All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.it.unimi.dsi.fastutil.ints.IntOpenHashBigSet Maven / Gradle / Ivy

The newest version!
/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Primitive-type-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/*		 
 * Copyright (C) 2002-2013 Sebastiano Vigna 
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */
package it.unimi.dsi.fastutil.ints;
import it.unimi.dsi.fastutil.BigArrays;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.Size64;
import it.unimi.dsi.fastutil.HashCommon;
import it.unimi.dsi.fastutil.booleans.BooleanBigArrays;
import static it.unimi.dsi.fastutil.HashCommon.bigArraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
/**  A type-specific hash big set with with a fast, small-footprint implementation.
 *
 * 

Instances of this class use a hash table to represent a big set: the number * of elements in the set is limited only by the amount of core memory. The table is * backed by a {@linkplain it.unimi.dsi.fastutil.BigArrays big array} and is * enlarged as needed by doubling its size when new entries are created, but it is never made * smaller (even on a {@link #clear()}). A family of {@linkplain #trim(long) trimming * method} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * *

The methods of this class are about 30% slower than those of the corresponding non-big set. * * @see Hash * @see HashCommon */ public class IntOpenHashBigSet extends AbstractIntSet implements java.io.Serializable, Cloneable, Hash, Size64 { private static final long serialVersionUID = 0L; private static final boolean ASSERTS = false; /** The big array of keys. */ protected transient int[][] key; /** The big array telling whether a position is used. */ protected transient boolean[][] used; /** The acceptable load factor. */ protected final float f; /** The current table size (always a power of 2). */ protected transient long n; /** Threshold after which we rehash. It must be the table size times {@link #f}. */ protected transient long maxFill; /** The mask for wrapping a position counter. */ protected transient long mask; /** The mask for wrapping a segment counter. */ protected transient int segmentMask; /** The mask for wrapping a base counter. */ protected transient int baseMask; /** Number of entries in the set. */ protected long size; /** Initialises the mask values. */ private void initMasks() { mask = n - 1; /* Note that either we have more than one segment, and in this case all segments * are BigArrays.SEGMENT_SIZE long, or we have exactly one segment whose length * is a power of two. */ segmentMask = key[ 0 ].length - 1; baseMask = key.length - 1; } /** Creates a new hash big set. * *

The actual table size will be the least power of two greater than expected/f. * * @param expected the expected number of elements in the set. * @param f the load factor. */ @SuppressWarnings("unchecked") public IntOpenHashBigSet( final long expected, final float f ) { if ( f <= 0 || f > 1 ) throw new IllegalArgumentException( "Load factor must be greater than 0 and smaller than or equal to 1" ); if ( n < 0 ) throw new IllegalArgumentException( "The expected number of elements must be nonnegative" ); this.f = f; n = bigArraySize( expected, f ); maxFill = maxFill( n, f ); key = IntBigArrays.newBigArray( n ); used = BooleanBigArrays.newBigArray( n ); initMasks(); } /** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash big set. */ public IntOpenHashBigSet( final long expected ) { this( expected, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash big set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public IntOpenHashBigSet() { this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash big set copying a given collection. * * @param c a {@link Collection} to be copied into the new hash big set. * @param f the load factor. */ public IntOpenHashBigSet( final Collection c, final float f ) { this( c.size(), f ); addAll( c ); } /** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given collection. * * @param c a {@link Collection} to be copied into the new hash big set. */ public IntOpenHashBigSet( final Collection c ) { this( c, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash big set copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash big set. * @param f the load factor. */ public IntOpenHashBigSet( final IntCollection c, final float f ) { this( c.size(), f ); addAll( c ); } /** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash big set. */ public IntOpenHashBigSet( final IntCollection c ) { this( c, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash big set using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the new hash big set. * @param f the load factor. */ public IntOpenHashBigSet( final IntIterator i, final float f ) { this( DEFAULT_INITIAL_SIZE, f ); while( i.hasNext() ) add( i.nextInt() ); } /** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the new hash big set. */ public IntOpenHashBigSet( final IntIterator i ) { this( i, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash big set using elements provided by an iterator. * * @param i an iterator whose elements will fill the new hash big set. * @param f the load factor. */ public IntOpenHashBigSet( final Iterator i, final float f ) { this( IntIterators.asIntIterator( i ), f ); } /** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator. * * @param i an iterator whose elements will fill the new hash big set. */ public IntOpenHashBigSet( final Iterator i ) { this( IntIterators.asIntIterator( i ) ); } /** Creates a new hash big set and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the new hash big set. * @param offset the first element to use. * @param length the number of elements to use. * @param f the load factor. */ public IntOpenHashBigSet( final int[] a, final int offset, final int length, final float f ) { this( length < 0 ? 0 : length, f ); IntArrays.ensureOffsetLength( a, offset, length ); for( int i = 0; i < length; i++ ) add( a[ offset + i ] ); } /** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the new hash big set. * @param offset the first element to use. * @param length the number of elements to use. */ public IntOpenHashBigSet( final int[] a, final int offset, final int length ) { this( a, offset, length, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash big set copying the elements of an array. * * @param a an array to be copied into the new hash big set. * @param f the load factor. */ public IntOpenHashBigSet( final int[] a, final float f ) { this( a, 0, a.length, f ); } /** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying the elements of an array. * * @param a an array to be copied into the new hash big set. */ public IntOpenHashBigSet( final int[] a ) { this( a, DEFAULT_LOAD_FACTOR ); } public boolean add( final int k ) { final long h = ( it.unimi.dsi.fastutil.HashCommon.murmurHash3( (long)(k) ) ); // The starting point. int displ = (int)( h & segmentMask ); int base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT ); // There's always an unused entry. while( used[ base ][ displ ] ) { if ( ( (key[ base ][ displ ]) == (k) ) ) return false; base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask; } used[ base ][ displ ] = true; key[ base ][ displ ] = k; if ( ++size >= maxFill ) rehash( 2 * n ); if ( ASSERTS ) checkTable(); return true; } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. * @return the position cleared by the shifting process. */ protected final long shiftKeys( long pos ) { // Shift entries with the same hash. long last, slot; /* for( int i = 0; i < 10; i++ ) System.err.print( key[ ( t + i ) & mask ] + "(" + (avalanche( (long)KEY2INT( key[ ( t + i ) & mask ] ) ) & mask) + "; " + used[ ( t + i ) & mask ] + ") "); System.err.println(); */ for(;;) { pos = ( ( last = pos ) + 1 ) & mask; while( BooleanBigArrays.get( used, pos ) ) { slot = ( it.unimi.dsi.fastutil.HashCommon.murmurHash3( (long)(IntBigArrays.get( key, pos )) ) ) & mask; if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break; pos = ( pos + 1 ) & mask; } if ( ! BooleanBigArrays.get( used, pos ) ) break; IntBigArrays.set( key, last, IntBigArrays.get( key, pos ) ); } BooleanBigArrays.set( used, last, false ); return last; } @SuppressWarnings("unchecked") public boolean remove( final int k ) { final long h = ( it.unimi.dsi.fastutil.HashCommon.murmurHash3( (long)(k) ) ); // The starting point. int displ = (int)( h & segmentMask ); int base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT ); // There's always an unused entry. while( used[ base ][ displ ] ) { if ( ( (key[ base ][ displ ]) == (k) ) ) { size--; shiftKeys( base * (long)BigArrays.SEGMENT_SIZE + displ ); if ( ASSERTS ) checkTable(); return true; } base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask; } return false; } @SuppressWarnings("unchecked") public boolean contains( final int k ) { final long h = ( it.unimi.dsi.fastutil.HashCommon.murmurHash3( (long)(k) ) ); // The starting point. int displ = (int)( h & segmentMask ); int base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT ); // There's always an unused entry. while( used[ base ][ displ ] ) { if ( ( (key[ base ][ displ ]) == (k) ) ) return true; base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask; } return false; } /* Removes all elements from this set. * *

To increase object reuse, this method does not change the table size. * If you want to reduce the table size, you must use {@link #trim(long)}. * */ public void clear() { if ( size == 0 ) return; size = 0; BooleanBigArrays.fill( used, false ); } /** An iterator over a hash big set. */ private class SetIterator extends AbstractIntIterator { /** The base of the next entry to be returned, if positive or zero. If negative, the next entry to be returned, if any, is that of index -base -2 from the {@link #wrapped} list. */ int base; /** The displacement of the next entry to be returned. */ int displ; /** The base of the last entry that has been returned. It is -1 if either we did not return an entry yet, or the last returned entry has been removed. */ int lastBase; /** The displacement of the last entry that has been returned. It is undefined if either we did not return an entry yet, or the last returned entry has been removed. */ int lastDispl; /** A downward counter measuring how many entries must still be returned. */ long c = size; /** A lazily allocated list containing elements that have wrapped around the table because of removals; such elements would not be enumerated (other elements would be usually enumerated twice in their place). */ IntArrayList wrapped; { base = key.length; lastBase = -1; final boolean used[][] = IntOpenHashBigSet.this.used; if ( c != 0 ) do if ( displ-- == 0 ) { base--; displ = (int)mask; } while( ! used[ base ][ displ ] ); } public boolean hasNext() { return c != 0; } public int nextInt() { if ( ! hasNext() ) throw new NoSuchElementException(); c--; // We are just enumerating elements from the wrapped list. if ( base < 0 ) return wrapped.getInt( - ( lastBase = --base ) - 2 ); final int retVal = key[ lastBase = base ][ lastDispl = displ ]; if ( c != 0 ) { final boolean used[][] = IntOpenHashBigSet.this.used; do if ( displ-- == 0 ) { if ( base-- == 0 ) break; displ = (int)mask; } while( ! used[ base ][ displ ] ); // When here base < 0 there are no more elements to be enumerated by scanning, but wrapped might be nonempty. } return retVal; } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. If any entry wraps around the table, instantiates * lazily {@link #wrapped} and stores the entry. * * @param pos a starting position. * @return the position cleared by the shifting process. */ protected final long shiftKeys( long pos ) { // Shift entries with the same hash. long last, slot; /* for( int i = 0; i < 10; i++ ) System.err.print( key[ ( t + i ) & mask ] + "(" + (avalanche( (long)KEY2INT( key[ ( t + i ) & mask ] ) ) & mask) + "; " + used[ ( t + i ) & mask ] + ") "); System.err.println(); */ for(;;) { pos = ( ( last = pos ) + 1 ) & mask; while( BooleanBigArrays.get( used, pos ) ) { slot = ( it.unimi.dsi.fastutil.HashCommon.murmurHash3( (long)(IntBigArrays.get( key, pos )) ) ) & mask; if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break; pos = ( pos + 1 ) & mask; } if ( ! BooleanBigArrays.get( used, pos ) ) break; if ( pos < last ) { // Wrapped entry. if ( wrapped == null ) wrapped = new IntArrayList (); wrapped.add( IntBigArrays.get( key, pos ) ); } IntBigArrays.set( key, last, IntBigArrays.get( key, pos ) ); } BooleanBigArrays.set( used, last, false ); return last; } @SuppressWarnings("unchecked") public void remove() { if ( lastBase == -1 ) throw new IllegalStateException(); if ( base < -1 ) { // We're removing wrapped entries. IntOpenHashBigSet.this.remove( wrapped.getInt( - base - 2 ) ); lastBase = -1; return; } size--; if ( shiftKeys( lastBase * (long)BigArrays.SEGMENT_SIZE + lastDispl ) == base * (long)BigArrays.SEGMENT_SIZE + displ && c > 0 ) { c++; nextInt(); } lastBase = -1; // You can no longer remove this entry. if ( ASSERTS ) checkTable(); } } public IntIterator iterator() { return new SetIterator(); } /** A no-op for backward compatibility. The kind of tables implemented by * this class never need rehashing. * *

If you need to reduce the table size to fit exactly * this set, use {@link #trim()}. * * @return true. * @see #trim() * @deprecated A no-op. */ @Deprecated public boolean rehash() { return true; } /** Rehashes this set, making the table as small as possible. * *

This method rehashes the table to the smallest size satisfying the * load factor. It can be used when the set will not be changed anymore, so * to optimize access speed and size. * *

If the table size is already the minimum possible, this method * does nothing. * * @return true if there was enough memory to trim the set. * @see #trim(long) */ public boolean trim() { final long l = bigArraySize( size, f ); if ( l >= n ) return true; try { rehash( l ); } catch(OutOfMemoryError cantDoIt) { return false; } return true; } /** Rehashes this set if the table is too large. * *

Let N be the smallest table size that can hold * max(n,{@link #size64()}) entries, still satisfying the load factor. If the current * table size is smaller than or equal to N, this method does * nothing. Otherwise, it rehashes this set in a table of size * N. * *

This method is useful when reusing sets. {@linkplain #clear() Clearing a * set} leaves the table size untouched. If you are reusing a set * many times, you can call this method with a typical * size to avoid keeping around a very large table just * because of a few large transient sets. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the set. * @see #trim() */ public boolean trim( final long n ) { final long l = bigArraySize( n, f ); if ( this.n <= l ) return true; try { rehash( l ); } catch( OutOfMemoryError cantDoIt ) { return false; } return true; } /** Resizes the set. * *

This method implements the basic rehashing strategy, and may be * overriden by subclasses implementing different rehashing strategies (e.g., * disk-based rehashing). However, you should not override this method * unless you understand the internal workings of this class. * * @param newN the new size */ @SuppressWarnings("unchecked") protected void rehash( final long newN ) { final boolean used[][] = this.used; final int key[][] = this.key; final boolean newUsed[][] = BooleanBigArrays.newBigArray( newN ); final int newKey[][] = IntBigArrays.newBigArray( newN ); final long newMask = newN - 1; final int newSegmentMask = newKey[ 0 ].length - 1; final int newBaseMask = newKey.length - 1; int base = 0, displ = 0; long h; int k; for( long i = size; i-- != 0; ) { while( ! used[ base ][ displ ] ) base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ); k = key[ base ][ displ ]; h = ( it.unimi.dsi.fastutil.HashCommon.murmurHash3( (long)(k) ) ); // The starting point. int d = (int)( h & newSegmentMask ); int b = (int)( ( h & newMask ) >>> BigArrays.SEGMENT_SHIFT ); while( newUsed[ b ][ d ] ) b = ( b + ( ( d = ( d + 1 ) & newSegmentMask ) == 0 ? 1 : 0 ) ) & newBaseMask; newUsed[ b ][ d ] = true; newKey[ b ][ d ] = k; base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ); } this.n = newN; this.key = newKey; this.used = newUsed; initMasks(); maxFill = maxFill( n, f ); } @Deprecated public int size() { return (int)Math.min( Integer.MAX_VALUE, size ); } public long size64() { return size; } public boolean isEmpty() { return size == 0; } /** Returns a deep copy of this big set. * *

This method performs a deep copy of this big hash set; the data stored in the * set, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this big set. */ @SuppressWarnings("unchecked") public IntOpenHashBigSet clone() { IntOpenHashBigSet c; try { c = (IntOpenHashBigSet )super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.key = IntBigArrays.copy( key ); c.used = BooleanBigArrays.copy( used ); return c; } /** Returns a hash code for this set. * * This method overrides the generic method provided by the superclass. * Since equals() is not overriden, it is important * that the value returned by this method is the same value as * the one returned by the overriden method. * * @return a hash code for this set. */ public int hashCode() { final boolean used[][] = this.used; final int key[][] = this.key; int h = 0; int base = 0, displ = 0; for( long j = size; j-- != 0; ) { while( ! used[ base ][ displ ] ) base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ); h += (key[ base ][ displ ]); base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ); } return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final IntIterator i = iterator(); s.defaultWriteObject(); for( long j = size; j-- != 0; ) s.writeInt( i.nextInt() ); } @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = bigArraySize( size, f ); maxFill = maxFill( n, f ); final int[][] key = this.key = IntBigArrays.newBigArray( n ); final boolean used[][] = this.used = BooleanBigArrays.newBigArray( n ); initMasks(); long h; int k; int base, displ; for( long i = size; i-- != 0; ) { k = s.readInt(); h = ( it.unimi.dsi.fastutil.HashCommon.murmurHash3( (long)(k) ) ); base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT ); displ = (int)( h & segmentMask ); while( used[ base ][ displ ] ) base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask; used[ base ][ displ ] = true; key[ base ][ displ ] = k; } if ( ASSERTS ) checkTable(); } private void checkTable() {} }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy