All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.it.unimi.dsi.fastutil.floats.Float2ReferenceRBTreeMap Maven / Gradle / Ivy

There is a newer version: 4.15.0-HBase-1.5
Show newest version
/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Primitive-type-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/*		 
 * Copyright (C) 2002-2013 Sebastiano Vigna 
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */
package it.unimi.dsi.fastutil.floats;
import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ReferenceCollection;
import it.unimi.dsi.fastutil.objects.AbstractReferenceCollection;
import it.unimi.dsi.fastutil.objects.ObjectIterator;
import java.util.Comparator;
import java.util.Iterator;
import java.util.Map;
import java.util.SortedMap;
import java.util.NoSuchElementException;
/** A type-specific red-black tree map with a fast, small-footprint implementation.
 *
 * 

The iterators provided by the views of this class are type-specific {@linkplain * it.unimi.dsi.fastutil.BidirectionalIterator bidirectional iterators}. * Moreover, the iterator returned by iterator() can be safely cast * to a type-specific {@linkplain java.util.ListIterator list iterator}. * */ public class Float2ReferenceRBTreeMap extends AbstractFloat2ReferenceSortedMap implements java.io.Serializable, Cloneable { /** A reference to the root entry. */ protected transient Entry tree; /** Number of entries in this map. */ protected int count; /** The first key in this map. */ protected transient Entry firstEntry; /** The last key in this map. */ protected transient Entry lastEntry; /** Cached set of entries. */ protected transient volatile ObjectSortedSet > entries; /** Cached set of keys. */ protected transient volatile FloatSortedSet keys; /** Cached collection of values. */ protected transient volatile ReferenceCollection values; /** The value of this variable remembers, after a put() * or a remove(), whether the domain of the map * has been modified. */ protected transient boolean modified; /** This map's comparator, as provided in the constructor. */ protected Comparator storedComparator; /** This map's actual comparator; it may differ from {@link #storedComparator} because it is always a type-specific comparator, so it could be derived from the former by wrapping. */ protected transient FloatComparator actualComparator; private static final long serialVersionUID = -7046029254386353129L; private static final boolean ASSERTS = false; { allocatePaths(); } /** Creates a new empty tree map. */ public Float2ReferenceRBTreeMap() { tree = null; count = 0; } /** Generates the comparator that will be actually used. * *

When a specific {@link Comparator} is specified and stored in {@link * #storedComparator}, we must check whether it is type-specific. If it is * so, we can used directly, and we store it in {@link #actualComparator}. Otherwise, * we generate on-the-fly an anonymous class that wraps the non-specific {@link Comparator} * and makes it into a type-specific one. */ @SuppressWarnings("unchecked") private void setActualComparator() { /* If the provided comparator is already type-specific, we use it. Otherwise, we use a wrapper anonymous class to fake that it is type-specific. */ if ( storedComparator == null || storedComparator instanceof FloatComparator ) actualComparator = (FloatComparator)storedComparator; else actualComparator = new FloatComparator () { public int compare( float k1, float k2 ) { return storedComparator.compare( (Float.valueOf(k1)), (Float.valueOf(k2)) ); } public int compare( Float ok1, Float ok2 ) { return storedComparator.compare( ok1, ok2 ); } }; } /** Creates a new empty tree map with the given comparator. * * @param c a (possibly type-specific) comparator. */ public Float2ReferenceRBTreeMap( final Comparator c ) { this(); storedComparator = c; setActualComparator(); } /** Creates a new tree map copying a given map. * * @param m a {@link Map} to be copied into the new tree map. */ public Float2ReferenceRBTreeMap( final Map m ) { this(); putAll( m ); } /** Creates a new tree map copying a given sorted map (and its {@link Comparator}). * * @param m a {@link SortedMap} to be copied into the new tree map. */ public Float2ReferenceRBTreeMap( final SortedMap m ) { this( m.comparator() ); putAll( m ); } /** Creates a new tree map copying a given map. * * @param m a type-specific map to be copied into the new tree map. */ public Float2ReferenceRBTreeMap( final Float2ReferenceMap m ) { this(); putAll( m ); } /** Creates a new tree map copying a given sorted map (and its {@link Comparator}). * * @param m a type-specific sorted map to be copied into the new tree map. */ public Float2ReferenceRBTreeMap( final Float2ReferenceSortedMap m ) { this( m.comparator() ); putAll( m ); } /** Creates a new tree map using the elements of two parallel arrays and the given comparator. * * @param k the array of keys of the new tree map. * @param v the array of corresponding values in the new tree map. * @param c a (possibly type-specific) comparator. * @throws IllegalArgumentException if k and v have different lengths. */ public Float2ReferenceRBTreeMap( final float[] k, final V v[], final Comparator c ) { this( c ); if ( k.length != v.length ) throw new IllegalArgumentException( "The key array and the value array have different lengths (" + k.length + " and " + v.length + ")" ); for( int i = 0; i < k.length; i++ ) this.put( k[ i ], v[ i ] ); } /** Creates a new tree map using the elements of two parallel arrays. * * @param k the array of keys of the new tree map. * @param v the array of corresponding values in the new tree map. * @throws IllegalArgumentException if k and v have different lengths. */ public Float2ReferenceRBTreeMap( final float[] k, final V v[] ) { this( k, v, null ); } /* * The following methods implements some basic building blocks used by * all accessors. They are (and should be maintained) identical to those used in RBTreeSet.drv. * * The put()/remove() code is derived from Ben Pfaff's GNU libavl * (http://www.msu.edu/~pfaffben/avl/). If you want to understand what's * going on, you should have a look at the literate code contained therein * first. */ /** Compares two keys in the right way. * *

This method uses the {@link #actualComparator} if it is non-null. * Otherwise, it resorts to primitive type comparisons or to {@link Comparable#compareTo(Object) compareTo()}. * * @param k1 the first key. * @param k2 the second key. * @return a number smaller than, equal to or greater than 0, as usual * (i.e., when k1 < k2, k1 = k2 or k1 > k2, respectively). */ @SuppressWarnings("unchecked") final int compare( final float k1, final float k2 ) { return actualComparator == null ? ( Float.compare((k1),(k2)) ) : actualComparator.compare( k1, k2 ); } /** Returns the entry corresponding to the given key, if it is in the tree; null, otherwise. * * @param k the key to search for. * @return the corresponding entry, or null if no entry with the given key exists. */ final Entry findKey( final float k ) { Entry e = tree; int cmp; while ( e != null && ( cmp = compare( k, e.key ) ) != 0 ) e = cmp < 0 ? e.left() : e.right(); return e; } /** Locates a key. * * @param k a key. * @return the last entry on a search for the given key; this will be * the given key, if it present; otherwise, it will be either the smallest greater key or the greatest smaller key. */ final Entry locateKey( final float k ) { Entry e = tree, last = tree; int cmp = 0; while ( e != null && ( cmp = compare( k, e.key ) ) != 0 ) { last = e; e = cmp < 0 ? e.left() : e.right(); } return cmp == 0 ? e : last; } /** This vector remembers the path and the direction followed during the * current insertion. It suffices for about 232 entries. */ private transient boolean dirPath[]; private transient Entry nodePath[]; @SuppressWarnings("unchecked") private void allocatePaths() { dirPath = new boolean[ 64 ]; nodePath = new Entry[ 64 ]; } /* After execution of this method, modified is true iff a new entry has been inserted. */ public V put( final float k, final V v ) { modified = false; int maxDepth = 0; if ( tree == null ) { // The case of the empty tree is treated separately. count++; tree = lastEntry = firstEntry = new Entry ( k, v ); } else { Entry p = tree, e; int cmp, i = 0; while( true ) { if ( ( cmp = compare( k, p.key ) ) == 0 ) { final V oldValue = p.value; p.value = v; // We clean up the node path, or we could have stale references later. while( i-- != 0 ) nodePath[ i ] = null; return oldValue; } nodePath[ i ] = p; if ( dirPath[ i++ ] = cmp > 0 ) { if ( p.succ() ) { count++; e = new Entry ( k, v ); if ( p.right == null ) lastEntry = e; e.left = p; e.right = p.right; p.right( e ); break; } p = p.right; } else { if ( p.pred() ) { count++; e = new Entry ( k, v ); if ( p.left == null ) firstEntry = e; e.right = p; e.left = p.left; p.left( e ); break; } p = p.left; } } modified = true; maxDepth = i--; while( i > 0 && ! nodePath[ i ].black() ) { if ( ! dirPath[ i - 1 ] ) { Entry y = nodePath[ i - 1 ].right; if ( ! nodePath[ i - 1 ].succ() && ! y.black() ) { nodePath[ i ].black( true ); y.black( true ); nodePath[ i - 1 ].black( false ); i -= 2; } else { Entry x; if ( ! dirPath[ i ] ) y = nodePath[ i ]; else { x = nodePath[ i ]; y = x.right; x.right = y.left; y.left = x; nodePath[ i - 1 ].left = y; if ( y.pred() ) { y.pred( false ); x.succ( y ); } } x = nodePath[ i - 1 ]; x.black( false ); y.black( true ); x.left = y.right; y.right = x; if ( i < 2 ) tree = y; else { if ( dirPath[ i - 2 ] ) nodePath[ i - 2 ].right = y; else nodePath[ i - 2 ].left = y; } if ( y.succ() ) { y.succ( false ); x.pred( y ); } break; } } else { Entry y = nodePath[ i - 1 ].left; if ( ! nodePath[ i - 1 ].pred() && ! y.black() ) { nodePath[ i ].black( true ); y.black( true ); nodePath[ i - 1 ].black( false ); i -= 2; } else { Entry x; if ( dirPath[ i ] ) y = nodePath[ i ]; else { x = nodePath[ i ]; y = x.left; x.left = y.right; y.right = x; nodePath[ i - 1 ].right = y; if ( y.succ() ) { y.succ( false ); x.pred( y ); } } x = nodePath[ i - 1 ]; x.black( false ); y.black( true ); x.right = y.left; y.left = x; if ( i < 2 ) tree = y; else { if ( dirPath[ i - 2 ] ) nodePath[ i - 2 ].right = y; else nodePath[ i - 2 ].left = y; } if ( y.pred() ){ y.pred( false ); x.succ( y ); } break; } } } } tree.black( true ); // We clean up the node path, or we could have stale references later. while( maxDepth-- != 0 ) nodePath[ maxDepth ] = null; if ( ASSERTS ) { checkNodePath(); checkTree( tree, 0, -1 ); } return defRetValue; } /* After execution of this method, {@link #modified} is true iff an entry has been deleted. */ @SuppressWarnings("unchecked") public V remove( final float k ) { modified = false; if ( tree == null ) return defRetValue; Entry p = tree; int cmp; int i = 0; final float kk = k; while( true ) { if ( ( cmp = compare( kk, p.key ) ) == 0 ) break; dirPath[ i ] = cmp > 0; nodePath[ i ] = p; if ( dirPath[ i++ ] ) { if ( ( p = p.right() ) == null ) { // We clean up the node path, or we could have stale references later. while( i-- != 0 ) nodePath[ i ] = null; return defRetValue; } } else { if ( ( p = p.left() ) == null ) { // We clean up the node path, or we could have stale references later. while( i-- != 0 ) nodePath[ i ] = null; return defRetValue; } } } if ( p.left == null ) firstEntry = p.next(); if ( p.right == null ) lastEntry = p.prev(); if ( p.succ() ) { if ( p.pred() ) { if ( i == 0 ) tree = p.left; else { if ( dirPath[ i - 1 ] ) nodePath[ i - 1 ].succ( p.right ); else nodePath[ i - 1 ].pred( p.left ); } } else { p.prev().right = p.right; if ( i == 0 ) tree = p.left; else { if ( dirPath[ i - 1 ] ) nodePath[ i - 1 ].right = p.left; else nodePath[ i - 1 ].left = p.left; } } } else { boolean color; Entry r = p.right; if ( r.pred() ) { r.left = p.left; r.pred( p.pred() ); if ( ! r.pred() ) r.prev().right = r; if ( i == 0 ) tree = r; else { if ( dirPath[ i - 1 ] ) nodePath[ i - 1 ].right = r; else nodePath[ i - 1 ].left = r; } color = r.black(); r.black( p.black() ); p.black( color ); dirPath[ i ] = true; nodePath[ i++ ] = r; } else { Entry s; int j = i++; while( true ) { dirPath[ i ] = false; nodePath[ i++ ] = r; s = r.left; if ( s.pred() ) break; r = s; } dirPath[ j ] = true; nodePath[ j ] = s; if ( s.succ() ) r.pred( s ); else r.left = s.right; s.left = p.left; if ( ! p.pred() ) { p.prev().right = s; s.pred( false ); } s.right( p.right ); color = s.black(); s.black( p.black() ); p.black( color ); if ( j == 0 ) tree = s; else { if ( dirPath[ j - 1 ] ) nodePath[ j - 1 ].right = s; else nodePath[ j - 1 ].left = s; } } } int maxDepth = i; if ( p.black() ) { for( ; i > 0; i-- ) { if ( dirPath[ i - 1 ] && ! nodePath[ i - 1 ].succ() || ! dirPath[ i - 1 ] && ! nodePath[ i - 1 ].pred() ) { Entry x = dirPath[ i - 1 ] ? nodePath[ i - 1 ].right : nodePath[ i - 1 ].left; if ( ! x.black() ) { x.black( true ); break; } } if ( ! dirPath[ i - 1 ] ) { Entry w = nodePath[ i - 1 ].right; if ( ! w.black() ) { w.black( true ); nodePath[ i - 1 ].black( false ); nodePath[ i - 1 ].right = w.left; w.left = nodePath[ i - 1 ]; if ( i < 2 ) tree = w; else { if ( dirPath[ i - 2 ] ) nodePath[ i - 2 ].right = w; else nodePath[ i - 2 ].left = w; } nodePath[ i ] = nodePath[ i - 1 ]; dirPath[ i ] = false; nodePath[ i - 1 ] = w; if ( maxDepth == i++ ) maxDepth++; w = nodePath[ i - 1 ].right; } if ( ( w.pred() || w.left.black() ) && ( w.succ() || w.right.black() ) ) { w.black( false ); } else { if ( w.succ() || w.right.black() ) { Entry y = w.left; y.black ( true ); w.black( false ); w.left = y.right; y.right = w; w = nodePath[ i - 1 ].right = y; if ( w.succ() ) { w.succ( false ); w.right.pred( w ); } } w.black( nodePath[ i - 1 ].black() ); nodePath[ i - 1 ].black( true ); w.right.black( true ); nodePath[ i - 1 ].right = w.left; w.left = nodePath[ i - 1 ]; if ( i < 2 ) tree = w; else { if ( dirPath[ i - 2 ] ) nodePath[ i - 2 ].right = w; else nodePath[ i - 2 ].left = w; } if ( w.pred() ) { w.pred( false ); nodePath[ i - 1 ].succ( w ); } break; } } else { Entry w = nodePath[ i - 1 ].left; if ( ! w.black() ) { w.black ( true ); nodePath[ i - 1 ].black( false ); nodePath[ i - 1 ].left = w.right; w.right = nodePath[ i - 1 ]; if ( i < 2 ) tree = w; else { if ( dirPath[ i - 2 ] ) nodePath[ i - 2 ].right = w; else nodePath[ i - 2 ].left = w; } nodePath[ i ] = nodePath[ i - 1 ]; dirPath[ i ] = true; nodePath[ i - 1 ] = w; if ( maxDepth == i++ ) maxDepth++; w = nodePath[ i - 1 ].left; } if ( ( w.pred() || w.left.black() ) && ( w.succ() || w.right.black() ) ) { w.black( false ); } else { if ( w.pred() || w.left.black() ) { Entry y = w.right; y.black( true ); w.black ( false ); w.right = y.left; y.left = w; w = nodePath[ i - 1 ].left = y; if ( w.pred() ) { w.pred( false ); w.left.succ( w ); } } w.black( nodePath[ i - 1 ].black() ); nodePath[ i - 1 ].black( true ); w.left.black( true ); nodePath[ i - 1 ].left = w.right; w.right = nodePath[ i - 1 ]; if ( i < 2 ) tree = w; else { if ( dirPath[ i - 2 ] ) nodePath[ i - 2 ].right = w; else nodePath[ i - 2 ].left = w; } if ( w.succ() ) { w.succ( false ); nodePath[ i - 1 ].pred( w ); } break; } } } if ( tree != null ) tree.black( true ); } modified = true; count--; // We clean up the node path, or we could have stale references later. while( maxDepth-- != 0 ) nodePath[ maxDepth ] = null; if ( ASSERTS ) { checkNodePath(); checkTree( tree, 0, -1 ); } return p.value; } public V put( final Float ok, final V ov ) { final V oldValue = put( ((ok).floatValue()), (ov) ); return modified ? (this.defRetValue) : (oldValue); } public V remove( final Object ok ) { final V oldValue = remove( ((((Float)(ok)).floatValue())) ); return modified ? (oldValue) : (this.defRetValue); } public boolean containsValue( final Object v ) { final ValueIterator i = new ValueIterator(); Object ev; int j = count; while( j-- != 0 ) { ev = i.next(); if ( ( (ev) == (v) ) ) return true; } return false; } public void clear() { count = 0; tree = null; entries = null; values = null; keys = null; firstEntry = lastEntry = null; } /** This class represent an entry in a tree map. * *

We use the only "metadata", i.e., {@link Entry#info}, to store * information about color, predecessor status and successor status. * *

Note that since the class is recursive, it can be * considered equivalently a tree. */ private static final class Entry implements Cloneable, Float2ReferenceMap.Entry { /** The the bit in this mask is true, the node is black. */ private final static int BLACK_MASK = 1; /** If the bit in this mask is true, {@link #right} points to a successor. */ private final static int SUCC_MASK = 1 << 31; /** If the bit in this mask is true, {@link #left} points to a predecessor. */ private final static int PRED_MASK = 1 << 30; /** The key of this entry. */ float key; /** The value of this entry. */ V value; /** The pointers to the left and right subtrees. */ Entry left, right; /** This integers holds different information in different bits (see {@link #SUCC_MASK} and {@link #PRED_MASK}. */ int info; Entry() {} /** Creates a new entry with the given key and value. * * @param k a key. * @param v a value. */ Entry( final float k, final V v ) { this.key = k; this.value = v; info = SUCC_MASK | PRED_MASK; } /** Returns the left subtree. * * @return the left subtree (null if the left * subtree is empty). */ Entry left() { return ( info & PRED_MASK ) != 0 ? null : left; } /** Returns the right subtree. * * @return the right subtree (null if the right * subtree is empty). */ Entry right() { return ( info & SUCC_MASK ) != 0 ? null : right; } /** Checks whether the left pointer is really a predecessor. * @return true if the left pointer is a predecessor. */ boolean pred() { return ( info & PRED_MASK ) != 0; } /** Checks whether the right pointer is really a successor. * @return true if the right pointer is a successor. */ boolean succ() { return ( info & SUCC_MASK ) != 0; } /** Sets whether the left pointer is really a predecessor. * @param pred if true then the left pointer will be considered a predecessor. */ void pred( final boolean pred ) { if ( pred ) info |= PRED_MASK; else info &= ~PRED_MASK; } /** Sets whether the right pointer is really a successor. * @param succ if true then the right pointer will be considered a successor. */ void succ( final boolean succ ) { if ( succ ) info |= SUCC_MASK; else info &= ~SUCC_MASK; } /** Sets the left pointer to a predecessor. * @param pred the predecessr. */ void pred( final Entry pred ) { info |= PRED_MASK; left = pred; } /** Sets the right pointer to a successor. * @param succ the successor. */ void succ( final Entry succ ) { info |= SUCC_MASK; right = succ; } /** Sets the left pointer to the given subtree. * @param left the new left subtree. */ void left( final Entry left ) { info &= ~PRED_MASK; this.left = left; } /** Sets the right pointer to the given subtree. * @param right the new right subtree. */ void right( final Entry right ) { info &= ~SUCC_MASK; this.right = right; } /** Returns whether this node is black. * @return true iff this node is black. */ boolean black() { return ( info & BLACK_MASK ) != 0; } /** Sets whether this node is black. * @param black if true, then this node becomes black; otherwise, it becomes red.. */ void black( final boolean black ) { if ( black ) info |= BLACK_MASK; else info &= ~BLACK_MASK; } /** Computes the next entry in the set order. * * @return the next entry (null) if this is the last entry). */ Entry next() { Entry next = this.right; if ( ( info & SUCC_MASK ) == 0 ) while ( ( next.info & PRED_MASK ) == 0 ) next = next.left; return next; } /** Computes the previous entry in the set order. * * @return the previous entry (null) if this is the first entry). */ Entry prev() { Entry prev = this.left; if ( ( info & PRED_MASK ) == 0 ) while ( ( prev.info & SUCC_MASK ) == 0 ) prev = prev.right; return prev; } public Float getKey() { return (Float.valueOf(key)); } public float getFloatKey() { return key; } public V getValue() { return (value); } public V setValue(final V value) { final V oldValue = this.value; this.value = value; return oldValue; } @SuppressWarnings("unchecked") public Entry clone() { Entry c; try { c = (Entry )super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.key = key; c.value = value; c.info = info; return c; } @SuppressWarnings("unchecked") public boolean equals( final Object o ) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry )o; return ( (key) == (((e.getKey()).floatValue())) ) && ( (value) == ((e.getValue())) ); } public int hashCode() { return it.unimi.dsi.fastutil.HashCommon.float2int(key) ^ ( (value) == null ? 0 : System.identityHashCode(value) ); } public String toString() { return key + "=>" + value; } /* public void prettyPrint() { prettyPrint(0); } public void prettyPrint(int level) { if ( pred() ) { for (int i = 0; i < level; i++) System.err.print(" "); System.err.println("pred: " + left ); } else if (left != null) left.prettyPrint(level +1 ); for (int i = 0; i < level; i++) System.err.print(" "); System.err.println(key + "=" + value + " (" + balance() + ")"); if ( succ() ) { for (int i = 0; i < level; i++) System.err.print(" "); System.err.println("succ: " + right ); } else if (right != null) right.prettyPrint(level + 1); }*/ } /* public void prettyPrint() { System.err.println("size: " + count); if (tree != null) tree.prettyPrint(); }*/ @SuppressWarnings("unchecked") public boolean containsKey( final float k ) { return findKey( k ) != null; } public int size() { return count; } public boolean isEmpty() { return count == 0; } @SuppressWarnings("unchecked") public V get( final float k ) { final Entry e = findKey( k ); return e == null ? defRetValue : e.value; } public float firstFloatKey() { if ( tree == null ) throw new NoSuchElementException(); return firstEntry.key; } public float lastFloatKey() { if ( tree == null ) throw new NoSuchElementException(); return lastEntry.key; } /** An abstract iterator on the whole range. * *

This class can iterate in both directions on a threaded tree. */ private class TreeIterator { /** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or null if no previous entry exists). */ Entry prev; /** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or null if no next entry exists). */ Entry next; /** The last entry that was returned (or null if we did not iterate or used {@link #remove()}). */ Entry curr; /** The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not meaningful when this {@link TreeIterator} has been created using the nonempty constructor.*/ int index = 0; TreeIterator() { next = firstEntry; } TreeIterator( final float k ) { if ( ( next = locateKey( k ) ) != null ) { if ( compare( next.key, k ) <= 0 ) { prev = next; next = next.next(); } else prev = next.prev(); } } public boolean hasNext() { return next != null; } public boolean hasPrevious() { return prev != null; } void updateNext() { next = next.next(); } Entry nextEntry() { if ( ! hasNext() ) throw new NoSuchElementException(); curr = prev = next; index++; updateNext(); return curr; } void updatePrevious() { prev = prev.prev(); } Entry previousEntry() { if ( ! hasPrevious() ) throw new NoSuchElementException(); curr = next = prev; index--; updatePrevious(); return curr; } public int nextIndex() { return index; } public int previousIndex() { return index - 1; } public void remove() { if ( curr == null ) throw new IllegalStateException(); /* If the last operation was a next(), we are removing an entry that preceeds the current index, and thus we must decrement it. */ if ( curr == prev ) index--; next = prev = curr; updatePrevious(); updateNext(); Float2ReferenceRBTreeMap.this.remove( curr.key ); curr = null; } public int skip( final int n ) { int i = n; while( i-- != 0 && hasNext() ) nextEntry(); return n - i - 1; } public int back( final int n ) { int i = n; while( i-- != 0 && hasPrevious() ) previousEntry(); return n - i - 1; } } /** An iterator on the whole range. * *

This class can iterate in both directions on a threaded tree. */ private class EntryIterator extends TreeIterator implements ObjectListIterator > { EntryIterator() {} EntryIterator( final float k ) { super( k ); } public Float2ReferenceMap.Entry next() { return nextEntry(); } public Float2ReferenceMap.Entry previous() { return previousEntry(); } public void set( Float2ReferenceMap.Entry ok ) { throw new UnsupportedOperationException(); } public void add( Float2ReferenceMap.Entry ok ) { throw new UnsupportedOperationException(); } } public ObjectSortedSet > float2ReferenceEntrySet() { if ( entries == null ) entries = new AbstractObjectSortedSet >() { final Comparator > comparator = new Comparator > () { public int compare( final Float2ReferenceMap.Entry x, Float2ReferenceMap.Entry y ) { return Float2ReferenceRBTreeMap.this.storedComparator.compare( x.getKey(), y.getKey() ); } }; public Comparator > comparator() { return comparator; } public ObjectBidirectionalIterator > iterator() { return new EntryIterator(); } public ObjectBidirectionalIterator > iterator( final Float2ReferenceMap.Entry from ) { return new EntryIterator( ((from.getKey()).floatValue()) ); } @SuppressWarnings("unchecked") public boolean contains( final Object o ) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; final Entry f = findKey( ((e.getKey()).floatValue()) ); return e.equals( f ); } @SuppressWarnings("unchecked") public boolean remove( final Object o ) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; final Entry f = findKey( ((e.getKey()).floatValue()) ); if ( f != null ) Float2ReferenceRBTreeMap.this.remove( f.key ); return f != null; } public int size() { return count; } public void clear() { Float2ReferenceRBTreeMap.this.clear(); } public Float2ReferenceMap.Entry first() { return firstEntry; } public Float2ReferenceMap.Entry last() { return lastEntry; } public ObjectSortedSet > subSet( Float2ReferenceMap.Entry from, Float2ReferenceMap.Entry to ) { return subMap( from.getKey(), to.getKey() ).float2ReferenceEntrySet(); } public ObjectSortedSet > headSet( Float2ReferenceMap.Entry to ) { return headMap( to.getKey() ).float2ReferenceEntrySet(); } public ObjectSortedSet > tailSet( Float2ReferenceMap.Entry from ) { return tailMap( from.getKey() ).float2ReferenceEntrySet(); } }; return entries; } /** An iterator on the whole range of keys. * *

This class can iterate in both directions on the keys of a threaded tree. We * simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and possibly * their type-specific counterparts) so that they return keys instead of entries. */ private final class KeyIterator extends TreeIterator implements FloatListIterator { public KeyIterator() {} public KeyIterator( final float k ) { super( k ); } public float nextFloat() { return nextEntry().key; } public float previousFloat() { return previousEntry().key; } public void set( float k ) { throw new UnsupportedOperationException(); } public void add( float k ) { throw new UnsupportedOperationException(); } public Float next() { return (Float.valueOf(nextEntry().key)); } public Float previous() { return (Float.valueOf(previousEntry().key)); } public void set( Float ok ) { throw new UnsupportedOperationException(); } public void add( Float ok ) { throw new UnsupportedOperationException(); } }; /** A keyset implementation using a more direct implementation for iterators. */ private class KeySet extends AbstractFloat2ReferenceSortedMap .KeySet { public FloatBidirectionalIterator iterator() { return new KeyIterator(); } public FloatBidirectionalIterator iterator( final float from ) { return new KeyIterator( from ); } } /** Returns a type-specific sorted set view of the keys contained in this map. * *

In addition to the semantics of {@link java.util.Map#keySet()}, you can * safely cast the set returned by this call to a type-specific sorted * set interface. * * @return a type-specific sorted set view of the keys contained in this map. */ public FloatSortedSet keySet() { if ( keys == null ) keys = new KeySet(); return keys; } /** An iterator on the whole range of values. * *

This class can iterate in both directions on the values of a threaded tree. We * simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and possibly * their type-specific counterparts) so that they return values instead of entries. */ private final class ValueIterator extends TreeIterator implements ObjectListIterator { public V next() { return nextEntry().value; } public V previous() { return previousEntry().value; } public void set( V v ) { throw new UnsupportedOperationException(); } public void add( V v ) { throw new UnsupportedOperationException(); } }; /** Returns a type-specific collection view of the values contained in this map. * *

In addition to the semantics of {@link java.util.Map#values()}, you can * safely cast the collection returned by this call to a type-specific collection * interface. * * @return a type-specific collection view of the values contained in this map. */ public ReferenceCollection values() { if ( values == null ) values = new AbstractReferenceCollection () { public ObjectIterator iterator() { return new ValueIterator(); } public boolean contains( final Object k ) { return containsValue( k ); } public int size() { return count; } public void clear() { Float2ReferenceRBTreeMap.this.clear(); } }; return values; } public FloatComparator comparator() { return actualComparator; } public Float2ReferenceSortedMap headMap( float to ) { return new Submap( ((float)0), true, to, false ); } public Float2ReferenceSortedMap tailMap( float from ) { return new Submap( from, false, ((float)0), true ); } public Float2ReferenceSortedMap subMap( float from, float to ) { return new Submap( from, false, to, false ); } /** A submap with given range. * *

This class represents a submap. One has to specify the left/right * limits (which can be set to -∞ or ∞). Since the submap is a * view on the map, at a given moment it could happen that the limits of * the range are not any longer in the main map. Thus, things such as * {@link java.util.SortedMap#firstKey()} or {@link java.util.Collection#size()} must be always computed * on-the-fly. */ private final class Submap extends AbstractFloat2ReferenceSortedMap implements java.io.Serializable { private static final long serialVersionUID = -7046029254386353129L; /** The start of the submap range, unless {@link #bottom} is true. */ float from; /** The end of the submap range, unless {@link #top} is true. */ float to; /** If true, the submap range starts from -∞. */ boolean bottom; /** If true, the submap range goes to ∞. */ boolean top; /** Cached set of entries. */ @SuppressWarnings("hiding") protected transient volatile ObjectSortedSet > entries; /** Cached set of keys. */ @SuppressWarnings("hiding") protected transient volatile FloatSortedSet keys; /** Cached collection of values. */ @SuppressWarnings("hiding") protected transient volatile ReferenceCollection values; /** Creates a new submap with given key range. * * @param from the start of the submap range. * @param bottom if true, the first parameter is ignored and the range starts from -∞. * @param to the end of the submap range. * @param top if true, the third parameter is ignored and the range goes to ∞. */ public Submap( final float from, final boolean bottom, final float to, final boolean top ) { if ( ! bottom && ! top && Float2ReferenceRBTreeMap.this.compare( from, to ) > 0 ) throw new IllegalArgumentException( "Start key (" + from + ") is larger than end key (" + to + ")" ); this.from = from; this.bottom = bottom; this.to = to; this.top = top; this.defRetValue = Float2ReferenceRBTreeMap.this.defRetValue; } public void clear() { final SubmapIterator i = new SubmapIterator(); while( i.hasNext() ) { i.nextEntry(); i.remove(); } } /** Checks whether a key is in the submap range. * @param k a key. * @return true if is the key is in the submap range. */ final boolean in( final float k ) { return ( bottom || Float2ReferenceRBTreeMap.this.compare( k, from ) >= 0 ) && ( top || Float2ReferenceRBTreeMap.this.compare( k, to ) < 0 ); } public ObjectSortedSet > float2ReferenceEntrySet() { if ( entries == null ) entries = new AbstractObjectSortedSet >() { public ObjectBidirectionalIterator > iterator() { return new SubmapEntryIterator(); } public ObjectBidirectionalIterator > iterator( final Float2ReferenceMap.Entry from ) { return new SubmapEntryIterator( ((from.getKey()).floatValue()) ); } public Comparator > comparator() { return Float2ReferenceRBTreeMap.this.float2ReferenceEntrySet().comparator(); } @SuppressWarnings("unchecked") public boolean contains( final Object o ) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; final Float2ReferenceRBTreeMap.Entry f = findKey( ((e.getKey()).floatValue()) ); return f != null && in( f.key ) && e.equals( f ); } @SuppressWarnings("unchecked") public boolean remove( final Object o ) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; final Float2ReferenceRBTreeMap.Entry f = findKey( ((e.getKey()).floatValue()) ); if ( f != null && in( f.key ) ) Submap.this.remove( f.key ); return f != null; } public int size() { int c = 0; for( Iterator i = iterator(); i.hasNext(); i.next() ) c++; return c; } public boolean isEmpty() { return ! new SubmapIterator().hasNext(); } public void clear() { Submap.this.clear(); } public Float2ReferenceMap.Entry first() { return firstEntry(); } public Float2ReferenceMap.Entry last() { return lastEntry(); } public ObjectSortedSet > subSet( Float2ReferenceMap.Entry from, Float2ReferenceMap.Entry to ) { return subMap( from.getKey(), to.getKey() ).float2ReferenceEntrySet(); } public ObjectSortedSet > headSet( Float2ReferenceMap.Entry to ) { return headMap( to.getKey() ).float2ReferenceEntrySet(); } public ObjectSortedSet > tailSet( Float2ReferenceMap.Entry from ) { return tailMap( from.getKey() ).float2ReferenceEntrySet(); } }; return entries; } private class KeySet extends AbstractFloat2ReferenceSortedMap .KeySet { public FloatBidirectionalIterator iterator() { return new SubmapKeyIterator(); } public FloatBidirectionalIterator iterator( final float from ) { return new SubmapKeyIterator( from ); } } public FloatSortedSet keySet() { if ( keys == null ) keys = new KeySet(); return keys; } public ReferenceCollection values() { if ( values == null ) values = new AbstractReferenceCollection () { public ObjectIterator iterator() { return new SubmapValueIterator(); } public boolean contains( final Object k ) { return containsValue( k ); } public int size() { return Submap.this.size(); } public void clear() { Submap.this.clear(); } }; return values; } @SuppressWarnings("unchecked") public boolean containsKey( final float k ) { return in( k ) && Float2ReferenceRBTreeMap.this.containsKey( k ); } public boolean containsValue( final Object v ) { final SubmapIterator i = new SubmapIterator(); Object ev; while( i.hasNext() ) { ev = i.nextEntry().value; if ( ( (ev) == (v) ) ) return true; } return false; } @SuppressWarnings("unchecked") public V get(final float k) { final Float2ReferenceRBTreeMap.Entry e; final float kk = k; return in( kk ) && ( e = findKey( kk ) ) != null ? e.value : this.defRetValue; } public V put(final float k, final V v) { modified = false; if ( ! in( k ) ) throw new IllegalArgumentException( "Key (" + k + ") out of range [" + ( bottom ? "-" : String.valueOf( from ) ) + ", " + ( top ? "-" : String.valueOf( to ) ) + ")" ); final V oldValue = Float2ReferenceRBTreeMap.this.put( k, v ); return modified ? this.defRetValue : oldValue; } public V put( final Float ok, final V ov ) { final V oldValue = put( ((ok).floatValue()), (ov) ); return modified ? (this.defRetValue) : (oldValue); } @SuppressWarnings("unchecked") public V remove( final float k ) { modified = false; if ( ! in( k ) ) return this.defRetValue; final V oldValue = Float2ReferenceRBTreeMap.this.remove( k ); return modified ? oldValue : this.defRetValue; } public V remove( final Object ok ) { final V oldValue = remove( ((((Float)(ok)).floatValue())) ); return modified ? (oldValue) : (this.defRetValue); } public int size() { final SubmapIterator i = new SubmapIterator(); int n = 0; while( i.hasNext() ) { n++; i.nextEntry(); } return n; } public boolean isEmpty() { return ! new SubmapIterator().hasNext(); } public FloatComparator comparator() { return actualComparator; } public Float2ReferenceSortedMap headMap( final float to ) { if ( top ) return new Submap( from, bottom, to, false ); return compare( to, this.to ) < 0 ? new Submap( from, bottom, to, false ) : this; } public Float2ReferenceSortedMap tailMap( final float from ) { if ( bottom ) return new Submap( from, false, to, top ); return compare( from, this.from ) > 0 ? new Submap( from, false, to, top ) : this; } public Float2ReferenceSortedMap subMap( float from, float to ) { if ( top && bottom ) return new Submap( from, false, to, false ); if ( ! top ) to = compare( to, this.to ) < 0 ? to : this.to; if ( ! bottom ) from = compare( from, this.from ) > 0 ? from : this.from; if ( ! top && ! bottom && from == this.from && to == this.to ) return this; return new Submap( from, false, to, false ); } /** Locates the first entry. * * @return the first entry of this submap, or null if the submap is empty. */ public Float2ReferenceRBTreeMap.Entry firstEntry() { if ( tree == null ) return null; // If this submap goes to -infinity, we return the main map first entry; otherwise, we locate the start of the map. Float2ReferenceRBTreeMap.Entry e; if ( bottom ) e = firstEntry; else { e = locateKey( from ); // If we find either the start or something greater we're OK. if ( compare( e.key, from ) < 0 ) e = e.next(); } // Finally, if this submap doesn't go to infinity, we check that the resulting key isn't greater than the end. if ( e == null || ! top && compare( e.key, to ) >= 0 ) return null; return e; } /** Locates the last entry. * * @return the last entry of this submap, or null if the submap is empty. */ public Float2ReferenceRBTreeMap.Entry lastEntry() { if ( tree == null ) return null; // If this submap goes to infinity, we return the main map last entry; otherwise, we locate the end of the map. Float2ReferenceRBTreeMap.Entry e; if ( top ) e = lastEntry; else { e = locateKey( to ); // If we find something smaller than the end we're OK. if ( compare( e.key, to ) >= 0 ) e = e.prev(); } // Finally, if this submap doesn't go to -infinity, we check that the resulting key isn't smaller than the start. if ( e == null || ! bottom && compare( e.key, from ) < 0 ) return null; return e; } public float firstFloatKey() { Float2ReferenceRBTreeMap.Entry e = firstEntry(); if ( e == null ) throw new NoSuchElementException(); return e.key; } public float lastFloatKey() { Float2ReferenceRBTreeMap.Entry e = lastEntry(); if ( e == null ) throw new NoSuchElementException(); return e.key; } public Float firstKey() { Float2ReferenceRBTreeMap.Entry e = firstEntry(); if ( e == null ) throw new NoSuchElementException(); return e.getKey(); } public Float lastKey() { Float2ReferenceRBTreeMap.Entry e = lastEntry(); if ( e == null ) throw new NoSuchElementException(); return e.getKey(); } /** An iterator for subranges. * *

This class inherits from {@link TreeIterator}, but overrides the methods that * update the pointer after a {@link java.util.ListIterator#next()} or {@link java.util.ListIterator#previous()}. If we would * move out of the range of the submap we just overwrite the next or previous * entry with null. */ private class SubmapIterator extends TreeIterator { SubmapIterator() { next = firstEntry(); } SubmapIterator( final float k ) { this(); if ( next != null ) { if ( ! bottom && compare( k, next.key ) < 0 ) prev = null; else if ( ! top && compare( k, ( prev = lastEntry() ).key ) >= 0 ) next = null; else { next = locateKey( k ); if ( compare( next.key, k ) <= 0 ) { prev = next; next = next.next(); } else prev = next.prev(); } } } void updatePrevious() { prev = prev.prev(); if ( ! bottom && prev != null && Float2ReferenceRBTreeMap.this.compare( prev.key, from ) < 0 ) prev = null; } void updateNext() { next = next.next(); if ( ! top && next != null && Float2ReferenceRBTreeMap.this.compare( next.key, to ) >= 0 ) next = null; } } private class SubmapEntryIterator extends SubmapIterator implements ObjectListIterator > { SubmapEntryIterator() {} SubmapEntryIterator( final float k ) { super( k ); } public Float2ReferenceMap.Entry next() { return nextEntry(); } public Float2ReferenceMap.Entry previous() { return previousEntry(); } public void set( Float2ReferenceMap.Entry ok ) { throw new UnsupportedOperationException(); } public void add( Float2ReferenceMap.Entry ok ) { throw new UnsupportedOperationException(); } } /** An iterator on a subrange of keys. * *

This class can iterate in both directions on a subrange of the * keys of a threaded tree. We simply override the {@link * java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and possibly their * type-specific counterparts) so that they return keys instead of * entries. */ private final class SubmapKeyIterator extends SubmapIterator implements FloatListIterator { public SubmapKeyIterator() { super(); } public SubmapKeyIterator( float from ) { super( from ); } public float nextFloat() { return nextEntry().key; } public float previousFloat() { return previousEntry().key; } public void set( float k ) { throw new UnsupportedOperationException(); } public void add( float k ) { throw new UnsupportedOperationException(); } public Float next() { return (Float.valueOf(nextEntry().key)); } public Float previous() { return (Float.valueOf(previousEntry().key)); } public void set( Float ok ) { throw new UnsupportedOperationException(); } public void add( Float ok ) { throw new UnsupportedOperationException(); } }; /** An iterator on a subrange of values. * *

This class can iterate in both directions on the values of a * subrange of the keys of a threaded tree. We simply override the * {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and possibly their * type-specific counterparts) so that they return values instead of * entries. */ private final class SubmapValueIterator extends SubmapIterator implements ObjectListIterator { public V next() { return nextEntry().value; } public V previous() { return previousEntry().value; } public void set( V v ) { throw new UnsupportedOperationException(); } public void add( V v ) { throw new UnsupportedOperationException(); } }; } /** Returns a deep copy of this tree map. * *

This method performs a deep copy of this tree map; the data stored in the * set, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this tree map. */ @SuppressWarnings("unchecked") public Float2ReferenceRBTreeMap clone() { Float2ReferenceRBTreeMap c; try { c = (Float2ReferenceRBTreeMap )super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.keys = null; c.values = null; c.entries = null; c.allocatePaths(); if ( count != 0 ) { // Also this apparently unfathomable code is derived from GNU libavl. Entry e, p, q, rp = new Entry (), rq = new Entry (); p = rp; rp.left( tree ); q = rq; rq.pred( null ); while( true ) { if ( ! p.pred() ) { e = p.left.clone(); e.pred( q.left ); e.succ( q ); q.left( e ); p = p.left; q = q.left; } else { while( p.succ() ) { p = p.right; if ( p == null ) { q.right = null; c.tree = rq.left; c.firstEntry = c.tree; while( c.firstEntry.left != null ) c.firstEntry = c.firstEntry.left; c.lastEntry = c.tree; while( c.lastEntry.right != null ) c.lastEntry = c.lastEntry.right; return c; } q = q.right; } p = p.right; q = q.right; } if ( ! p.succ() ) { e = p.right.clone(); e.succ( q.right ); e.pred( q ); q.right( e ); } } } return c; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { int n = count; EntryIterator i = new EntryIterator(); Entry e; s.defaultWriteObject(); while(n-- != 0) { e = i.nextEntry(); s.writeFloat( e.key ); s.writeObject( e.value ); } } /** Reads the given number of entries from the input stream, returning the corresponding tree. * * @param s the input stream. * @param n the (positive) number of entries to read. * @param pred the entry containing the key that preceeds the first key in the tree. * @param succ the entry containing the key that follows the last key in the tree. */ @SuppressWarnings("unchecked") private Entry readTree( final java.io.ObjectInputStream s, final int n, final Entry pred, final Entry succ ) throws java.io.IOException, ClassNotFoundException { if ( n == 1 ) { final Entry top = new Entry ( s.readFloat(), (V) s.readObject() ); top.pred( pred ); top.succ( succ ); top.black( true ); return top; } if ( n == 2 ) { /* We handle separately this case so that recursion will *always* be on nonempty subtrees. */ final Entry top = new Entry ( s.readFloat(), (V) s.readObject() ); top.black( true ); top.right( new Entry ( s.readFloat(), (V) s.readObject() ) ); top.right.pred( top ); top.pred( pred ); top.right.succ( succ ); return top; } // The right subtree is the largest one. final int rightN = n / 2, leftN = n - rightN - 1; final Entry top = new Entry (); top.left( readTree( s, leftN, pred, top ) ); top.key = s.readFloat(); top.value = (V) s.readObject(); top.black( true ); top.right( readTree( s, rightN, top, succ ) ); if ( n + 2 == ( ( n + 2 ) & -( n + 2 ) ) ) top.right.black( false ); // Quick test for determining whether n + 2 is a power of 2. return top; } private void readObject( java.io.ObjectInputStream s ) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); /* The storedComparator is now correctly set, but we must restore on-the-fly the actualComparator. */ setActualComparator(); allocatePaths(); if ( count != 0 ) { tree = readTree( s, count, null, null ); Entry e; e = tree; while( e.left() != null ) e = e.left(); firstEntry = e; e = tree; while( e.right() != null ) e = e.right(); lastEntry = e; } if ( ASSERTS ) checkTree( tree, 0, -1 ); } private void checkNodePath() {} @SuppressWarnings("unused") private int checkTree( Entry e, int d, int D ) { return 0; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy