrix a, Matrix b) { Matrix copy = a.clone(); copy.concatenate(b); return copy; } /** * Clones this object. * @return cloned matrix as an object. */ @Override public Matrix clone() { Matrix clone = new Matrix(); System.arraycopy( single, 0, clone.single, 0, 9 ); return clone; } /** * Returns the x-scaling factor of this matrix. This is calculated from the scale and shear. * * @return The x-scaling factor. */ public float getScalingFactorX() { float xScale = single[0]; /** * BM: if the trm is rotated, the calculation is a little more complicated * * The rotation matrix multiplied with the scaling matrix is: * ( x 0 0) ( cos sin 0) ( x*cos x*sin 0) * ( 0 y 0) * (-sin cos 0) = (-y*sin y*cos 0) * ( 0 0 1) ( 0 0 1) ( 0 0 1) * * So, if you want to deduce x from the matrix you take * M(0,0) = x*cos and M(0,1) = x*sin and use the theorem of Pythagoras * * sqrt(M(0,0)^2+M(0,1)^2) = * sqrt(x2*cos2+x2*sin2) = * sqrt(x2*(cos2+sin2)) = <- here is the trick cos2+sin2 is one * sqrt(x2) = * abs(x) */ if( !(single[1]==0.0f && single[3]==0.0f) ) { xScale = (float)Math.sqrt(Math.pow(single[0], 2)+ Math.pow(single[1], 2)); } return xScale; } /** * Returns the y-scaling factor of this matrix. This is calculated from the scale and shear. * * @return The y-scaling factor. */ public float getScalingFactorY() { float yScale = single[4]; if( !(single[1]==0.0f && single[3]==0.0f) ) { yScale = (float)Math.sqrt(Math.pow(single[3], 2)+ Math.pow(single[4], 2)); } return yScale; } /** * Returns the x-scaling element of this matrix. */ public float getScaleX() { return single[0]; } /** * Returns the y-shear element of this matrix. */ public float getShearY() { return single[1]; } /** * Returns the x-shear element of this matrix. */ public float getShearX() { return single[3]; } /** * Returns the y-scaling element of this matrix. */ public float getScaleY() { return single[4]; } /** * Returns the x-translation element of this matrix. */ public float getTranslateX() { return single[6]; } /** * Returns the y-translation element of this matrix. */ public float getTranslateY() { return single[7]; } /** * Get the x position in the matrix. This method is deprecated as it is incorrectly named. * * @return The x-position. * @deprecated Use {@link #getTranslateX} instead */ @Deprecated public float getXPosition() { return single[6]; } /** * Get the y position. This method is deprecated as it is incorrectly named. * * @return The y position. * @deprecated Use {@link #getTranslateY} instead */ @Deprecated public float getYPosition() { return single[7]; } /** * Returns a COS array which represents this matrix. */ public COSArray toCOSArray() { COSArray array = new COSArray(); array.add(new COSFloat(single[0])); array.add(new COSFloat(single[1])); array.add(new COSFloat(single[3])); array.add(new COSFloat(single[4])); array.add(new COSFloat(single[6])); array.add(new COSFloat(single[7])); return array; } @Override public String toString() { StringBuffer sb = new StringBuffer( "" ); sb.append("["); sb.append(single[0] + ","); sb.append(single[1] + ","); sb.append(single[3] + ","); sb.append(single[4] + ","); sb.append(single[6] + ","); sb.append(single[7] + "]"); return sb.toString(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy