org.apache.hadoop.hbase.metrics.impl.FastLongHistogram Maven / Gradle / Ivy
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hbase.metrics.impl;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicLong;
import org.apache.hadoop.hbase.classification.InterfaceAudience;
import org.apache.hadoop.hbase.classification.InterfaceStability;
import org.apache.hadoop.hbase.metrics.Snapshot;
import org.apache.hadoop.hbase.util.AtomicUtils;
import org.apache.hadoop.hbase.util.LongAdder;
/**
* FastLongHistogram is a thread-safe class that estimate distribution of data and computes the
* quantiles.
*/
@InterfaceAudience.Private
@InterfaceStability.Evolving
public class FastLongHistogram {
/**
* Default number of bins.
*/
public static final int DEFAULT_NBINS = 255;
public static final double[] DEFAULT_QUANTILES =
new double[]{0.25, 0.5, 0.75, 0.90, 0.95, 0.98, 0.99, 0.999};
/**
* Bins is a class containing a list of buckets(or bins) for estimation histogram of some data.
*/
private static class Bins {
private final LongAdder[] counts;
// inclusive
private final long binsMin;
// exclusive
private final long binsMax;
private final long bins10XMax;
private final AtomicLong min = new AtomicLong(Long.MAX_VALUE);
private final AtomicLong max = new AtomicLong(0L);
private final LongAdder count = new LongAdder();
private final LongAdder total = new LongAdder();
// set to true when any of data has been inserted to the Bins. It is set after the counts are
// updated.
private final AtomicBoolean hasData = new AtomicBoolean(false);
/**
* The constructor for creating a Bins without any prior data.
*/
public Bins(int numBins) {
counts = createCounters(numBins + 3);
this.binsMin = 1L;
// These two numbers are total guesses
// and should be treated as highly suspect.
this.binsMax = 1000;
this.bins10XMax = binsMax * 10;
}
/**
* The constructor for creating a Bins with last Bins.
*/
public Bins(Bins last, int numOfBins, double minQ, double maxQ) {
long[] values = last.getQuantiles(new double[] { minQ, maxQ });
long wd = values[1] - values[0] + 1;
// expand minQ and maxQ in two ends back assuming uniform distribution
this.binsMin = Math.max(0L, (long) (values[0] - wd * minQ));
long binsMax = (long) (values[1] + wd * (1 - maxQ)) + 1;
// make sure each of bins is at least of width 1
this.binsMax = Math.max(binsMax, this.binsMin + numOfBins);
this.bins10XMax = Math.max((long) (values[1] + (binsMax - 1) * 9), this.binsMax + 1);
this.counts = createCounters(numOfBins + 3);
}
private LongAdder[] createCounters(int num) {
LongAdder[] counters = new LongAdder[num];
for (int i = 0; i < num; i++) {
counters[i] = new LongAdder();
}
return counters;
}
private int getIndex(long value) {
if (value < this.binsMin) {
return 0;
} else if (value > this.bins10XMax) {
return this.counts.length - 1;
} else if (value >= this.binsMax) {
return this.counts.length - 2;
}
// compute the position
return 1 + (int) ((value - this.binsMin) * (this.counts.length - 3) /
(this.binsMax - this.binsMin));
}
/**
* Adds a value to the histogram.
*/
public void add(long value, long count) {
if (value < 0) {
// The whole computation is completely thrown off if there are negative numbers
//
// Normally we would throw an IllegalArgumentException however this is the metrics
// system and it should be completely safe at all times.
// So silently throw it away.
return;
}
AtomicUtils.updateMin(min, value);
AtomicUtils.updateMax(max, value);
this.count.add(count);
this.total.add(value * count);
int pos = getIndex(value);
this.counts[pos].add(count);
// hasData needs to be updated as last
this.hasData.set(true);
}
/**
* Computes the quantiles give the ratios.
*/
public long[] getQuantiles(double[] quantiles) {
if (!this.hasData.get()) {
// No data yet.
return new long[quantiles.length];
}
// Make a snapshot of lowerCounter, higherCounter and bins.counts to counts.
// This is not synchronized, but since the counter are accumulating, the result is a good
// estimation of a snapshot.
long[] counts = new long[this.counts.length];
long total = 0L;
for (int i = 0; i < this.counts.length; i++) {
counts[i] = this.counts[i].sum();
total += counts[i];
}
int rIndex = 0;
double qCount = total * quantiles[0];
long cum = 0L;
long[] res = new long[quantiles.length];
countsLoop: for (int i = 0; i < counts.length; i++) {
// mn and mx define a value range
long mn, mx;
if (i == 0) {
mn = this.min.get();
mx = this.binsMin;
} else if (i == counts.length - 1) {
mn = this.bins10XMax;
mx = this.max.get();
} else if (i == counts.length - 2) {
mn = this.binsMax;
mx = this.bins10XMax;
} else {
mn = this.binsMin + (i - 1) * (this.binsMax - this.binsMin) / (this.counts.length - 3);
mx = this.binsMin + i * (this.binsMax - this.binsMin) / (this.counts.length - 3);
}
if (mx < this.min.get()) {
continue;
}
if (mn > this.max.get()) {
break;
}
mn = Math.max(mn, this.min.get());
mx = Math.min(mx, this.max.get());
// lastCum/cum are the corresponding counts to mn/mx
double lastCum = cum;
cum += counts[i];
// fill the results for qCount is within current range.
while (qCount <= cum) {
if (cum == lastCum) {
res[rIndex] = mn;
} else {
res[rIndex] = (long) ((qCount - lastCum) * (mx - mn) / (cum - lastCum) + mn);
}
// move to next quantile
rIndex++;
if (rIndex >= quantiles.length) {
break countsLoop;
}
qCount = total * quantiles[rIndex];
}
}
// In case quantiles contains values >= 100%
for (; rIndex < quantiles.length; rIndex++) {
res[rIndex] = this.max.get();
}
return res;
}
long getNumAtOrBelow(long val) {
final int targetIndex = getIndex(val);
long totalToCurrentIndex = 0;
for (int i = 0; i <= targetIndex; i++) {
totalToCurrentIndex += this.counts[i].sum();
}
return totalToCurrentIndex;
}
public long getMin() {
long min = this.min.get();
return min == Long.MAX_VALUE ? 0 : min; // in case it is not initialized
}
public long getMean() {
long count = this.count.sum();
long total = this.total.sum();
if (count == 0) {
return 0;
}
return total / count;
}
}
// The bins counting values. It is replaced with a new one in calling of reset().
private volatile Bins bins;
/**
* Constructor.
*/
public FastLongHistogram() {
this(DEFAULT_NBINS);
}
/**
* Constructor.
* @param numOfBins the number of bins for the histogram. A larger value results in more precise
* results but with lower efficiency, and vice versus.
*/
public FastLongHistogram(int numOfBins) {
this.bins = new Bins(numOfBins);
}
/**
* Constructor setting the bins assuming a uniform distribution within a range.
* @param numOfBins the number of bins for the histogram. A larger value results in more precise
* results but with lower efficiency, and vice versus.
* @param min lower bound of the region, inclusive.
* @param max higher bound of the region, inclusive.
*/
public FastLongHistogram(int numOfBins, long min, long max) {
this(numOfBins);
Bins bins = new Bins(numOfBins);
bins.add(min, 1);
bins.add(max, 1);
this.bins = new Bins(bins, numOfBins, 0.01, 0.999);
}
private FastLongHistogram(Bins bins) {
this.bins = bins;
}
/**
* Adds a value to the histogram.
*/
public void add(long value, long count) {
this.bins.add(value, count);
}
/**
* Computes the quantiles give the ratios.
*/
public long[] getQuantiles(double[] quantiles) {
return this.bins.getQuantiles(quantiles);
}
public long[] getQuantiles() {
return this.bins.getQuantiles(DEFAULT_QUANTILES);
}
public long getMin() {
return this.bins.getMin();
}
public long getMax() {
return this.bins.max.get();
}
public long getCount() {
return this.bins.count.sum();
}
public long getMean() {
return this.bins.getMean();
}
public long getNumAtOrBelow(long value) {
return this.bins.getNumAtOrBelow(value);
}
/**
* Resets the histogram for new counting.
*/
public Snapshot snapshotAndReset() {
final Bins oldBins = this.bins;
this.bins = new Bins(this.bins, this.bins.counts.length - 3, 0.01, 0.99);
final long[] percentiles = oldBins.getQuantiles(DEFAULT_QUANTILES);
final long count = oldBins.count.sum();
return new Snapshot() {
@Override
public long[] getQuantiles(double[] quantiles) {
return oldBins.getQuantiles(quantiles);
}
@Override
public long[] getQuantiles() {
return percentiles;
}
@Override
public long getCount() {
return count;
}
@Override
public long getCountAtOrBelow(long val) {
return oldBins.getNumAtOrBelow(val);
}
@Override
public long get25thPercentile() {
return percentiles[0];
}
@Override
public long get75thPercentile() {
return percentiles[2];
}
@Override
public long get90thPercentile() {
return percentiles[3];
}
@Override
public long get95thPercentile() {
return percentiles[4];
}
@Override
public long get98thPercentile() {
return percentiles[5];
}
@Override
public long get99thPercentile() {
return percentiles[6];
}
@Override
public long get999thPercentile() {
return percentiles[7];
}
@Override
public long getMedian() {
return percentiles[1];
}
@Override
public long getMax() {
return oldBins.max.get();
}
@Override
public long getMean() {
return oldBins.getMean();
}
@Override
public long getMin() {
return oldBins.getMin();
}
};
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy