All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.it.unimi.dsi.fastutil.chars.CharHeapSemiIndirectPriorityQueue Maven / Gradle / Ivy

The newest version!
/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Primitive-type-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/*		 
 * Copyright (C) 2003-2013 Paolo Boldi and Sebastiano Vigna 
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */
package it.unimi.dsi.fastutil.chars;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.ints.IntArrays;
import it.unimi.dsi.fastutil.AbstractIndirectPriorityQueue;
/** A type-specific heap-based semi-indirect priority queue. 
 *
 * 

Instances of this class use as reference list a reference array, * which must be provided to each constructor. The priority queue is * represented using a heap. The heap is enlarged as needed, but it is never * shrunk. Use the {@link #trim()} method to reduce its size, if necessary. * *

This implementation allows one to enqueue several time the same index, but * you must be careful when calling {@link #changed()}. */ public class CharHeapSemiIndirectPriorityQueue extends AbstractIndirectPriorityQueue implements CharIndirectPriorityQueue { /** The reference array. */ protected char refArray[]; /** The semi-indirect heap. */ protected int heap[] = IntArrays.EMPTY_ARRAY; /** The number of elements in this queue. */ protected int size; /** The type-specific comparator used in this queue. */ protected CharComparator c; /** Creates a new empty queue without elements with a given capacity and comparator. * * @param refArray the reference array. * @param capacity the initial capacity of this queue. * @param c the comparator used in this queue, or null for the natural order. */ public CharHeapSemiIndirectPriorityQueue( char[] refArray, int capacity, CharComparator c ) { if ( capacity > 0 ) this.heap = new int[ capacity ]; this.refArray = refArray; this.c = c; } /** Creates a new empty queue with given capacity and using the natural order. * * @param refArray the reference array. * @param capacity the initial capacity of this queue. */ public CharHeapSemiIndirectPriorityQueue( char[] refArray, int capacity ) { this( refArray, capacity, null ); } /** Creates a new empty queue with capacity equal to the length of the reference array and a given comparator. * * @param refArray the reference array. * @param c the comparator used in this queue, or null for the natural order. */ public CharHeapSemiIndirectPriorityQueue( char[] refArray, CharComparator c ) { this( refArray, refArray.length, c ); } /** Creates a new empty queue with capacity equal to the length of the reference array and using the natural order. * @param refArray the reference array. */ public CharHeapSemiIndirectPriorityQueue( final char[] refArray ) { this( refArray, refArray.length, null ); } /** Wraps a given array in a queue using a given comparator. * *

The queue returned by this method will be backed by the given array. * The first size element of the array will be rearranged so to form a heap (this is * more efficient than enqueing the elements of a one by one). * * @param refArray the reference array. * @param a an array of indices into refArray. * @param size the number of elements to be included in the queue. * @param c the comparator used in this queue, or null for the natural order. */ public CharHeapSemiIndirectPriorityQueue( final char[] refArray, final int[] a, int size, final CharComparator c ) { this( refArray, 0, c ); this.heap = a; this.size = size; CharSemiIndirectHeaps.makeHeap( refArray, a, size, c ); } /** Wraps a given array in a queue using a given comparator. * *

The queue returned by this method will be backed by the given array. * The elements of the array will be rearranged so to form a heap (this is * more efficient than enqueing the elements of a one by one). * * @param refArray the reference array. * @param a an array of indices into refArray. * @param c the comparator used in this queue, or null for the natural order. */ public CharHeapSemiIndirectPriorityQueue( final char[] refArray, final int[] a, final CharComparator c ) { this( refArray, a, a.length, c ); } /** Wraps a given array in a queue using the natural order. * *

The queue returned by this method will be backed by the given array. * The first size element of the array will be rearranged so to form a heap (this is * more efficient than enqueing the elements of a one by one). * * @param refArray the reference array. * @param a an array of indices into refArray. * @param size the number of elements to be included in the queue. */ public CharHeapSemiIndirectPriorityQueue( final char[] refArray, final int[] a, int size ) { this( refArray, a, size, null ); } /** Wraps a given array in a queue using the natural order. * *

The queue returned by this method will be backed by the given array. * The elements of the array will be rearranged so to form a heap (this is * more efficient than enqueing the elements of a one by one). * * @param refArray the reference array. * @param a an array of indices into refArray. */ public CharHeapSemiIndirectPriorityQueue( final char[] refArray, final int[] a ) { this( refArray, a, a.length ); } /** Ensures that the given index is a valid reference. * * @param index an index in the reference array. * @throws IndexOutOfBoundsException if the given index is negative or larger than the reference array length. */ protected void ensureElement( final int index ) { if ( index < 0 ) throw new IndexOutOfBoundsException( "Index (" + index + ") is negative" ); if ( index >= refArray.length ) throw new IndexOutOfBoundsException( "Index (" + index + ") is larger than or equal to reference array size (" + refArray.length + ")" ); } public void enqueue( int x ) { ensureElement( x ); if ( size == heap.length ) heap = IntArrays.grow( heap, size + 1 ); heap[ size++ ] = x; CharSemiIndirectHeaps.upHeap( refArray, heap, size, size - 1, c ); } public int dequeue() { if ( size == 0 ) throw new NoSuchElementException(); final int result = heap[ 0 ]; heap[ 0 ] = heap[ --size ]; if ( size != 0 ) CharSemiIndirectHeaps.downHeap( refArray, heap, size, 0, c ); return result; } public int first() { if ( size == 0 ) throw new NoSuchElementException(); return heap[ 0 ]; } /** {@inheritDoc} * *

The caller must guarantee that when this method is called the * index of the first element appears just once in the queue. Failure to do so * will bring the queue in an inconsistent state, and will cause * unpredictable behaviour. */ public void changed() { CharSemiIndirectHeaps.downHeap( refArray, heap, size, 0, c ); } /** Rebuilds this heap in a bottom-up fashion. */ public void allChanged() { CharSemiIndirectHeaps.makeHeap( refArray, heap, size, c ); } public int size() { return size; } public void clear() { size = 0; } /** Trims the backing array so that it has exactly {@link #size()} elements. */ public void trim() { heap = IntArrays.trim( heap, size ); } public CharComparator comparator() { return c; } public int front( final int[] a ) { return c == null ? CharSemiIndirectHeaps.front( refArray, heap, size, a ) : CharSemiIndirectHeaps.front( refArray, heap, size, a, c ); } public String toString() { StringBuffer s = new StringBuffer(); s.append( "[" ); for ( int i = 0; i < size; i++ ) { if ( i != 0 ) s.append( ", " ); s.append( refArray[ heap [ i ] ] ); } s.append( "]" ); return s.toString(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy