All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.it.unimi.dsi.fastutil.ints.IntBigArrays Maven / Gradle / Ivy

There is a newer version: 4.15.0-HBase-1.5
Show newest version
/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Primitive-type-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/*		 
 * Copyright (C) 2009-2013 Sebastiano Vigna 
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 *
 *
 *
 * Copyright (C) 1999 CERN - European Organization for Nuclear Research.
 *
 *   Permission to use, copy, modify, distribute and sell this software and
 *   its documentation for any purpose is hereby granted without fee,
 *   provided that the above copyright notice appear in all copies and that
 *   both that copyright notice and this permission notice appear in
 *   supporting documentation. CERN makes no representations about the
 *   suitability of this software for any purpose. It is provided "as is"
 *   without expressed or implied warranty. 
 */
package it.unimi.dsi.fastutil.ints;
import java.util.Arrays;
import java.util.Random;
import it.unimi.dsi.fastutil.BigArrays;
import it.unimi.dsi.fastutil.Hash;
import static it.unimi.dsi.fastutil.BigArrays.start;
import static it.unimi.dsi.fastutil.BigArrays.segment;
import static it.unimi.dsi.fastutil.BigArrays.displacement;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_MASK;
import static it.unimi.dsi.fastutil.BigArrays.SEGMENT_SIZE;
import it.unimi.dsi.fastutil.bytes.ByteBigArrays;
/** A class providing static methods and objects that do useful things with {@linkplain BigArrays big arrays}.
 *
 * 

In particular, the ensureCapacity(), grow(), * trim() and setLength() methods allow to handle * big arrays much like array lists. * *

Note that {@link it.unimi.dsi.fastutil.io.BinIO} and {@link it.unimi.dsi.fastutil.io.TextIO} * contain several methods that make it possible to load and save big arrays of primitive types as sequences * of elements in {@link java.io.DataInput} format (i.e., not as objects) or as sequences of lines of text. * * @see BigArrays */ public class IntBigArrays { private IntBigArrays() {} /** A static, final, empty big array. */ public final static int[][] EMPTY_BIG_ARRAY = {}; /** Returns the element of the given big array of specified index. * * @param array a big array. * @param index a position in the big array. * @return the element of the big array at the specified position. */ public static int get( final int[][] array, final long index ) { return array[ segment( index ) ][ displacement( index ) ]; } /** Sets the element of the given big array of specified index. * * @param array a big array. * @param index a position in the big array. */ public static void set( final int[][] array, final long index, int value ) { array[ segment( index ) ][ displacement( index ) ] = value; } /** Swaps the element of the given big array of specified indices. * * @param array a big array. * @param first a position in the big array. * @param second a position in the big array. */ public static void swap( final int[][] array, final long first, final long second ) { final int t = array[ segment( first ) ][ displacement( first ) ]; array[ segment( first ) ][ displacement( first ) ] = array[ segment( second ) ][ displacement( second ) ]; array[ segment( second ) ][ displacement( second ) ] = t; } /** Adds the specified increment the element of the given big array of specified index. * * @param array a big array. * @param index a position in the big array. * @param incr the increment */ public static void add( final int[][] array, final long index, int incr ) { array[ segment( index ) ][ displacement( index ) ] += incr; } /** Multiplies by the specified factor the element of the given big array of specified index. * * @param array a big array. * @param index a position in the big array. * @param factor the factor */ public static void mul( final int[][] array, final long index, int factor ) { array[ segment( index ) ][ displacement( index ) ] *= factor; } /** Increments the element of the given big array of specified index. * * @param array a big array. * @param index a position in the big array. */ public static void incr( final int[][] array, final long index ) { array[ segment( index ) ][ displacement( index ) ]++; } /** Decrements the element of the given big array of specified index. * * @param array a big array. * @param index a position in the big array. */ public static void decr( final int[][] array, final long index ) { array[ segment( index ) ][ displacement( index ) ]--; } /** Returns the length of the given big array. * * @param array a big array. * @return the length of the given big array. */ public static long length( final int[][] array ) { final int length = array.length; return length == 0 ? 0 : start( length - 1 ) + array[ length - 1 ].length; } /** Copies a big array from the specified source big array, beginning at the specified position, to the specified position of the destination big array. * Handles correctly overlapping regions of the same big array. * * @param srcArray the source big array. * @param srcPos the starting position in the source big array. * @param destArray the destination big array. * @param destPos the starting position in the destination data. * @param length the number of elements to be copied. */ public static void copy( final int[][] srcArray, final long srcPos, final int[][] destArray, final long destPos, long length ) { if ( destPos <= srcPos ) { int srcSegment = segment( srcPos ); int destSegment = segment( destPos ); int srcDispl = displacement( srcPos ); int destDispl = displacement( destPos ); int l; while( length > 0 ) { l = (int)Math.min( length, Math.min( srcArray[ srcSegment ].length - srcDispl, destArray[ destSegment ].length - destDispl ) ); System.arraycopy( srcArray[ srcSegment ], srcDispl, destArray[ destSegment ], destDispl, l ); if ( ( srcDispl += l ) == SEGMENT_SIZE ) { srcDispl = 0; srcSegment++; } if ( ( destDispl += l ) == SEGMENT_SIZE ) { destDispl = 0; destSegment++; } length -= l; } } else { int srcSegment = segment( srcPos + length ); int destSegment = segment( destPos + length ); int srcDispl = displacement( srcPos + length ); int destDispl = displacement( destPos + length ); int l; while( length > 0 ) { if ( srcDispl == 0 ) { srcDispl = SEGMENT_SIZE; srcSegment--; } if ( destDispl == 0 ) { destDispl = SEGMENT_SIZE; destSegment--; } l = (int)Math.min( length, Math.min( srcDispl, destDispl ) ); System.arraycopy( srcArray[ srcSegment ], srcDispl - l, destArray[ destSegment ], destDispl - l, l ); srcDispl -= l; destDispl -= l; length -= l; } } } /** Copies a big array from the specified source big array, beginning at the specified position, to the specified position of the destination array. * * @param srcArray the source big array. * @param srcPos the starting position in the source big array. * @param destArray the destination array. * @param destPos the starting position in the destination data. * @param length the number of elements to be copied. */ public static void copyFromBig( final int[][] srcArray, final long srcPos, final int[] destArray, int destPos, int length ) { int srcSegment = segment( srcPos ); int srcDispl = displacement( srcPos ); int l; while( length > 0 ) { l = Math.min( srcArray[ srcSegment ].length - srcDispl, length ); System.arraycopy( srcArray[ srcSegment ], srcDispl, destArray, destPos, l ); if ( ( srcDispl += l ) == SEGMENT_SIZE ) { srcDispl = 0; srcSegment++; } destPos += l; length -= l; } } /** Copies an array from the specified source array, beginning at the specified position, to the specified position of the destination big array. * * @param srcArray the source array. * @param srcPos the starting position in the source array. * @param destArray the destination big array. * @param destPos the starting position in the destination data. * @param length the number of elements to be copied. */ public static void copyToBig( final int[] srcArray, int srcPos, final int[][] destArray, final long destPos, long length ) { int destSegment = segment( destPos ); int destDispl = displacement( destPos ); int l; while( length > 0 ) { l = (int)Math.min( destArray[ destSegment ].length - destDispl, length ); System.arraycopy( srcArray, srcPos, destArray[ destSegment ], destDispl, l ); if ( ( destDispl += l ) == SEGMENT_SIZE ) { destDispl = 0; destSegment++; } srcPos += l; length -= l; } } /** Creates a new big array. * * @param length the length of the new big array. * @return a new big array of given length. */ public static int[][] newBigArray( final long length ) { if ( length == 0 ) return EMPTY_BIG_ARRAY; final int baseLength = (int)((length + SEGMENT_MASK) / SEGMENT_SIZE); int[][] base = new int[ baseLength ][]; final int residual = (int)(length & SEGMENT_MASK); if ( residual != 0 ) { for( int i = 0; i < baseLength - 1; i++ ) base[ i ] = new int[ SEGMENT_SIZE ]; base[ baseLength - 1 ] = new int[ residual ]; } else for( int i = 0; i < baseLength; i++ ) base[ i ] = new int[ SEGMENT_SIZE ]; return base; } /** Turns a standard array into a big array. * *

Note that the returned big array might contain as a segment the original array. * * @param array an array. * @return a new big array with the same length and content of array. */ public static int[][] wrap( final int[] array ) { if ( array.length == 0 ) return EMPTY_BIG_ARRAY; if ( array.length <= SEGMENT_SIZE ) return new int[][] { array }; final int[][] bigArray = newBigArray( array.length ); for( int i = 0; i < bigArray.length; i++ ) System.arraycopy( array, (int)start( i ), bigArray[ i ], 0, bigArray[ i ].length ); return bigArray; } /** Ensures that a big array can contain the given number of entries. * *

If you cannot foresee whether this big array will need again to be * enlarged, you should probably use grow() instead. * *

Warning: the returned array might use part of the segments of the original * array, which must be considered read-only after calling this method. * * @param array a big array. * @param length the new minimum length for this big array. * @return array, if it contains length entries or more; otherwise, * a big array with length entries whose first length(array) * entries are the same as those of array. */ public static int[][] ensureCapacity( final int[][] array, final long length ) { return ensureCapacity( array, length, length( array ) ); } /** Ensures that a big array can contain the given number of entries, preserving just a part of the big array. * *

Warning: the returned array might use part of the segments of the original * array, which must be considered read-only after calling this method. * * @param array a big array. * @param length the new minimum length for this big array. * @param preserve the number of elements of the big array that must be preserved in case a new allocation is necessary. * @return array, if it can contain length entries or more; otherwise, * a big array with length entries whose first preserve * entries are the same as those of array. */ public static int[][] ensureCapacity( final int[][] array, final long length, final long preserve ) { final long oldLength = length( array ); if ( length > oldLength ) { final int valid = array.length - ( array.length == 0 || array.length > 0 && array[ array.length - 1 ].length == SEGMENT_SIZE ? 0 : 1 ); final int baseLength = (int)((length + SEGMENT_MASK) / SEGMENT_SIZE); final int[][] base = Arrays.copyOf( array, baseLength ); final int residual = (int)(length & SEGMENT_MASK); if ( residual != 0 ) { for( int i = valid; i < baseLength - 1; i++ ) base[ i ] = new int[ SEGMENT_SIZE ]; base[ baseLength - 1 ] = new int[ residual ]; } else for( int i = valid; i < baseLength; i++ ) base[ i ] = new int[ SEGMENT_SIZE ]; if ( preserve - ( valid * (long)SEGMENT_SIZE ) > 0 ) copy( array, valid * (long)SEGMENT_SIZE, base, valid * (long)SEGMENT_SIZE, preserve - ( valid * (long)SEGMENT_SIZE ) ); return base; } return array; } /** Grows the given big array to the maximum between the given length and * the current length multiplied by two, provided that the given * length is larger than the current length. * *

If you want complete control on the big array growth, you * should probably use ensureCapacity() instead. * *

Warning: the returned array might use part of the segments of the original * array, which must be considered read-only after calling this method. * * @param array a big array. * @param length the new minimum length for this big array. * @return array, if it can contain length * entries; otherwise, a big array with * max(length,length(array)/φ) entries whose first * length(array) entries are the same as those of array. * */ public static int[][] grow( final int[][] array, final long length ) { final long oldLength = length( array ); return length > oldLength ? grow( array, length, oldLength ) : array; } /** Grows the given big array to the maximum between the given length and * the current length multiplied by two, provided that the given * length is larger than the current length, preserving just a part of the big array. * *

If you want complete control on the big array growth, you * should probably use ensureCapacity() instead. * *

Warning: the returned array might use part of the segments of the original * array, which must be considered read-only after calling this method. * * @param array a big array. * @param length the new minimum length for this big array. * @param preserve the number of elements of the big array that must be preserved in case a new allocation is necessary. * @return array, if it can contain length * entries; otherwise, a big array with * max(length,length(array)/φ) entries whose first * preserve entries are the same as those of array. * */ public static int[][] grow( final int[][] array, final long length, final long preserve ) { final long oldLength = length( array ); return length > oldLength ? ensureCapacity( array, Math.max( 2 * oldLength, length ), preserve ) : array; } /** Trims the given big array to the given length. * *

Warning: the returned array might use part of the segments of the original * array, which must be considered read-only after calling this method. * * @param array a big array. * @param length the new maximum length for the big array. * @return array, if it contains length * entries or less; otherwise, a big array with * length entries whose entries are the same as * the first length entries of array. * */ public static int[][] trim( final int[][] array, final long length ) { final long oldLength = length( array ); if ( length >= oldLength ) return array; final int baseLength = (int)((length + SEGMENT_MASK) / SEGMENT_SIZE); final int[][] base = Arrays.copyOf( array, baseLength ); final int residual = (int)(length & SEGMENT_MASK); if ( residual != 0 ) base[ baseLength - 1 ] = IntArrays.trim( base[ baseLength - 1 ], residual ); return base; } /** Sets the length of the given big array. * *

Warning: the returned array might use part of the segments of the original * array, which must be considered read-only after calling this method. * * @param array a big array. * @param length the new length for the big array. * @return array, if it contains exactly length * entries; otherwise, if it contains more than * length entries, a big array with length entries * whose entries are the same as the first length entries of * array; otherwise, a big array with length entries * whose first length(array) entries are the same as those of * array. * */ public static int[][] setLength( final int[][] array, final long length ) { final long oldLength = length( array ); if ( length == oldLength ) return array; if ( length < oldLength ) return trim( array, length ); return ensureCapacity( array, length ); } /** Returns a copy of a portion of a big array. * * @param array a big array. * @param offset the first element to copy. * @param length the number of elements to copy. * @return a new big array containing length elements of array starting at offset. */ public static int[][] copy( final int[][] array, final long offset, final long length ) { ensureOffsetLength( array, offset, length ); final int[][] a = newBigArray( length ); copy( array, offset, a, 0, length ); return a; } /** Returns a copy of a big array. * * @param array a big array. * @return a copy of array. */ public static int[][] copy( final int[][] array ) { final int[][] base = array.clone(); for( int i = base.length; i-- != 0; ) base[ i ] = array[ i ].clone(); return base; } /** Fills the given big array with the given value. * *

This method uses a backward loop. It is significantly faster than the corresponding * method in {@link java.util.Arrays}. * * @param array a big array. * @param value the new value for all elements of the big array. */ public static void fill( final int[][] array, final int value ) { for( int i = array.length; i-- != 0; ) IntArrays.fill( array[ i ], value ); } /** Fills a portion of the given big array with the given value. * *

If possible (i.e., from is 0) this method uses a * backward loop. In this case, it is significantly faster than the * corresponding method in {@link java.util.Arrays}. * * @param array a big array. * @param from the starting index of the portion to fill. * @param to the end index of the portion to fill. * @param value the new value for all elements of the specified portion of the big array. */ public static void fill( final int[][] array, final long from, long to, final int value ) { final long length = length( array ); BigArrays.ensureFromTo( length, from, to ); int fromSegment = segment( from ); int toSegment = segment( to ); int fromDispl = displacement( from ); int toDispl = displacement( to ); if ( fromSegment == toSegment ) { IntArrays.fill( array[ fromSegment ], fromDispl, toDispl, value ); return; } if ( toDispl != 0 ) IntArrays.fill( array[ toSegment ], 0, toDispl, value ); while( --toSegment > fromSegment ) IntArrays.fill( array[ toSegment ], value ); IntArrays.fill( array[ fromSegment ], fromDispl, SEGMENT_SIZE, value ); } /** Returns true if the two big arrays are elementwise equal. * *

This method uses a backward loop. It is significantly faster than the corresponding * method in {@link java.util.Arrays}. * * @param a1 a big array. * @param a2 another big array. * @return true if the two big arrays are of the same length, and their elements are equal. */ public static boolean equals( final int[][] a1, final int a2[][] ) { if ( length( a1 ) != length( a2 ) ) return false; int i = a1.length, j; int[] t, u; while( i-- != 0 ) { t = a1[ i ]; u = a2[ i ]; j = t.length; while( j-- != 0 ) if (! ( (t[ j ]) == (u[ j ]) ) ) return false; } return true; } /* Returns a string representation of the contents of the specified big array. * * The string representation consists of a list of the big array's elements, enclosed in square brackets ("[]"). Adjacent elements are separated by the characters ", " (a comma followed by a space). Returns "null" if a is null. * @param a the big array whose string representation to return. * @return the string representation of a. */ public static String toString( final int[][] a ) { if ( a == null ) return "null"; final long last = length( a ) - 1; if ( last == - 1 ) return "[]"; final StringBuilder b = new StringBuilder(); b.append('['); for ( long i = 0; ; i++ ) { b.append( String.valueOf( get( a, i ) ) ); if ( i == last ) return b.append(']').toString(); b.append(", "); } } /** Ensures that a range given by its first (inclusive) and last (exclusive) elements fits a big array. * *

This method may be used whenever a big array range check is needed. * * @param a a big array. * @param from a start index (inclusive). * @param to an end index (inclusive). * @throws IllegalArgumentException if from is greater than to. * @throws ArrayIndexOutOfBoundsException if from or to are greater than the big array length or negative. */ public static void ensureFromTo( final int[][] a, final long from, final long to ) { BigArrays.ensureFromTo( length( a ), from, to ); } /** Ensures that a range given by an offset and a length fits a big array. * *

This method may be used whenever a big array range check is needed. * * @param a a big array. * @param offset a start index. * @param length a length (the number of elements in the range). * @throws IllegalArgumentException if length is negative. * @throws ArrayIndexOutOfBoundsException if offset is negative or offset+length is greater than the big array length. */ public static void ensureOffsetLength( final int[][] a, final long offset, final long length ) { BigArrays.ensureOffsetLength( length( a ), offset, length ); } /** A type-specific content-based hash strategy for big arrays. */ private static final class BigArrayHashStrategy implements Hash.Strategy, java.io.Serializable { private static final long serialVersionUID = -7046029254386353129L; public int hashCode( final int[][] o ) { return java.util.Arrays.deepHashCode( o ); } public boolean equals( final int[][] a, final int[][] b ) { return IntBigArrays.equals( a, b ); } } /** A type-specific content-based hash strategy for big arrays. * *

This hash strategy may be used in custom hash collections whenever keys are * big arrays, and they must be considered equal by content. This strategy * will handle null correctly, and it is serializable. */ @SuppressWarnings({"unchecked", "rawtypes"}) public final static Hash.Strategy HASH_STRATEGY = new BigArrayHashStrategy(); private static final int SMALL = 7; private static final int MEDIUM = 40; private static void vecSwap( final int[][] x, long a, long b, final long n ) { for( int i = 0; i < n; i++, a++, b++ ) swap( x, a, b ); } private static long med3( final int x[][], final long a, final long b, final long c, IntComparator comp ) { int ab = comp.compare( get( x, a ), get( x, b ) ); int ac = comp.compare( get( x, a ), get( x, c ) ); int bc = comp.compare( get( x, b ), get( x, c ) ); return ( ab < 0 ? ( bc < 0 ? b : ac < 0 ? c : a ) : ( bc > 0 ? b : ac > 0 ? c : a ) ); } private static void selectionSort( final int[][] a, final long from, final long to, final IntComparator comp ) { for( long i = from; i < to - 1; i++ ) { long m = i; for( long j = i + 1; j < to; j++ ) if ( comp.compare( IntBigArrays.get( a, j ), IntBigArrays.get( a, m ) ) < 0 ) m = j; if ( m != i ) swap( a, i, m ); } } /** Sorts the specified range of elements according to the order induced by the specified * comparator using quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * * @param x the big array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the sorting order. */ public static void quickSort( final int[][] x, final long from, final long to, final IntComparator comp ) { final long len = to - from; // Selection sort on smallest arrays if ( len < SMALL ) { selectionSort( x, from, to, comp ); return; } // Choose a partition element, v long m = from + len / 2; // Small arrays, middle element if ( len > SMALL ) { long l = from; long n = to - 1; if ( len > MEDIUM ) { // Big arrays, pseudomedian of 9 long s = len / 8; l = med3( x, l, l + s, l + 2 * s, comp ); m = med3( x, m - s, m, m + s, comp ); n = med3( x, n - 2 * s, n - s, n, comp ); } m = med3( x, l, m, n, comp ); // Mid-size, med of 3 } final int v = get( x, m ); // Establish Invariant: v* (v)* v* long a = from, b = a, c = to - 1, d = c; while(true) { int comparison; while ( b <= c && ( comparison = comp.compare( get( x, b ), v ) ) <= 0 ) { if ( comparison == 0 ) swap( x, a++, b ); b++; } while (c >= b && ( comparison = comp.compare( get( x, c ), v ) ) >=0 ) { if ( comparison == 0 ) swap( x, c, d-- ); c--; } if ( b > c ) break; swap( x, b++, c-- ); } // Swap partition elements back to middle long s, n = to; s = Math.min( a - from, b - a ); vecSwap( x, from, b - s, s ); s = Math.min( d - c, n - d- 1 ); vecSwap( x, b, n - s, s ); // Recursively sort non-partition-elements if ( ( s = b - a ) > 1 ) quickSort( x, from, from + s, comp ); if ( ( s = d - c ) > 1 ) quickSort( x, n - s, n, comp ); } @SuppressWarnings("unchecked") private static long med3( final int x[][], final long a, final long b, final long c ) { int ab = ( (get( x, a )) < (get( x, b )) ? -1 : ( (get( x, a )) == (get( x, b )) ? 0 : 1 ) ); int ac = ( (get( x, a )) < (get( x, c )) ? -1 : ( (get( x, a )) == (get( x, c )) ? 0 : 1 ) ); int bc = ( (get( x, b )) < (get( x, c )) ? -1 : ( (get( x, b )) == (get( x, c )) ? 0 : 1 ) ); return ( ab < 0 ? ( bc < 0 ? b : ac < 0 ? c : a ) : ( bc > 0 ? b : ac > 0 ? c : a ) ); } @SuppressWarnings("unchecked") private static void selectionSort( final int[][] a, final long from, final long to ) { for( long i = from; i < to - 1; i++ ) { long m = i; for( long j = i + 1; j < to; j++ ) if ( ( (IntBigArrays.get( a, j )) < (IntBigArrays.get( a, m )) ) ) m = j; if ( m != i ) swap( a, i, m ); } } /** Sorts the specified big array according to the order induced by the specified * comparator using quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * * @param x the big array to be sorted. * @param comp the comparator to determine the sorting order. * */ public static void quickSort( final int[][] x, final IntComparator comp ) { quickSort( x, 0, IntBigArrays.length( x ), comp ); } /** Sorts the specified range of elements according to the natural ascending order using quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * * @param x the big array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ @SuppressWarnings("unchecked") public static void quickSort( final int[][] x, final long from, final long to ) { final long len = to - from; // Selection sort on smallest arrays if ( len < SMALL ) { selectionSort( x, from, to ); return; } // Choose a partition element, v long m = from + len / 2; // Small arrays, middle element if ( len > SMALL ) { long l = from; long n = to - 1; if ( len > MEDIUM ) { // Big arrays, pseudomedian of 9 long s = len / 8; l = med3( x, l, l + s, l + 2 * s ); m = med3( x, m - s, m, m + s ); n = med3( x, n - 2 * s, n - s, n ); } m = med3( x, l, m, n ); // Mid-size, med of 3 } final int v = get( x, m ); // Establish Invariant: v* (v)* v* long a = from, b = a, c = to - 1, d = c; while(true) { int comparison; while ( b <= c && ( comparison = ( (get( x, b )) < (v) ? -1 : ( (get( x, b )) == (v) ? 0 : 1 ) ) ) <= 0 ) { if ( comparison == 0 ) swap( x, a++, b ); b++; } while (c >= b && ( comparison = ( (get( x, c )) < (v) ? -1 : ( (get( x, c )) == (v) ? 0 : 1 ) ) ) >=0 ) { if ( comparison == 0 ) swap( x, c, d-- ); c--; } if ( b > c ) break; swap( x, b++, c-- ); } // Swap partition elements back to middle long s, n = to; s = Math.min( a - from, b - a ); vecSwap( x, from, b - s, s ); s = Math.min( d - c, n - d- 1 ); vecSwap( x, b, n - s, s ); // Recursively sort non-partition-elements if ( ( s = b - a ) > 1 ) quickSort( x, from, from + s ); if ( ( s = d - c ) > 1 ) quickSort( x, n - s, n ); } /** Sorts the specified big array according to the natural ascending order using quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * * @param x the big array to be sorted. */ @SuppressWarnings("unchecked") public static void quickSort( final int[][] x ) { quickSort( x, 0, IntBigArrays.length( x ) ); } /** * Searches a range of the specified big array for the specified value using * the binary search algorithm. The range must be sorted prior to making this call. * If it is not sorted, the results are undefined. If the range contains multiple elements with * the specified value, there is no guarantee which one will be found. * * @param a the big array to be searched. * @param from the index of the first element (inclusive) to be searched. * @param to the index of the last element (exclusive) to be searched. * @param key the value to be searched for. * @return index of the search key, if it is contained in the big array; * otherwise, (-(insertion point) - 1). The insertion * point is defined as the the point at which the value would * be inserted into the big array: the index of the first * element greater than the key, or the length of the big array, if all * elements in the big array are less than the specified key. Note * that this guarantees that the return value will be >= 0 if * and only if the key is found. * @see java.util.Arrays */ @SuppressWarnings({"unchecked","rawtypes"}) public static long binarySearch( final int[][] a, long from, long to, final int key ) { int midVal; to--; while (from <= to) { final long mid = (from + to) >>> 1; midVal = get( a, mid ); if (midVal < key) from = mid + 1; else if (midVal > key) to = mid - 1; else return mid; } return -( from + 1 ); } /** * Searches a big array for the specified value using * the binary search algorithm. The range must be sorted prior to making this call. * If it is not sorted, the results are undefined. If the range contains multiple elements with * the specified value, there is no guarantee which one will be found. * * @param a the big array to be searched. * @param key the value to be searched for. * @return index of the search key, if it is contained in the big array; * otherwise, (-(insertion point) - 1). The insertion * point is defined as the the point at which the value would * be inserted into the big array: the index of the first * element greater than the key, or the length of the big array, if all * elements in the big array are less than the specified key. Note * that this guarantees that the return value will be >= 0 if * and only if the key is found. * @see java.util.Arrays */ public static long binarySearch( final int[][] a, final int key ) { return binarySearch( a, 0, IntBigArrays.length( a ), key ); } /** * Searches a range of the specified big array for the specified value using * the binary search algorithm and a specified comparator. The range must be sorted following the comparator prior to making this call. * If it is not sorted, the results are undefined. If the range contains multiple elements with * the specified value, there is no guarantee which one will be found. * * @param a the big array to be searched. * @param from the index of the first element (inclusive) to be searched. * @param to the index of the last element (exclusive) to be searched. * @param key the value to be searched for. * @param c a comparator. * @return index of the search key, if it is contained in the big array; * otherwise, (-(insertion point) - 1). The insertion * point is defined as the the point at which the value would * be inserted into the big array: the index of the first * element greater than the key, or the length of the big array, if all * elements in the big array are less than the specified key. Note * that this guarantees that the return value will be >= 0 if * and only if the key is found. * @see java.util.Arrays */ public static long binarySearch( final int[][] a, long from, long to, final int key, final IntComparator c ) { int midVal; to--; while (from <= to) { final long mid = (from + to) >>> 1; midVal = get( a, mid ); final int cmp = c.compare( midVal, key ); if ( cmp < 0 ) from = mid + 1; else if (cmp > 0) to = mid - 1; else return mid; // key found } return -( from + 1 ); } /** * Searches a big array for the specified value using * the binary search algorithm and a specified comparator. The range must be sorted following the comparator prior to making this call. * If it is not sorted, the results are undefined. If the range contains multiple elements with * the specified value, there is no guarantee which one will be found. * * @param a the big array to be searched. * @param key the value to be searched for. * @param c a comparator. * @return index of the search key, if it is contained in the big array; * otherwise, (-(insertion point) - 1). The insertion * point is defined as the the point at which the value would * be inserted into the big array: the index of the first * element greater than the key, or the length of the big array, if all * elements in the big array are less than the specified key. Note * that this guarantees that the return value will be >= 0 if * and only if the key is found. * @see java.util.Arrays */ public static long binarySearch( final int[][] a, final int key, final IntComparator c ) { return binarySearch( a, 0, IntBigArrays.length( a ), key, c ); } /** The size of a digit used during radix sort (must be a power of 2). */ private static final int DIGIT_BITS = 8; /** The mask to extract a digit of {@link #DIGIT_BITS} bits. */ private static final int DIGIT_MASK = ( 1 << DIGIT_BITS ) - 1; /** The number of digits per element. */ private static final int DIGITS_PER_ELEMENT = Integer.SIZE / DIGIT_BITS; /** This method fixes negative numbers so that the combination exponent/significand is lexicographically sorted. */ /** Sorts the specified big array using radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993), * and further improved using the digit-oracle idea described by * Juha Kärkkäinen and Tommi Rantala in “Engineering radix sort for strings”, * String Processing and Information Retrieval, 15th International Symposium, volume 5280 of * Lecture Notes in Computer Science, pages 3−14, Springer (2008). * *

This implementation is significantly faster than quicksort * already at small sizes (say, more than 10000 elements), but it can only * sort in ascending order. * It will allocate a support array of bytes with the same number of elements as the array to be sorted. * * @param a the big array to be sorted. */ public static void radixSort( final int[][] a ) { radixSort( a, 0, IntBigArrays.length( a ) ); } /** Sorts the specified big array using radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993), * and further improved using the digit-oracle idea described by * Juha Kärkkäinen and Tommi Rantala in “Engineering radix sort for strings”, * String Processing and Information Retrieval, 15th International Symposium, volume 5280 of * Lecture Notes in Computer Science, pages 3−14, Springer (2008). * *

This implementation is significantly faster than quicksort * already at small sizes (say, more than 10000 elements), but it can only * sort in ascending order. * It will allocate a support array of bytes with the same number of elements as the array to be sorted. * * @param a the big array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static void radixSort( final int[][] a, final long from, final long to ) { final int maxLevel = DIGITS_PER_ELEMENT - 1; final int stackSize = ( ( 1 << DIGIT_BITS ) - 1 ) * ( DIGITS_PER_ELEMENT - 1 ) + 1; final long[] offsetStack = new long[ stackSize ]; int offsetPos = 0; final long[] lengthStack = new long[ stackSize ]; int lengthPos = 0; final int[] levelStack = new int[ stackSize ]; int levelPos = 0; offsetStack[ offsetPos++ ] = from; lengthStack[ lengthPos++ ] = to - from; levelStack[ levelPos++ ] = 0; final long[] count = new long[ 1 << DIGIT_BITS ]; final long[] pos = new long[ 1 << DIGIT_BITS ]; final byte[][] digit = ByteBigArrays.newBigArray( to - from ); while( offsetPos > 0 ) { final long first = offsetStack[ --offsetPos ]; final long length = lengthStack[ --lengthPos ]; final int level = levelStack[ --levelPos ]; final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; if ( length < MEDIUM ) { selectionSort( a, first, first + length ); continue; } final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key // Count keys. for( long i = length; i-- != 0; ) ByteBigArrays.set( digit, i, (byte)( ( ( (IntBigArrays.get( a, first + i )) >>> shift ) & DIGIT_MASK ) ^ signMask )); for( long i = length; i-- != 0; ) count[ ByteBigArrays.get( digit, i ) & 0xFF ]++; // Compute cumulative distribution and push non-singleton keys on stack. int lastUsed = -1; long p = 0; for( int i = 0; i < 1 << DIGIT_BITS; i++ ) { if ( count[ i ] != 0 ) { lastUsed = i; if ( level < maxLevel && count[ i ] > 1 ){ //System.err.println( " Pushing " + new StackEntry( first + pos[ i - 1 ], first + pos[ i ], level + 1 ) ); offsetStack[ offsetPos++ ] = p + first; lengthStack[ lengthPos++ ] = count[ i ]; levelStack[ levelPos++ ] = level + 1; } } pos[ i ] = ( p += count[ i ] ); } // When all slots are OK, the last slot is necessarily OK. final long end = length - count[ lastUsed ]; count[ lastUsed ] = 0; // i moves through the start of each block int c = -1; for( long i = 0, d; i < end; i += count[ c ], count[ c ] = 0 ) { int t = IntBigArrays.get( a, i +first ); c = ByteBigArrays.get( digit, i ) & 0xFF; while( ( d = --pos[ c ] ) > i ) { final int z = t; final int zz = c; t = IntBigArrays.get( a, d + first ); c = ByteBigArrays.get( digit, d ) & 0xFF; IntBigArrays.set( a, d + first, z ); ByteBigArrays.set( digit, d, (byte)zz ); } IntBigArrays.set( a, i + first, t ); } } } private static void selectionSort( final int[][] a, final int[][] b, final long from, final long to ) { for( long i = from; i < to - 1; i++ ) { long m = i; for( long j = i + 1; j < to; j++ ) if ( ( (IntBigArrays.get( a, j )) < (IntBigArrays.get( a, m )) ) || ( (IntBigArrays.get( a, j )) == (IntBigArrays.get( a, m )) ) && ( (IntBigArrays.get( b, j )) < (IntBigArrays.get( b, m )) ) ) m = j; if ( m != i ) { int t = IntBigArrays.get( a, i ); IntBigArrays.set( a, i, IntBigArrays.get( a, m ) ); IntBigArrays.set( a, m, t ); t = IntBigArrays.get( b, i ); IntBigArrays.set( b, i, IntBigArrays.get( b, m ) ); IntBigArrays.set( b, m, t ); } } } /** Sorts the specified pair of big arrays lexicographically using radix sort. *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993), * and further improved using the digit-oracle idea described by * Juha Kärkkäinen and Tommi Rantala in “Engineering radix sort for strings”, * String Processing and Information Retrieval, 15th International Symposium, volume 5280 of * Lecture Notes in Computer Science, pages 3−14, Springer (2008). * *

This method implements a lexicographical sorting of the arguments. Pairs of elements * in the same position in the two provided arrays will be considered a single key, and permuted * accordingly. In the end, either a[ i ] < a[ i + 1 ] or a[ i ] == a[ i + 1 ] and b[ i ] <= b[ i + 1 ]. * *

This implementation is significantly faster than quicksort * already at small sizes (say, more than 10000 elements), but it can only * sort in ascending order. It will allocate a support array of bytes with the same number of elements as the arrays to be sorted. * * @param a the first big array to be sorted. * @param b the second big array to be sorted. */ public static void radixSort( final int[][] a, final int[][] b ) { radixSort( a, b, 0, IntBigArrays.length( a ) ); } /** Sorts the specified pair of big arrays lexicographically using radix sort. * *

The sorting algorithm is a tuned radix sort adapted from Peter M. McIlroy, Keith Bostic and M. Douglas * McIlroy, “Engineering radix sort”, Computing Systems, 6(1), pages 5−27 (1993), * and further improved using the digit-oracle idea described by * Juha Kärkkäinen and Tommi Rantala in “Engineering radix sort for strings”, * String Processing and Information Retrieval, 15th International Symposium, volume 5280 of * Lecture Notes in Computer Science, pages 3−14, Springer (2008). * *

This method implements a lexicographical sorting of the arguments. Pairs of elements * in the same position in the two provided arrays will be considered a single key, and permuted * accordingly. In the end, either a[ i ] < a[ i + 1 ] or a[ i ] == a[ i + 1 ] and b[ i ] <= b[ i + 1 ]. * *

This implementation is significantly faster than quicksort * already at small sizes (say, more than 10000 elements), but it can only * sort in ascending order. It will allocate a support array of bytes with the same number of elements as the arrays to be sorted. * * @param a the first big array to be sorted. * @param b the second big array to be sorted. * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. */ public static void radixSort( final int[][] a, final int[][] b, final long from, final long to ) { final int layers = 2; if ( IntBigArrays.length( a ) != IntBigArrays.length( b ) ) throw new IllegalArgumentException( "Array size mismatch." ); final int maxLevel = DIGITS_PER_ELEMENT * layers - 1; final int stackSize = ( ( 1 << DIGIT_BITS ) - 1 ) * ( layers * DIGITS_PER_ELEMENT - 1 ) + 1; final long[] offsetStack = new long[ stackSize ]; int offsetPos = 0; final long[] lengthStack = new long[ stackSize ]; int lengthPos = 0; final int[] levelStack = new int[ stackSize ]; int levelPos = 0; offsetStack[ offsetPos++ ] = from; lengthStack[ lengthPos++ ] = to - from; levelStack[ levelPos++ ] = 0; final long[] count = new long[ 1 << DIGIT_BITS ]; final long[] pos = new long[ 1 << DIGIT_BITS ]; final byte[][] digit = ByteBigArrays.newBigArray( to - from ); while( offsetPos > 0 ) { final long first = offsetStack[ --offsetPos ]; final long length = lengthStack[ --lengthPos ]; final int level = levelStack[ --levelPos ]; final int signMask = level % DIGITS_PER_ELEMENT == 0 ? 1 << DIGIT_BITS - 1 : 0; if ( length < MEDIUM ) { selectionSort( a, b, first, first + length ); continue; } final int[][] k = level < DIGITS_PER_ELEMENT ? a : b; // This is the key array final int shift = ( DIGITS_PER_ELEMENT - 1 - level % DIGITS_PER_ELEMENT ) * DIGIT_BITS; // This is the shift that extract the right byte from a key // Count keys. for( long i = length; i-- != 0; ) ByteBigArrays.set( digit, i, (byte)( ( ( (IntBigArrays.get( k, first + i )) >>> shift ) & DIGIT_MASK ) ^ signMask ) ); for( long i = length; i-- != 0; ) count[ ByteBigArrays.get( digit, i ) & 0xFF ]++; // Compute cumulative distribution and push non-singleton keys on stack. int lastUsed = -1; long p = 0; for( int i = 0; i < 1 << DIGIT_BITS; i++ ) { if ( count[ i ] != 0 ) { lastUsed = i; if ( level < maxLevel && count[ i ] > 1 ){ offsetStack[ offsetPos++ ] = p + first; lengthStack[ lengthPos++ ] = count[ i ]; levelStack[ levelPos++ ] = level + 1; } } pos[ i ] = ( p += count[ i ] ); } // When all slots are OK, the last slot is necessarily OK. final long end = length - count[ lastUsed ]; count[ lastUsed ] = 0; // i moves through the start of each block int c = -1; for( long i = 0, d; i < end; i += count[ c ], count[ c ] = 0 ) { int t = IntBigArrays.get( a, i + first ); int u = IntBigArrays.get( b, i + first ); c = ByteBigArrays.get( digit, i ) & 0xFF; while( ( d = --pos[ c ] ) > i ) { int z = t; final int zz = c; t = IntBigArrays.get( a, d + first ); IntBigArrays.set( a, d + first, z ); z = u; u = IntBigArrays.get( b, d + first ); IntBigArrays.set( b, d + first, z ); c = ByteBigArrays.get( digit, d ) & 0xFF; ByteBigArrays.set( digit, d, (byte)zz ); } IntBigArrays.set( a, i + first, t ); IntBigArrays.set( b, i + first, u ); } } } /** Shuffles the specified big array fragment using the specified pseudorandom number generator. * * @param a the big array to be shuffled. * @param from the index of the first element (inclusive) to be shuffled. * @param to the index of the last element (exclusive) to be shuffled. * @param random a pseudorandom number generator (please use a XorShift* generator). * @return a. */ public static int[][] shuffle( final int[][] a, final long from, final long to, final Random random ) { for( long i = to - from; i-- != 0; ) { final long p = ( random.nextLong() & 0x7FFFFFFFFFFFFFFFL ) % ( i + 1 ); final int t = get( a, from + i ); set( a, from + i, get( a, from + p ) ); set( a, from + p, t ); } return a; } /** Shuffles the specified big array using the specified pseudorandom number generator. * * @param a the big array to be shuffled. * @param random a pseudorandom number generator (please use a XorShift* generator). * @return a. */ public static int[][] shuffle( final int[][] a, final Random random ) { for( long i = length( a ); i-- != 0; ) { final long p = ( random.nextLong() & 0x7FFFFFFFFFFFFFFFL ) % ( i + 1 ); final int t = get( a, i ); set( a, i, get( a, p ) ); set( a, p, t ); } return a; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy