All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.it.unimi.dsi.fastutil.floats.FloatLinkedOpenHashSet Maven / Gradle / Ivy

The newest version!
/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Primitive-type-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/*		 
 * Copyright (C) 2002-2013 Sebastiano Vigna 
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */
package it.unimi.dsi.fastutil.floats;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import it.unimi.dsi.fastutil.booleans.BooleanArrays;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
/**  A type-specific linked hash set with with a fast, small-footprint implementation.
 *
 * 

Instances of this class use a hash table to represent a set. The table is * enlarged as needed by doubling its size when new entries are created, but it is never made * smaller (even on a {@link #clear()}). A family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * *

Iterators generated by this set will enumerate elements in the same order in which they * have been added to the set (addition of elements already present * in the set does not change the iteration order). Note that this order has nothing in common with the natural * order of the keys. The order is kept by means of a doubly linked list, represented * via an array of longs parallel to the table. * *

This class implements the interface of a sorted set, so to allow easy * access of the iteration order: for instance, you can get the first element * in iteration order with {@link #first()} without having to create an * iterator; however, this class partially violates the {@link java.util.SortedSet} * contract because all subset methods throw an exception and {@link * #comparator()} returns always null. * *

Additional methods, such as addAndMoveToFirst(), make it easy * to use instances of this class as a cache (e.g., with LRU policy). * *

The iterators provided by this class are type-specific {@linkplain * java.util.ListIterator list iterators}, and can be started at any * element which is in the set (if the provided element * is not in the set, a {@link NoSuchElementException} exception will be thrown). * If, however, the provided element is not the first or last element in the * set, the first access to the list index will require linear time, as in the worst case * the entire set must be scanned in iteration order to retrieve the positional * index of the starting element. If you use just the methods of a type-specific {@link it.unimi.dsi.fastutil.BidirectionalIterator}, * however, all operations will be performed in constant time. * * @see Hash * @see HashCommon */ public class FloatLinkedOpenHashSet extends AbstractFloatSortedSet implements java.io.Serializable, Cloneable, Hash { private static final long serialVersionUID = 0L; private static final boolean ASSERTS = false; /** The array of keys. */ protected transient float key[]; /** The array telling whether a position is used. */ protected transient boolean used[]; /** The acceptable load factor. */ protected final float f; /** The current table size. */ protected transient int n; /** Threshold after which we rehash. It must be the table size times {@link #f}. */ protected transient int maxFill; /** The mask for wrapping a position counter. */ protected transient int mask; /** Number of entries in the set. */ protected int size; /** The index of the first entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */ protected transient int first = -1; /** The index of the last entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */ protected transient int last = -1; /** For each entry, the next and the previous entry in iteration order, * stored as ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL). * The first entry contains predecessor -1, and the last entry * contains successor -1. */ protected transient long link[]; /** Creates a new hash set. * *

The actual table size will be the least power of two greater than expected/f. * * @param expected the expected number of elements in the hash set. * @param f the load factor. */ @SuppressWarnings("unchecked") public FloatLinkedOpenHashSet( final int expected, final float f ) { if ( f <= 0 || f > 1 ) throw new IllegalArgumentException( "Load factor must be greater than 0 and smaller than or equal to 1" ); if ( expected < 0 ) throw new IllegalArgumentException( "The expected number of elements must be nonnegative" ); this.f = f; n = arraySize( expected, f ); mask = n - 1; maxFill = maxFill( n, f ); key = new float[ n ]; used = new boolean[ n ]; link = new long[ n ]; } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash set. */ public FloatLinkedOpenHashSet( final int expected ) { this( expected, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public FloatLinkedOpenHashSet() { this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash set copying a given collection. * * @param c a {@link Collection} to be copied into the new hash set. * @param f the load factor. */ public FloatLinkedOpenHashSet( final Collection c, final float f ) { this( c.size(), f ); addAll( c ); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given collection. * * @param c a {@link Collection} to be copied into the new hash set. */ public FloatLinkedOpenHashSet( final Collection c ) { this( c, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash set copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash set. * @param f the load factor. */ public FloatLinkedOpenHashSet( final FloatCollection c, final float f ) { this( c.size(), f ); addAll( c ); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash set. */ public FloatLinkedOpenHashSet( final FloatCollection c ) { this( c, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash set using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. * @param f the load factor. */ public FloatLinkedOpenHashSet( final FloatIterator i, final float f ) { this( DEFAULT_INITIAL_SIZE, f ); while( i.hasNext() ) add( i.nextFloat() ); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. */ public FloatLinkedOpenHashSet( final FloatIterator i ) { this( i, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash set using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. * @param f the load factor. */ public FloatLinkedOpenHashSet( final Iterator i, final float f ) { this( FloatIterators.asFloatIterator( i ), f ); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. */ public FloatLinkedOpenHashSet( final Iterator i ) { this( FloatIterators.asFloatIterator( i ) ); } /** Creates a new hash set and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. * @param f the load factor. */ public FloatLinkedOpenHashSet( final float[] a, final int offset, final int length, final float f ) { this( length < 0 ? 0 : length, f ); FloatArrays.ensureOffsetLength( a, offset, length ); for( int i = 0; i < length; i++ ) add( a[ offset + i ] ); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. */ public FloatLinkedOpenHashSet( final float[] a, final int offset, final int length ) { this( a, offset, length, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash set copying the elements of an array. * * @param a an array to be copied into the new hash set. * @param f the load factor. */ public FloatLinkedOpenHashSet( final float[] a, final float f ) { this( a, 0, a.length, f ); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying the elements of an array. * * @param a an array to be copied into the new hash set. */ public FloatLinkedOpenHashSet( final float[] a ) { this( a, DEFAULT_LOAD_FACTOR ); } /* * The following methods implements some basic building blocks used by * all accessors. They are (and should be maintained) identical to those used in HashMap.drv. */ public boolean add( final float k ) { // The starting point. int pos = it.unimi.dsi.fastutil.HashCommon.murmurHash3( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if ( ( (key[ pos ]) == (k) ) ) return false; pos = ( pos + 1 ) & mask; } used[ pos ] = true; key[ pos ] = k; if ( size == 0 ) { first = last = pos; // Special case of SET(link[ pos ], -1, -1); link[ pos ] = -1L; } else { link[ last ] ^= ( ( link[ last ] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ pos ] = ( ( last & 0xFFFFFFFFL ) << 32 ) | ( -1 & 0xFFFFFFFFL ); last = pos; } if ( ++size >= maxFill ) rehash( arraySize( size + 1, f ) ); if ( ASSERTS ) checkTable(); return true; } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. * @return the position cleared by the shifting process. */ protected final int shiftKeys( int pos ) { // Shift entries with the same hash. int last, slot; for(;;) { pos = ( ( last = pos ) + 1 ) & mask; while( used[ pos ] ) { slot = it.unimi.dsi.fastutil.HashCommon.murmurHash3( it.unimi.dsi.fastutil.HashCommon.float2int(key[ pos ]) ) & mask; if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break; pos = ( pos + 1 ) & mask; } if ( ! used[ pos ] ) break; key[ last ] = key[ pos ]; fixPointers( pos, last ); } used[ last ] = false; return last; } @SuppressWarnings("unchecked") public boolean remove( final float k ) { // The starting point. int pos = it.unimi.dsi.fastutil.HashCommon.murmurHash3( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if ( ( (key[ pos ]) == (k) ) ) { size--; fixPointers( pos ); shiftKeys( pos ); if ( ASSERTS ) checkTable(); return true; } pos = ( pos + 1 ) & mask; } return false; } @SuppressWarnings("unchecked") public boolean contains( final float k ) { // The starting point. int pos = it.unimi.dsi.fastutil.HashCommon.murmurHash3( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if ( ( (key[ pos ]) == (k) ) ) return true; pos = ( pos + 1 ) & mask; } return false; } /** Removes the first key in iteration order. * @return the first key. * @throws NoSuchElementException is this set is empty. */ public float removeFirstFloat() { if ( size == 0 ) throw new NoSuchElementException(); --size; final int pos = first; // Abbreviated version of fixPointers(pos) first = (int) link[ pos ]; if ( 0 <= first ) { // Special case of SET_PREV( link[ first ], -1 ) link[ first ] |= (-1 & 0xFFFFFFFFL) << 32; } final float k = key[ pos ]; shiftKeys( pos ); return k; } /** Removes the the last key in iteration order. * @return the last key. * @throws NoSuchElementException is this set is empty. */ public float removeLastFloat() { if ( size == 0 ) throw new NoSuchElementException(); --size; final int pos = last; // Abbreviated version of fixPointers(pos) last = (int) ( link[ pos ] >>> 32 ); if ( 0 <= last ) { // Special case of SET_NEXT( link[ last ], -1 ) link[ last ] |= -1 & 0xFFFFFFFFL; } final float k = key[ pos ]; shiftKeys( pos ); return k; } private void moveIndexToFirst( final int i ) { if ( size == 1 || first == i ) return; if ( last == i ) { last = (int) ( link[ i ] >>> 32 ); // Special case of SET_NEXT( link[ last ], -1 ); link[ last ] |= -1 & 0xFFFFFFFFL; } else { final long linki = link[ i ]; final int prev = (int) ( linki >>> 32 ); final int next = (int) linki; link[ prev ] ^= ( ( link[ prev ] ^ ( linki & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ next ] ^= ( ( link[ next ] ^ ( linki & 0xFFFFFFFF00000000L ) ) & 0xFFFFFFFF00000000L ); } link[ first ] ^= ( ( link[ first ] ^ ( ( i & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); link[ i ] = ( ( -1 & 0xFFFFFFFFL ) << 32 ) | ( first & 0xFFFFFFFFL ); first = i; } private void moveIndexToLast( final int i ) { if ( size == 1 || last == i ) return; if ( first == i ) { first = (int) link[ i ]; // Special case of SET_PREV( link[ first ], -1 ); link[ first ] |= (-1 & 0xFFFFFFFFL) << 32; } else { final long linki = link[ i ]; final int prev = (int) ( linki >>> 32 ); final int next = (int) linki; link[ prev ] ^= ( ( link[ prev ] ^ ( linki & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ next ] ^= ( ( link[ next ] ^ ( linki & 0xFFFFFFFF00000000L ) ) & 0xFFFFFFFF00000000L ); } link[ last ] ^= ( ( link[ last ] ^ ( i & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ i ] = ( ( last & 0xFFFFFFFFL ) << 32 ) | ( -1 & 0xFFFFFFFFL ); last = i; } /** Adds a key to the set; if the key is already present, it is moved to the first position of the iteration order. * * @param k the key. * @return true if the key was not present. */ public boolean addAndMoveToFirst( final float k ) { final float key[] = this.key; final boolean used[] = this.used; final int mask = this.mask; // The starting point. int pos = it.unimi.dsi.fastutil.HashCommon.murmurHash3( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if ( ( (k) == (key[ pos ]) ) ) { moveIndexToFirst( pos ); return false; } pos = ( pos + 1 ) & mask; } used[ pos ] = true; key[ pos ] = k; if ( size == 0 ) { first = last = pos; // Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 ); link[ pos ] = -1L; } else { link[ first ] ^= ( ( link[ first ] ^ ( ( pos & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); link[ pos ] = ( ( -1 & 0xFFFFFFFFL ) << 32 ) | ( first & 0xFFFFFFFFL ); first = pos; } if ( ++size >= maxFill ) rehash( arraySize( size, f ) ); if ( ASSERTS ) checkTable(); return true; } /** Adds a key to the set; if the key is already present, it is moved to the last position of the iteration order. * * @param k the key. * @return true if the key was not present. */ public boolean addAndMoveToLast( final float k ) { final float key[] = this.key; final boolean used[] = this.used; final int mask = this.mask; // The starting point. int pos = it.unimi.dsi.fastutil.HashCommon.murmurHash3( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if ( ( (k) == (key[ pos ]) ) ) { moveIndexToLast( pos ); return false; } pos = ( pos + 1 ) & mask; } used[ pos ] = true; key[ pos ] = k; if ( size == 0 ) { first = last = pos; // Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 ); link[ pos ] = -1L; } else { link[ last ] ^= ( ( link[ last ] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ pos ] = ( ( last & 0xFFFFFFFFL ) << 32 ) | ( -1 & 0xFFFFFFFFL ); last = pos; } if ( ++size >= maxFill ) rehash( arraySize( size, f ) ); if ( ASSERTS ) checkTable(); return true; } /* Removes all elements from this set. * *

To increase object reuse, this method does not change the table size. * If you want to reduce the table size, you must use {@link #trim()}. * */ public void clear() { if ( size == 0 ) return; size = 0; BooleanArrays.fill( used, false ); first = last = -1; } public int size() { return size; } public boolean isEmpty() { return size == 0; } /** A no-op for backward compatibility. * * @param growthFactor unused. * @deprecated Since fastutil 6.1.0, hash tables are doubled when they are too full. */ @Deprecated public void growthFactor( int growthFactor ) {} /** Gets the growth factor (2). * * @return the growth factor of this set, which is fixed (2). * @see #growthFactor(int) * @deprecated Since fastutil 6.1.0, hash tables are doubled when they are too full. */ @Deprecated public int growthFactor() { return 16; } /** Modifies the {@link #link} vector so that the given entry is removed. * *

If the given entry is the first or the last one, this method will complete * in constant time; otherwise, it will have to search for the given entry. * * @param i the index of an entry. */ protected void fixPointers( final int i ) { if ( size == 0 ) { first = last = -1; return; } if ( first == i ) { first = (int) link[ i ]; if (0 <= first) { // Special case of SET_PREV( link[ first ], -1 ) link[ first ] |= (-1 & 0xFFFFFFFFL) << 32; } return; } if ( last == i ) { last = (int) ( link[ i ] >>> 32 ); if (0 <= last) { // Special case of SET_NEXT( link[ last ], -1 ) link[ last ] |= -1 & 0xFFFFFFFFL; } return; } final long linki = link[ i ]; final int prev = (int) ( linki >>> 32 ); final int next = (int) linki; link[ prev ] ^= ( ( link[ prev ] ^ ( linki & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ next ] ^= ( ( link[ next ] ^ ( linki & 0xFFFFFFFF00000000L ) ) & 0xFFFFFFFF00000000L ); } /** Modifies the {@link #link} vector for a shift from s to d. * *

If the given entry is the first or the last one, this method will complete * in constant time; otherwise, it will have to search for the given entry. * * @param s the source position. * @param d the destination position. */ protected void fixPointers( int s, int d ) { if ( size == 1 ) { first = last = d; // Special case of SET(link[ d ], -1, -1) link[ d ] = -1L; return; } if ( first == s ) { first = d; link[ (int) link[ s ] ] ^= ( ( link[ (int) link[ s ] ] ^ ( ( d & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); link[ d ] = link[ s ]; return; } if ( last == s ) { last = d; link[ (int) ( link[ s ] >>> 32 )] ^= ( ( link[ (int) ( link[ s ] >>> 32 )] ^ ( d & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ d ] = link[ s ]; return; } final long links = link[ s ]; final int prev = (int) ( links >>> 32 ); final int next = (int) links; link[ prev ] ^= ( ( link[ prev ] ^ ( d & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ next ] ^= ( ( link[ next ] ^ ( ( d & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); link[ d ] = links; } /** Returns the first element of this set in iteration order. * * @return the first element in iteration order. */ public float firstFloat() { if ( size == 0 ) throw new NoSuchElementException(); return key[ first ]; } /** Returns the last element of this set in iteration order. * * @return the last element in iteration order. */ public float lastFloat() { if ( size == 0 ) throw new NoSuchElementException(); return key[ last ]; } public FloatSortedSet tailSet( float from ) { throw new UnsupportedOperationException(); } public FloatSortedSet headSet( float to ) { throw new UnsupportedOperationException(); } public FloatSortedSet subSet( float from, float to ) { throw new UnsupportedOperationException(); } public FloatComparator comparator() { return null; } /** A list iterator over a linked set. * *

This class provides a list iterator over a linked hash set. The empty constructor runs in * constant time. The one-argument constructor needs to search for the given element, but it is * optimized for the case of {@link java.util.SortedSet#last()}, in which case runs in constant time, too. */ private class SetIterator extends AbstractFloatListIterator { /** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or null if no previous entry exists). */ int prev = -1; /** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or null if no next entry exists). */ int next = -1; /** The last entry that was returned (or -1 if we did not iterate or used {@link #remove()}). */ int curr = -1; /** The current index (in the sense of a {@link java.util.ListIterator}). When -1, we do not know the current index.*/ int index = -1; SetIterator() { next = first; index = 0; } SetIterator( float from ) { if ( ( (key[ last ]) == (from) ) ) { prev = last; index = size; } else { // The starting point. int pos = it.unimi.dsi.fastutil.HashCommon.murmurHash3( it.unimi.dsi.fastutil.HashCommon.float2int(from) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if ( ( (key[ pos ]) == (from) ) ) { // Note: no valid index known. next = (int) link[ pos ]; prev = pos; return; } pos = ( pos + 1 ) & mask; } throw new NoSuchElementException( "The key " + from + " does not belong to this set." ); } } public boolean hasNext() { return next != -1; } public boolean hasPrevious() { return prev != -1; } public float nextFloat() { if ( ! hasNext() ) throw new NoSuchElementException(); curr = next; next = (int) link[ curr ]; prev = curr; if ( index >= 0 ) index++; if ( ASSERTS ) assert used[ curr ] : "Position " + curr + " is not used"; return key[ curr ]; } public float previousFloat() { if ( ! hasPrevious() ) throw new NoSuchElementException(); curr = prev; prev = (int) ( link[ curr ] >>> 32 ); next = curr; if ( index >= 0 ) index--; return key[ curr ]; } private final void ensureIndexKnown() { if ( index >= 0 ) return; if ( prev == -1 ) { index = 0; return; } if ( next == -1 ) { index = size; return; } int pos = first; index = 1; while( pos != prev ) { pos = (int) link[ pos ]; index++; } } public int nextIndex() { ensureIndexKnown(); return index; } public int previousIndex() { ensureIndexKnown(); return index - 1; } @SuppressWarnings("unchecked") public void remove() { ensureIndexKnown(); if ( curr == -1 ) throw new IllegalStateException(); if ( curr == prev ) { /* If the last operation was a next(), we are removing an entry that preceeds the current index, and thus we must decrement it. */ index--; prev = (int) ( link[ curr ] >>> 32 ); } else next = (int) link[ curr ]; size--; /* Now we manually fix the pointers. Because of our knowledge of next and prev, this is going to be faster than calling fixPointers(). */ if ( prev == -1 ) first = next; else link[ prev ] ^= ( ( link[ prev ] ^ ( next & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); if ( next == -1 ) last = prev; else link[ next ] ^= ( ( link[ next ] ^ ( ( prev & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); int last, slot, pos = curr; // We have to horribly duplicate the shiftKeys() code because we need to update next/prev. for(;;) { pos = ( ( last = pos ) + 1 ) & mask; while( used[ pos ] ) { slot = it.unimi.dsi.fastutil.HashCommon.murmurHash3( it.unimi.dsi.fastutil.HashCommon.float2int(key[ pos ]) ) & mask; if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break; pos = ( pos + 1 ) & mask; } if ( ! used[ pos ] ) break; key[ last ] = key[ pos ]; if ( next == pos ) next = last; if ( prev == pos ) prev = last; fixPointers( pos, last ); } used[ last ] = false; curr = -1; } } /** Returns a type-specific list iterator on the elements in this set, starting from a given element of the set. * Please see the class documentation for implementation details. * * @param from an element to start from. * @return a type-specific list iterator starting at the given element. * @throws IllegalArgumentException if from does not belong to the set. */ public FloatListIterator iterator( float from ) { return new SetIterator( from ); } public FloatListIterator iterator() { return new SetIterator(); } /** A no-op for backward compatibility. The kind of tables implemented by * this class never need rehashing. * *

If you need to reduce the table size to fit exactly * this set, use {@link #trim()}. * * @return true. * @see #trim() * @deprecated A no-op. */ @Deprecated public boolean rehash() { return true; } /** Rehashes this set, making the table as small as possible. * *

This method rehashes the table to the smallest size satisfying the * load factor. It can be used when the set will not be changed anymore, so * to optimize access speed and size. * *

If the table size is already the minimum possible, this method * does nothing. * * @return true if there was enough memory to trim the set. * @see #trim(int) */ public boolean trim() { final int l = arraySize( size, f ); if ( l >= n ) return true; try { rehash( l ); } catch(OutOfMemoryError cantDoIt) { return false; } return true; } /** Rehashes this set if the table is too large. * *

Let N be the smallest table size that can hold * max(n,{@link #size()}) entries, still satisfying the load factor. If the current * table size is smaller than or equal to N, this method does * nothing. Otherwise, it rehashes this set in a table of size * N. * *

This method is useful when reusing sets. {@linkplain #clear() Clearing a * set} leaves the table size untouched. If you are reusing a set * many times, you can call this method with a typical * size to avoid keeping around a very large table just * because of a few large transient sets. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the set. * @see #trim() */ public boolean trim( final int n ) { final int l = HashCommon.nextPowerOfTwo( (int)Math.ceil( n / f ) ); if ( this.n <= l ) return true; try { rehash( l ); } catch( OutOfMemoryError cantDoIt ) { return false; } return true; } /** Rehashes the set. * *

This method implements the basic rehashing strategy, and may be * overriden by subclasses implementing different rehashing strategies (e.g., * disk-based rehashing). However, you should not override this method * unless you understand the internal workings of this class. * * @param newN the new size */ @SuppressWarnings("unchecked") protected void rehash( final int newN ) { int i = first, prev = -1, newPrev = -1, t, pos; float k; final float key[] = this.key; final int newMask = newN - 1; final float newKey[] = new float[ newN ]; final boolean newUsed[] = new boolean[ newN ]; final long link[] = this.link; final long newLink[] = new long[ newN ]; first = -1; for( int j = size; j-- != 0; ) { k = key[ i ]; pos = it.unimi.dsi.fastutil.HashCommon.murmurHash3( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & newMask; while ( newUsed[ pos ] ) pos = ( pos + 1 ) & newMask; newUsed[ pos ] = true; newKey[ pos ] = k; if ( prev != -1 ) { newLink[ newPrev ] ^= ( ( newLink[ newPrev ] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); newLink[ pos ] ^= ( ( newLink[ pos ] ^ ( ( newPrev & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); newPrev = pos; } else { newPrev = first = pos; // Special case of SET(newLink[ pos ], -1, -1); newLink[ pos ] = -1L; } t = i; i = (int) link[ i ]; prev = t; } n = newN; mask = newMask; maxFill = maxFill( n, f ); this.key = newKey; this.used = newUsed; this.link = newLink; this.last = newPrev; if ( newPrev != -1 ) // Special case of SET_NEXT( newLink[ newPrev ], -1 ); newLink[ newPrev ] |= -1 & 0xFFFFFFFFL; } /** Returns a deep copy of this set. * *

This method performs a deep copy of this hash set; the data stored in the * set, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this set. */ @SuppressWarnings("unchecked") public FloatLinkedOpenHashSet clone() { FloatLinkedOpenHashSet c; try { c = (FloatLinkedOpenHashSet )super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.key = key.clone(); c.used = used.clone(); c.link = link.clone(); return c; } /** Returns a hash code for this set. * * This method overrides the generic method provided by the superclass. * Since equals() is not overriden, it is important * that the value returned by this method is the same value as * the one returned by the overriden method. * * @return a hash code for this set. */ public int hashCode() { int h = 0, i = 0, j = size; while( j-- != 0 ) { while( ! used[ i ] ) i++; h += it.unimi.dsi.fastutil.HashCommon.float2int(key[ i ]); i++; } return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final FloatIterator i = iterator(); s.defaultWriteObject(); for( int j = size; j-- != 0; ) s.writeFloat( i.nextFloat() ); } @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = arraySize( size, f ); maxFill = maxFill( n, f ); mask = n - 1; final float key[] = this.key = new float[ n ]; final boolean used[] = this.used = new boolean[ n ]; final long link[] = this.link = new long[ n ]; int prev = -1; first = last = -1; float k; for( int i = size, pos = 0; i-- != 0; ) { k = s.readFloat(); pos = it.unimi.dsi.fastutil.HashCommon.murmurHash3( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask; while ( used[ pos ] ) pos = ( pos + 1 ) & mask; used[ pos ] = true; key[ pos ] = k; if ( first != -1 ) { link[ prev ] ^= ( ( link[ prev ] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ pos ] ^= ( ( link[ pos ] ^ ( ( prev & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); prev = pos; } else { prev = first = pos; // Special case of SET_PREV( newLink[ pos ], -1 ); link[ pos ] |= (-1L & 0xFFFFFFFFL) << 32; } } last = prev; if ( prev != -1 ) // Special case of SET_NEXT( link[ prev ], -1 ); link[ prev ] |= -1 & 0xFFFFFFFFL; if ( ASSERTS ) checkTable(); } private void checkTable() {} }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy