org.apache.hadoop.hbase.util.JenkinsHash Maven / Gradle / Ivy
/**
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hbase.util;
import static java.lang.Integer.rotateLeft;
import java.io.FileInputStream;
import java.io.IOException;
import org.apache.hadoop.hbase.classification.InterfaceAudience;
import org.apache.hadoop.hbase.classification.InterfaceStability;
/**
* Produces 32-bit hash for hash table lookup.
*
* lookup3.c, by Bob Jenkins, May 2006, Public Domain.
*
* You can use this free for any purpose. It's in the public domain.
* It has no warranty.
*
*
* @see lookup3.c
* @see Hash Functions (and how this
* function compares to others such as CRC, MD?, etc
* @see Has update on the
* Dr. Dobbs Article
*/
@InterfaceAudience.Private
@InterfaceStability.Stable
public class JenkinsHash extends Hash {
private static final int BYTE_MASK = 0xff;
private static JenkinsHash _instance = new JenkinsHash();
public static Hash getInstance() {
return _instance;
}
/**
* taken from hashlittle() -- hash a variable-length key into a 32-bit value
*
* @param key the key (the unaligned variable-length array of bytes)
* @param nbytes number of bytes to include in hash
* @param initval can be any integer value
* @return a 32-bit value. Every bit of the key affects every bit of the
* return value. Two keys differing by one or two bits will have totally
* different hash values.
*
* The best hash table sizes are powers of 2. There is no need to do mod
* a prime (mod is sooo slow!). If you need less than 32 bits, use a bitmask.
* For example, if you need only 10 bits, do
* h = (h & hashmask(10));
* In which case, the hash table should have hashsize(10) elements.
*
*
If you are hashing n strings byte[][] k, do it like this:
* for (int i = 0, h = 0; i < n; ++i) h = hash( k[i], h);
*
*
By Bob Jenkins, 2006. [email protected]. You may use this
* code any way you wish, private, educational, or commercial. It's free.
*
*
Use for hash table lookup, or anything where one collision in 2^^32 is
* acceptable. Do NOT use for cryptographic purposes.
*/
@Override
@SuppressWarnings("fallthrough")
public int hash(byte[] key, int off, int nbytes, int initval) {
int length = nbytes;
int a, b, c;
a = b = c = 0xdeadbeef + length + initval;
int offset = off;
for (; length > 12; offset += 12, length -= 12) {
a += (key[offset] & BYTE_MASK);
a += ((key[offset + 1] & BYTE_MASK) << 8);
a += ((key[offset + 2] & BYTE_MASK) << 16);
a += ((key[offset + 3] & BYTE_MASK) << 24);
b += (key[offset + 4] & BYTE_MASK);
b += ((key[offset + 5] & BYTE_MASK) << 8);
b += ((key[offset + 6] & BYTE_MASK) << 16);
b += ((key[offset + 7] & BYTE_MASK) << 24);
c += (key[offset + 8] & BYTE_MASK);
c += ((key[offset + 9] & BYTE_MASK) << 8);
c += ((key[offset + 10] & BYTE_MASK) << 16);
c += ((key[offset + 11] & BYTE_MASK) << 24);
/*
* mix -- mix 3 32-bit values reversibly.
* This is reversible, so any information in (a,b,c) before mix() is
* still in (a,b,c) after mix().
*
* If four pairs of (a,b,c) inputs are run through mix(), or through
* mix() in reverse, there are at least 32 bits of the output that
* are sometimes the same for one pair and different for another pair.
*
* This was tested for:
* - pairs that differed by one bit, by two bits, in any combination
* of top bits of (a,b,c), or in any combination of bottom bits of
* (a,b,c).
* - "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
* the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
* is commonly produced by subtraction) look like a single 1-bit
* difference.
* - the base values were pseudorandom, all zero but one bit set, or
* all zero plus a counter that starts at zero.
*
* Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
* satisfy this are
* 4 6 8 16 19 4
* 9 15 3 18 27 15
* 14 9 3 7 17 3
* Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing for
* "differ" defined as + with a one-bit base and a two-bit delta. I
* used http://burtleburtle.net/bob/hash/avalanche.html to choose
* the operations, constants, and arrangements of the variables.
*
* This does not achieve avalanche. There are input bits of (a,b,c)
* that fail to affect some output bits of (a,b,c), especially of a.
* The most thoroughly mixed value is c, but it doesn't really even
* achieve avalanche in c.
*
* This allows some parallelism. Read-after-writes are good at doubling
* the number of bits affected, so the goal of mixing pulls in the
* opposite direction as the goal of parallelism. I did what I could.
* Rotates seem to cost as much as shifts on every machine I could lay
* my hands on, and rotates are much kinder to the top and bottom bits,
* so I used rotates.
*
* #define mix(a,b,c) \
* { \
* a -= c; a ^= rot(c, 4); c += b; \
* b -= a; b ^= rot(a, 6); a += c; \
* c -= b; c ^= rot(b, 8); b += a; \
* a -= c; a ^= rot(c,16); c += b; \
* b -= a; b ^= rot(a,19); a += c; \
* c -= b; c ^= rot(b, 4); b += a; \
* }
*
* mix(a,b,c);
*/
a -= c; a ^= rotateLeft(c, 4); c += b;
b -= a; b ^= rotateLeft(a, 6); a += c;
c -= b; c ^= rotateLeft(b, 8); b += a;
a -= c; a ^= rotateLeft(c, 16); c += b;
b -= a; b ^= rotateLeft(a, 19); a += c;
c -= b; c ^= rotateLeft(b, 4); b += a;
}
//-------------------------------- last block: affect all 32 bits of (c)
switch (length) { // all the case statements fall through
case 12:
c += ((key[offset + 11] & BYTE_MASK) << 24);
case 11:
c += ((key[offset + 10] & BYTE_MASK) << 16);
case 10:
c += ((key[offset + 9] & BYTE_MASK) << 8);
case 9:
c += (key[offset + 8] & BYTE_MASK);
case 8:
b += ((key[offset + 7] & BYTE_MASK) << 24);
case 7:
b += ((key[offset + 6] & BYTE_MASK) << 16);
case 6:
b += ((key[offset + 5] & BYTE_MASK) << 8);
case 5:
b += (key[offset + 4] & BYTE_MASK);
case 4:
a += ((key[offset + 3] & BYTE_MASK) << 24);
case 3:
a += ((key[offset + 2] & BYTE_MASK) << 16);
case 2:
a += ((key[offset + 1] & BYTE_MASK) << 8);
case 1:
//noinspection PointlessArithmeticExpression
a += (key[offset + 0] & BYTE_MASK);
break;
case 0:
return c;
}
/*
* final -- final mixing of 3 32-bit values (a,b,c) into c
*
* Pairs of (a,b,c) values differing in only a few bits will usually
* produce values of c that look totally different. This was tested for
* - pairs that differed by one bit, by two bits, in any combination
* of top bits of (a,b,c), or in any combination of bottom bits of
* (a,b,c).
*
* - "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
* the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
* is commonly produced by subtraction) look like a single 1-bit
* difference.
*
* - the base values were pseudorandom, all zero but one bit set, or
* all zero plus a counter that starts at zero.
*
* These constants passed:
* 14 11 25 16 4 14 24
* 12 14 25 16 4 14 24
* and these came close:
* 4 8 15 26 3 22 24
* 10 8 15 26 3 22 24
* 11 8 15 26 3 22 24
*
* #define final(a,b,c) \
* {
* c ^= b; c -= rot(b,14); \
* a ^= c; a -= rot(c,11); \
* b ^= a; b -= rot(a,25); \
* c ^= b; c -= rot(b,16); \
* a ^= c; a -= rot(c,4); \
* b ^= a; b -= rot(a,14); \
* c ^= b; c -= rot(b,24); \
* }
*
*/
c ^= b; c -= rotateLeft(b, 14);
a ^= c; a -= rotateLeft(c, 11);
b ^= a; b -= rotateLeft(a, 25);
c ^= b; c -= rotateLeft(b, 16);
a ^= c; a -= rotateLeft(c, 4);
b ^= a; b -= rotateLeft(a, 14);
c ^= b; c -= rotateLeft(b, 24);
return c;
}
/**
* Compute the hash of the specified file
* @param args name of file to compute hash of.
* @throws IOException e
*/
public static void main(String[] args) throws IOException {
if (args.length != 1) {
System.err.println("Usage: JenkinsHash filename");
System.exit(-1);
}
FileInputStream in = new FileInputStream(args[0]);
byte[] bytes = new byte[512];
int value = 0;
JenkinsHash hash = new JenkinsHash();
try {
for (int length = in.read(bytes); length > 0; length = in.read(bytes)) {
value = hash.hash(bytes, length, value);
}
} finally {
in.close();
}
System.out.println(Math.abs(value));
}
}