All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.it.unimi.dsi.fastutil.objects.Reference2FloatLinkedOpenHashMap Maven / Gradle / Ivy

There is a newer version: 4.15.0-HBase-1.5
Show newest version
/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/* Primitive-type-only definitions (values) */
/*		 
 * Copyright (C) 2002-2013 Sebastiano Vigna 
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */
package it.unimi.dsi.fastutil.objects;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import it.unimi.dsi.fastutil.booleans.BooleanArrays;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Map;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.floats.FloatCollection;
import it.unimi.dsi.fastutil.floats.AbstractFloatCollection;
import it.unimi.dsi.fastutil.floats.FloatIterator;
import it.unimi.dsi.fastutil.objects.ObjectArrays;
import java.util.Comparator;
import it.unimi.dsi.fastutil.floats.FloatListIterator;
import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;
/**  A type-specific linked hash map with with a fast, small-footprint implementation.
 *
 * 

Instances of this class use a hash table to represent a map. The table is * enlarged as needed by doubling its size when new entries are created, but it is never made * smaller (even on a {@link #clear()}). A family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * *

Iterators generated by this map will enumerate pairs in the same order in which they * have been added to the map (addition of pairs whose key is already present * in the set does not change the iteration order). Note that this order has nothing in common with the natural * order of the keys. The order is kept by means of a doubly linked list, represented * via an array of longs parallel to the table. * *

This class implements the interface of a sorted map, so to allow easy * access of the iteration order: for instance, you can get the first key * in iteration order with {@link #firstKey()} without having to create an * iterator; however, this class partially violates the {@link java.util.SortedMap} * contract because all submap methods throw an exception and {@link * #comparator()} returns always null. * *

Additional methods, such as getAndMoveToFirst(), make it easy * to use instances of this class as a cache (e.g., with LRU policy). * *

The iterators provided by the views of this class using are type-specific * {@linkplain java.util.ListIterator list iterators}, and can be started at any * element which is a key of the map, or * a {@link NoSuchElementException} exception will be thrown. * If, however, the provided element is not the first or last key in the * set, the first access to the list index will require linear time, as in the worst case * the entire key set must be scanned in iteration order to retrieve the positional * index of the starting key. If you use just the methods of a type-specific {@link it.unimi.dsi.fastutil.BidirectionalIterator}, * however, all operations will be performed in constant time. * * @see Hash * @see HashCommon */ public class Reference2FloatLinkedOpenHashMap extends AbstractReference2FloatSortedMap implements java.io.Serializable, Cloneable, Hash { private static final long serialVersionUID = 0L; private static final boolean ASSERTS = false; /** The array of keys. */ protected transient K key[]; /** The array of values. */ protected transient float value[]; /** The array telling whether a position is used. */ protected transient boolean used[]; /** The acceptable load factor. */ protected final float f; /** The current table size. */ protected transient int n; /** Threshold after which we rehash. It must be the table size times {@link #f}. */ protected transient int maxFill; /** The mask for wrapping a position counter. */ protected transient int mask; /** Number of entries in the set. */ protected int size; /** Cached set of entries. */ protected transient volatile FastSortedEntrySet entries; /** Cached set of keys. */ protected transient volatile ReferenceSortedSet keys; /** Cached collection of values. */ protected transient volatile FloatCollection values; /** The index of the first entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */ protected transient int first = -1; /** The index of the last entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */ protected transient int last = -1; /** For each entry, the next and the previous entry in iteration order, * stored as ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL). * The first entry contains predecessor -1, and the last entry * contains successor -1. */ protected transient long link[]; /* Macros for transforming the bi-directional long link. Return values are 32-bit int indexes. * SET_UPPER and SET_LOWER do a masked assignment as described at * http://www-graphics.stanford.edu/~seander/bithacks.html#MaskedMerge */ /** Creates a new hash map. * *

The actual table size will be the least power of two greater than expected/f. * * @param expected the expected number of elements in the hash set. * @param f the load factor. */ @SuppressWarnings("unchecked") public Reference2FloatLinkedOpenHashMap( final int expected, final float f ) { if ( f <= 0 || f > 1 ) throw new IllegalArgumentException( "Load factor must be greater than 0 and smaller than or equal to 1" ); if ( expected < 0 ) throw new IllegalArgumentException( "The expected number of elements must be nonnegative" ); this.f = f; n = arraySize( expected, f ); mask = n - 1; maxFill = maxFill( n, f ); key = (K[]) new Object[ n ]; value = new float[ n ]; used = new boolean[ n ]; link = new long[ n ]; } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash map. */ public Reference2FloatLinkedOpenHashMap( final int expected ) { this( expected, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash map with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} entries * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public Reference2FloatLinkedOpenHashMap() { this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash map copying a given one. * * @param m a {@link Map} to be copied into the new hash map. * @param f the load factor. */ public Reference2FloatLinkedOpenHashMap( final Map m, final float f ) { this( m.size(), f ); putAll( m ); } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given one. * * @param m a {@link Map} to be copied into the new hash map. */ public Reference2FloatLinkedOpenHashMap( final Map m ) { this( m, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash map copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. * @param f the load factor. */ public Reference2FloatLinkedOpenHashMap( final Reference2FloatMap m, final float f ) { this( m.size(), f ); putAll( m ); } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. */ public Reference2FloatLinkedOpenHashMap( final Reference2FloatMap m ) { this( m, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash map using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @param f the load factor. * @throws IllegalArgumentException if k and v have different lengths. */ public Reference2FloatLinkedOpenHashMap( final K[] k, final float v[], final float f ) { this( k.length, f ); if ( k.length != v.length ) throw new IllegalArgumentException( "The key array and the value array have different lengths (" + k.length + " and " + v.length + ")" ); for( int i = 0; i < k.length; i++ ) this.put( k[ i ], v[ i ] ); } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @throws IllegalArgumentException if k and v have different lengths. */ public Reference2FloatLinkedOpenHashMap( final K[] k, final float v[] ) { this( k, v, DEFAULT_LOAD_FACTOR ); } /* * The following methods implements some basic building blocks used by * all accessors. They are (and should be maintained) identical to those used in OpenHashSet.drv. */ public float put(final K k, final float v) { // The starting point. int pos = ( (k) == null ? 0x87fcd5c : it.unimi.dsi.fastutil.HashCommon.murmurHash3( System.identityHashCode(k) ) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if ( ( (key[ pos ]) == (k) ) ) { final float oldValue = value[ pos ]; value[ pos ] = v; return oldValue; } pos = ( pos + 1 ) & mask; } used[ pos ] = true; key[ pos ] = k; value[ pos ] = v; if ( size == 0 ) { first = last = pos; // Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 ); link[ pos ] = -1L; } else { link[ last ] ^= ( ( link[ last ] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ pos ] = ( ( last & 0xFFFFFFFFL ) << 32 ) | ( -1 & 0xFFFFFFFFL ); last = pos; } if ( ++size >= maxFill ) rehash( arraySize( size + 1, f ) ); if ( ASSERTS ) checkTable(); return defRetValue; } public Float put( final K ok, final Float ov ) { final float v = ((ov).floatValue()); final K k = (ok); // The starting point. int pos = ( (k) == null ? 0x87fcd5c : it.unimi.dsi.fastutil.HashCommon.murmurHash3( System.identityHashCode(k) ) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if ( ( (key[ pos ]) == (k) ) ) { final Float oldValue = (Float.valueOf(value[ pos ])); value[ pos ] = v; return oldValue; } pos = ( pos + 1 ) & mask; } used[ pos ] = true; key[ pos ] = k; value[ pos ] = v; if ( size == 0 ) { first = last = pos; // Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 ); link[ pos ] = -1L; } else { link[ last ] ^= ( ( link[ last ] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ pos ] = ( ( last & 0xFFFFFFFFL ) << 32 ) | ( -1 & 0xFFFFFFFFL ); last = pos; } if ( ++size >= maxFill ) rehash( arraySize( size + 1, f ) ); if ( ASSERTS ) checkTable(); return (null); } /** Adds an increment to value currently associated with a key. * * @param k the key. * @param incr the increment. * @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. * @deprecated use addTo() instead; having the same name of a {@link java.util.Set} method turned out to be a recipe for disaster. */ @Deprecated public float add(final K k, final float incr) { return addTo( k, incr ); } /** Adds an increment to value currently associated with a key. * *

Note that this method respects the {@linkplain #defaultReturnValue() default return value} semantics: when * called with a key that does not currently appears in the map, the key * will be associated with the default return value plus * the given increment. * * @param k the key. * @param incr the increment. * @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public float addTo(final K k, final float incr) { // The starting point. int pos = ( (k) == null ? 0x87fcd5c : it.unimi.dsi.fastutil.HashCommon.murmurHash3( System.identityHashCode(k) ) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if ( ( (key[ pos ]) == (k) ) ) { final float oldValue = value[ pos ]; value[ pos ] += incr; return oldValue; } pos = ( pos + 1 ) & mask; } used[ pos ] = true; key[ pos ] = k; value[ pos ] = defRetValue + incr; if ( size == 0 ) { first = last = pos; // Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 ); link[ pos ] = -1L; } else { link[ last ] ^= ( ( link[ last ] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ pos ] = ( ( last & 0xFFFFFFFFL ) << 32 ) | ( -1 & 0xFFFFFFFFL ); last = pos; } if ( ++size >= maxFill ) rehash( arraySize( size + 1, f ) ); if ( ASSERTS ) checkTable(); return defRetValue; } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. * @return the position cleared by the shifting process. */ protected final int shiftKeys( int pos ) { // Shift entries with the same hash. int last, slot; for(;;) { pos = ( ( last = pos ) + 1 ) & mask; while( used[ pos ] ) { slot = ( (key[ pos ]) == null ? 0x87fcd5c : it.unimi.dsi.fastutil.HashCommon.murmurHash3( System.identityHashCode(key[ pos ]) ) ) & mask; if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break; pos = ( pos + 1 ) & mask; } if ( ! used[ pos ] ) break; key[ last ] = key[ pos ]; value[ last ] = value[ pos ]; fixPointers( pos, last ); } used[ last ] = false; key[ last ] = null; return last; } @SuppressWarnings("unchecked") public float removeFloat( final Object k ) { // The starting point. int pos = ( (k) == null ? 0x87fcd5c : it.unimi.dsi.fastutil.HashCommon.murmurHash3( System.identityHashCode(k) ) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if ( ( (key[ pos ]) == (k) ) ) { size--; fixPointers( pos ); final float v = value[ pos ]; shiftKeys( pos ); return v; } pos = ( pos + 1 ) & mask; } return defRetValue; } @SuppressWarnings("unchecked") public Float remove( final Object ok ) { final K k = (K) (ok); // The starting point. int pos = ( (k) == null ? 0x87fcd5c : it.unimi.dsi.fastutil.HashCommon.murmurHash3( System.identityHashCode(k) ) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if ( ( (key[ pos ]) == (k) ) ) { size--; fixPointers( pos ); final float v = value[ pos ]; shiftKeys( pos ); return (Float.valueOf(v)); } pos = ( pos + 1 ) & mask; } return (null); } /** Removes the mapping associated with the first key in iteration order. * @return the value previously associated with the first key in iteration order. * @throws NoSuchElementException is this map is empty. */ public float removeFirstFloat() { if ( size == 0 ) throw new NoSuchElementException(); --size; final int pos = first; // Abbreviated version of fixPointers(pos) first = (int) link[ pos ]; if ( 0 <= first ) { // Special case of SET_PREV( link[ first ], -1 ) link[ first ] |= (-1 & 0xFFFFFFFFL) << 32; } final float v = value[ pos ]; shiftKeys( pos ); return v; } /** Removes the mapping associated with the last key in iteration order. * @return the value previously associated with the last key in iteration order. * @throws NoSuchElementException is this map is empty. */ public float removeLastFloat() { if ( size == 0 ) throw new NoSuchElementException(); --size; final int pos = last; // Abbreviated version of fixPointers(pos) last = (int) ( link[ pos ] >>> 32 ); if ( 0 <= last ) { // Special case of SET_NEXT( link[ last ], -1 ) link[ last ] |= -1 & 0xFFFFFFFFL; } final float v = value[ pos ]; shiftKeys( pos ); return v; } private void moveIndexToFirst( final int i ) { if ( size == 1 || first == i ) return; if ( last == i ) { last = (int) ( link[ i ] >>> 32 ); // Special case of SET_NEXT( link[ last ], -1 ); link[ last ] |= -1 & 0xFFFFFFFFL; } else { final long linki = link[ i ]; final int prev = (int) ( linki >>> 32 ); final int next = (int) linki; link[ prev ] ^= ( ( link[ prev ] ^ ( linki & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ next ] ^= ( ( link[ next ] ^ ( linki & 0xFFFFFFFF00000000L ) ) & 0xFFFFFFFF00000000L ); } link[ first ] ^= ( ( link[ first ] ^ ( ( i & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); link[ i ] = ( ( -1 & 0xFFFFFFFFL ) << 32 ) | ( first & 0xFFFFFFFFL ); first = i; } private void moveIndexToLast( final int i ) { if ( size == 1 || last == i ) return; if ( first == i ) { first = (int) link[ i ]; // Special case of SET_PREV( link[ first ], -1 ); link[ first ] |= (-1 & 0xFFFFFFFFL) << 32; } else { final long linki = link[ i ]; final int prev = (int) ( linki >>> 32 ); final int next = (int) linki; link[ prev ] ^= ( ( link[ prev ] ^ ( linki & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ next ] ^= ( ( link[ next ] ^ ( linki & 0xFFFFFFFF00000000L ) ) & 0xFFFFFFFF00000000L ); } link[ last ] ^= ( ( link[ last ] ^ ( i & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ i ] = ( ( last & 0xFFFFFFFFL ) << 32 ) | ( -1 & 0xFFFFFFFFL ); last = i; } /** Returns the value to which the given key is mapped; if the key is present, it is moved to the first position of the iteration order. * * @param k the key. * @return the corresponding value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public float getAndMoveToFirst( final K k ) { final K key[] = this.key; final boolean used[] = this.used; final int mask = this.mask; // The starting point. int pos = ( (k) == null ? 0x87fcd5c : it.unimi.dsi.fastutil.HashCommon.murmurHash3( System.identityHashCode(k) ) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if( ( (k) == (key[ pos ]) ) ) { moveIndexToFirst( pos ); return value[ pos ]; } pos = ( pos + 1 ) & mask; } return defRetValue; } /** Returns the value to which the given key is mapped; if the key is present, it is moved to the last position of the iteration order. * * @param k the key. * @return the corresponding value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public float getAndMoveToLast( final K k ) { final K key[] = this.key; final boolean used[] = this.used; final int mask = this.mask; // The starting point. int pos = ( (k) == null ? 0x87fcd5c : it.unimi.dsi.fastutil.HashCommon.murmurHash3( System.identityHashCode(k) ) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if( ( (k) == (key[ pos ]) ) ) { moveIndexToLast( pos ); return value[ pos ]; } pos = ( pos + 1 ) & mask; } return defRetValue; } /** Adds a pair to the map; if the key is already present, it is moved to the first position of the iteration order. * * @param k the key. * @param v the value. * @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public float putAndMoveToFirst( final K k, final float v ) { final K key[] = this.key; final boolean used[] = this.used; final int mask = this.mask; // The starting point. int pos = ( (k) == null ? 0x87fcd5c : it.unimi.dsi.fastutil.HashCommon.murmurHash3( System.identityHashCode(k) ) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if ( ( (k) == (key[ pos ]) ) ) { final float oldValue = value[ pos ]; value[ pos ] = v; moveIndexToFirst( pos ); return oldValue; } pos = ( pos + 1 ) & mask; } used[ pos ] = true; key[ pos ] = k; value[ pos ] = v; if ( size == 0 ) { first = last = pos; // Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 ); link[ pos ] = -1L; } else { link[ first ] ^= ( ( link[ first ] ^ ( ( pos & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); link[ pos ] = ( ( -1 & 0xFFFFFFFFL ) << 32 ) | ( first & 0xFFFFFFFFL ); first = pos; } if ( ++size >= maxFill ) rehash( arraySize( size, f ) ); if ( ASSERTS ) checkTable(); return defRetValue; } /** Adds a pair to the map; if the key is already present, it is moved to the last position of the iteration order. * * @param k the key. * @param v the value. * @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public float putAndMoveToLast( final K k, final float v ) { final K key[] = this.key; final boolean used[] = this.used; final int mask = this.mask; // The starting point. int pos = ( (k) == null ? 0x87fcd5c : it.unimi.dsi.fastutil.HashCommon.murmurHash3( System.identityHashCode(k) ) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if ( ( (k) == (key[ pos ]) ) ) { final float oldValue = value[ pos ]; value[ pos ] = v; moveIndexToLast( pos ); return oldValue; } pos = ( pos + 1 ) & mask; } used[ pos ] = true; key[ pos ] = k; value[ pos ] = v; if ( size == 0 ) { first = last = pos; // Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 ); link[ pos ] = -1L; } else { link[ last ] ^= ( ( link[ last ] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ pos ] = ( ( last & 0xFFFFFFFFL ) << 32 ) | ( -1 & 0xFFFFFFFFL ); last = pos; } if ( ++size >= maxFill ) rehash( arraySize( size, f ) ); if ( ASSERTS ) checkTable(); return defRetValue; } @SuppressWarnings("unchecked") public float getFloat( final Object k ) { // The starting point. int pos = ( (k) == null ? 0x87fcd5c : it.unimi.dsi.fastutil.HashCommon.murmurHash3( System.identityHashCode(k) ) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if ( ( (key[ pos ]) == (k) ) ) return value[ pos ]; pos = ( pos + 1 ) & mask; } return defRetValue; } @SuppressWarnings("unchecked") public boolean containsKey( final Object k ) { // The starting point. int pos = ( (k) == null ? 0x87fcd5c : it.unimi.dsi.fastutil.HashCommon.murmurHash3( System.identityHashCode(k) ) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if ( ( (key[ pos ]) == (k) ) ) return true; pos = ( pos + 1 ) & mask; } return false; } public boolean containsValue( final float v ) { final float value[] = this.value; final boolean used[] = this.used; for( int i = n; i-- != 0; ) if ( used[ i ] && ( (value[ i ]) == (v) ) ) return true; return false; } /* Removes all elements from this map. * *

To increase object reuse, this method does not change the table size. * If you want to reduce the table size, you must use {@link #trim()}. * */ public void clear() { if ( size == 0 ) return; size = 0; BooleanArrays.fill( used, false ); // We null all object entries so that the garbage collector can do its work. ObjectArrays.fill( key, null ); first = last = -1; } public int size() { return size; } public boolean isEmpty() { return size == 0; } /** A no-op for backward compatibility. * * @param growthFactor unused. * @deprecated Since fastutil 6.1.0, hash tables are doubled when they are too full. */ @Deprecated public void growthFactor( int growthFactor ) {} /** Gets the growth factor (2). * * @return the growth factor of this set, which is fixed (2). * @see #growthFactor(int) * @deprecated Since fastutil 6.1.0, hash tables are doubled when they are too full. */ @Deprecated public int growthFactor() { return 16; } /** The entry class for a hash map does not record key and value, but * rather the position in the hash table of the corresponding entry. This * is necessary so that calls to {@link java.util.Map.Entry#setValue(Object)} are reflected in * the map */ private final class MapEntry implements Reference2FloatMap.Entry , Map.Entry { // The table index this entry refers to, or -1 if this entry has been deleted. private int index; MapEntry( final int index ) { this.index = index; } public K getKey() { return (key[ index ]); } public Float getValue() { return (Float.valueOf(value[ index ])); } public float getFloatValue() { return value[ index ]; } public float setValue( final float v ) { final float oldValue = value[ index ]; value[ index ] = v; return oldValue; } public Float setValue( final Float v ) { return (Float.valueOf(setValue( ((v).floatValue()) ))); } @SuppressWarnings("unchecked") public boolean equals( final Object o ) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return ( (key[ index ]) == ((e.getKey())) ) && ( (value[ index ]) == (((e.getValue()).floatValue())) ); } public int hashCode() { return ( (key[ index ]) == null ? 0 : System.identityHashCode(key[ index ]) ) ^ it.unimi.dsi.fastutil.HashCommon.float2int(value[ index ]); } public String toString() { return key[ index ] + "=>" + value[ index ]; } } /** Modifies the {@link #link} vector so that the given entry is removed. * *

If the given entry is the first or the last one, this method will complete * in constant time; otherwise, it will have to search for the given entry. * * @param i the index of an entry. */ protected void fixPointers( final int i ) { if ( size == 0 ) { first = last = -1; return; } if ( first == i ) { first = (int) link[ i ]; if (0 <= first) { // Special case of SET_PREV( link[ first ], -1 ) link[ first ] |= (-1 & 0xFFFFFFFFL) << 32; } return; } if ( last == i ) { last = (int) ( link[ i ] >>> 32 ); if (0 <= last) { // Special case of SET_NEXT( link[ last ], -1 ) link[ last ] |= -1 & 0xFFFFFFFFL; } return; } final long linki = link[ i ]; final int prev = (int) ( linki >>> 32 ); final int next = (int) linki; link[ prev ] ^= ( ( link[ prev ] ^ ( linki & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ next ] ^= ( ( link[ next ] ^ ( linki & 0xFFFFFFFF00000000L ) ) & 0xFFFFFFFF00000000L ); } /** Modifies the {@link #link} vector for a shift from s to d. * *

If the given entry is the first or the last one, this method will complete * in constant time; otherwise, it will have to search for the given entry. * * @param s the source position. * @param d the destination position. */ protected void fixPointers( int s, int d ) { if ( size == 1 ) { first = last = d; // Special case of SET_UPPER_LOWER( link[ d ], -1, -1 ) link[ d ] = -1L; return; } if ( first == s ) { first = d; link[ (int) link[ s ] ] ^= ( ( link[ (int) link[ s ] ] ^ ( ( d & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); link[ d ] = link[ s ]; return; } if ( last == s ) { last = d; link[ (int) ( link[ s ] >>> 32 )] ^= ( ( link[ (int) ( link[ s ] >>> 32 )] ^ ( d & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ d ] = link[ s ]; return; } final long links = link[ s ]; final int prev = (int) ( links >>> 32 ); final int next = (int) links; link[ prev ] ^= ( ( link[ prev ] ^ ( d & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ next ] ^= ( ( link[ next ] ^ ( ( d & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); link[ d ] = links; } /** Returns the first key of this map in iteration order. * * @return the first key in iteration order. */ public K firstKey() { if ( size == 0 ) throw new NoSuchElementException(); return key[ first ]; } /** Returns the last key of this map in iteration order. * * @return the last key in iteration order. */ public K lastKey() { if ( size == 0 ) throw new NoSuchElementException(); return key[ last ]; } public Comparator comparator() { return null; } public Reference2FloatSortedMap tailMap( K from ) { throw new UnsupportedOperationException(); } public Reference2FloatSortedMap headMap( K to ) { throw new UnsupportedOperationException(); } public Reference2FloatSortedMap subMap( K from, K to ) { throw new UnsupportedOperationException(); } /** A list iterator over a linked map. * *

This class provides a list iterator over a linked hash map. The empty constructor runs in * constant time. The one-argument constructor needs to search for the given key, but it is * optimized for the case of {@link java.util.SortedMap#lastKey()}, in which case runs in constant time, too. */ private class MapIterator { /** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or null if no previous entry exists). */ int prev = -1; /** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or null if no next entry exists). */ int next = -1; /** The last entry that was returned (or -1 if we did not iterate or used {@link java.util.Iterator#remove()}). */ int curr = -1; /** The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not meaningful when this iterator has been created using the nonempty constructor.*/ int index = -1; private MapIterator() { next = first; index = 0; } private MapIterator( final K from ) { if ( ( (key[ last ]) == (from) ) ) { prev = last; index = size; } else { // The starting point. int pos = ( (from) == null ? 0x87fcd5c : it.unimi.dsi.fastutil.HashCommon.murmurHash3( System.identityHashCode(from) ) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if ( ( (key[ pos ]) == (from) ) ) { // Note: no valid index known. next = (int) link[ pos ]; prev = pos; return; } pos = ( pos + 1 ) & mask; } throw new NoSuchElementException( "The key " + from + " does not belong to this map." ); } } public boolean hasNext() { return next != -1; } public boolean hasPrevious() { return prev != -1; } private final void ensureIndexKnown() { if ( index >= 0 ) return; if ( prev == -1 ) { index = 0; return; } if ( next == -1 ) { index = size; return; } int pos = first; index = 1; while( pos != prev ) { pos = (int) link[ pos ]; index++; } } public int nextIndex() { ensureIndexKnown(); return index; } public int previousIndex() { ensureIndexKnown(); return index - 1; } public int nextEntry() { if ( ! hasNext() ) return size(); curr = next; next = (int) link[ curr ]; prev = curr; if ( index >= 0 ) index++; return curr; } public int previousEntry() { if ( ! hasPrevious() ) return -1; curr = prev; prev = (int) ( link[ curr ] >>> 32 ); next = curr; if ( index >= 0 ) index--; return curr; } @SuppressWarnings("unchecked") public void remove() { ensureIndexKnown(); if ( curr == -1 ) throw new IllegalStateException(); if ( curr == prev ) { /* If the last operation was a next(), we are removing an entry that preceeds the current index, and thus we must decrement it. */ index--; prev = (int) ( link[ curr ] >>> 32 ); } else next = (int) link[ curr ]; size--; /* Now we manually fix the pointers. Because of our knowledge of next and prev, this is going to be faster than calling fixPointers(). */ if ( prev == -1 ) first = next; else link[ prev ] ^= ( ( link[ prev ] ^ ( next & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); if ( next == -1 ) last = prev; else link[ next ] ^= ( ( link[ next ] ^ ( ( prev & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); int last, slot, pos = curr; // We have to horribly duplicate the shiftKeys() code because we need to update next/prev. for(;;) { pos = ( ( last = pos ) + 1 ) & mask; while( used[ pos ] ) { slot = ( (key[ pos ]) == null ? 0x87fcd5c : it.unimi.dsi.fastutil.HashCommon.murmurHash3( System.identityHashCode(key[ pos ]) ) ) & mask; if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break; pos = ( pos + 1 ) & mask; } if ( ! used[ pos ] ) break; key[ last ] = key[ pos ]; value[ last ] = value[ pos ]; if ( next == pos ) next = last; if ( prev == pos ) prev = last; fixPointers( pos, last ); } used[ last ] = false; key[ last ] = null; curr = -1; } public int skip( final int n ) { int i = n; while( i-- != 0 && hasNext() ) nextEntry(); return n - i - 1; } public int back( final int n ) { int i = n; while( i-- != 0 && hasPrevious() ) previousEntry(); return n - i - 1; } } private class EntryIterator extends MapIterator implements ObjectListIterator > { private MapEntry entry; public EntryIterator() {} public EntryIterator( K from ) { super( from ); } public MapEntry next() { return entry = new MapEntry( nextEntry() ); } public MapEntry previous() { return entry = new MapEntry( previousEntry() ); } @Override public void remove() { super.remove(); entry.index = -1; // You cannot use a deleted entry. } public void set( Reference2FloatMap.Entry ok ) { throw new UnsupportedOperationException(); } public void add( Reference2FloatMap.Entry ok ) { throw new UnsupportedOperationException(); } } private class FastEntryIterator extends MapIterator implements ObjectListIterator > { final BasicEntry entry = new BasicEntry ( (null), (0) ); public FastEntryIterator() {} public FastEntryIterator( K from ) { super( from ); } public BasicEntry next() { final int e = nextEntry(); entry.key = key[ e ]; entry.value = value[ e ]; return entry; } public BasicEntry previous() { final int e = previousEntry(); entry.key = key[ e ]; entry.value = value[ e ]; return entry; } public void set( Reference2FloatMap.Entry ok ) { throw new UnsupportedOperationException(); } public void add( Reference2FloatMap.Entry ok ) { throw new UnsupportedOperationException(); } } private final class MapEntrySet extends AbstractObjectSortedSet > implements FastSortedEntrySet { public ObjectBidirectionalIterator > iterator() { return new EntryIterator(); } public Comparator > comparator() { return null; } public ObjectSortedSet > subSet( Reference2FloatMap.Entry fromElement, Reference2FloatMap.Entry toElement) { throw new UnsupportedOperationException(); } public ObjectSortedSet > headSet( Reference2FloatMap.Entry toElement ) { throw new UnsupportedOperationException(); } public ObjectSortedSet > tailSet( Reference2FloatMap.Entry fromElement ) { throw new UnsupportedOperationException(); } public Reference2FloatMap.Entry first() { if ( size == 0 ) throw new NoSuchElementException(); return new MapEntry( Reference2FloatLinkedOpenHashMap.this.first ); } public Reference2FloatMap.Entry last() { if ( size == 0 ) throw new NoSuchElementException(); return new MapEntry( Reference2FloatLinkedOpenHashMap.this.last ); } @SuppressWarnings("unchecked") public boolean contains( final Object o ) { if ( !( o instanceof Map.Entry ) ) return false; final Map.Entry e = (Map.Entry)o; final K k = (e.getKey()); // The starting point. int pos = ( (k) == null ? 0x87fcd5c : it.unimi.dsi.fastutil.HashCommon.murmurHash3( System.identityHashCode(k) ) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if ( ( (key[ pos ]) == (k) ) ) return ( (value[ pos ]) == (((e.getValue()).floatValue())) ); pos = ( pos + 1 ) & mask; } return false; } @SuppressWarnings("unchecked") public boolean remove( final Object o ) { if ( !( o instanceof Map.Entry ) ) return false; final Map.Entry e = (Map.Entry)o; final K k = (e.getKey()); // The starting point. int pos = ( (k) == null ? 0x87fcd5c : it.unimi.dsi.fastutil.HashCommon.murmurHash3( System.identityHashCode(k) ) ) & mask; // There's always an unused entry. while( used[ pos ] ) { if ( ( (key[ pos ]) == (k) ) ) { Reference2FloatLinkedOpenHashMap.this.remove( e.getKey() ); return true; } pos = ( pos + 1 ) & mask; } return false; } public int size() { return size; } public void clear() { Reference2FloatLinkedOpenHashMap.this.clear(); } public ObjectBidirectionalIterator > iterator( final Reference2FloatMap.Entry from ) { return new EntryIterator( (from.getKey()) ); } public ObjectBidirectionalIterator > fastIterator() { return new FastEntryIterator(); } public ObjectBidirectionalIterator > fastIterator( final Reference2FloatMap.Entry from ) { return new FastEntryIterator( (from.getKey()) ); } } public FastSortedEntrySet reference2FloatEntrySet() { if ( entries == null ) entries = new MapEntrySet(); return entries; } /** An iterator on keys. * *

We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods * (and possibly their type-specific counterparts) so that they return keys * instead of entries. */ private final class KeyIterator extends MapIterator implements ObjectListIterator { public KeyIterator( final K k ) { super( k ); } public K previous() { return key[ previousEntry() ]; } public void set( K k ) { throw new UnsupportedOperationException(); } public void add( K k ) { throw new UnsupportedOperationException(); } public KeyIterator() { super(); } public K next() { return key[ nextEntry() ]; } } private final class KeySet extends AbstractReferenceSortedSet { public ObjectListIterator iterator( final K from ) { return new KeyIterator( from ); } public ObjectListIterator iterator() { return new KeyIterator(); } public int size() { return size; } public boolean contains( Object k ) { return containsKey( k ); } public boolean remove( Object k ) { final int oldSize = size; Reference2FloatLinkedOpenHashMap.this.remove( k ); return size != oldSize; } public void clear() { Reference2FloatLinkedOpenHashMap.this.clear(); } public K first() { if ( size == 0 ) throw new NoSuchElementException(); return key[ first ]; } public K last() { if ( size == 0 ) throw new NoSuchElementException(); return key[ last ]; } public Comparator comparator() { return null; } final public ReferenceSortedSet tailSet( K from ) { throw new UnsupportedOperationException(); } final public ReferenceSortedSet headSet( K to ) { throw new UnsupportedOperationException(); } final public ReferenceSortedSet subSet( K from, K to ) { throw new UnsupportedOperationException(); } } public ReferenceSortedSet keySet() { if ( keys == null ) keys = new KeySet(); return keys; } /** An iterator on values. * *

We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods * (and possibly their type-specific counterparts) so that they return values * instead of entries. */ private final class ValueIterator extends MapIterator implements FloatListIterator { public float previousFloat() { return value[ previousEntry() ]; } public Float previous() { return (Float.valueOf(value[ previousEntry() ])); } public void set( Float ok ) { throw new UnsupportedOperationException(); } public void add( Float ok ) { throw new UnsupportedOperationException(); } public void set( float v ) { throw new UnsupportedOperationException(); } public void add( float v ) { throw new UnsupportedOperationException(); } public ValueIterator() { super(); } public float nextFloat() { return value[ nextEntry() ]; } public Float next() { return (Float.valueOf(value[ nextEntry() ])); } } public FloatCollection values() { if ( values == null ) values = new AbstractFloatCollection () { public FloatIterator iterator() { return new ValueIterator(); } public int size() { return size; } public boolean contains( float v ) { return containsValue( v ); } public void clear() { Reference2FloatLinkedOpenHashMap.this.clear(); } }; return values; } /** A no-op for backward compatibility. The kind of tables implemented by * this class never need rehashing. * *

If you need to reduce the table size to fit exactly * this set, use {@link #trim()}. * * @return true. * @see #trim() * @deprecated A no-op. */ @Deprecated public boolean rehash() { return true; } /** Rehashes the map, making the table as small as possible. * *

This method rehashes the table to the smallest size satisfying the * load factor. It can be used when the set will not be changed anymore, so * to optimize access speed and size. * *

If the table size is already the minimum possible, this method * does nothing. * * @return true if there was enough memory to trim the map. * @see #trim(int) */ public boolean trim() { final int l = arraySize( size, f ); if ( l >= n ) return true; try { rehash( l ); } catch(OutOfMemoryError cantDoIt) { return false; } return true; } /** Rehashes this map if the table is too large. * *

Let N be the smallest table size that can hold * max(n,{@link #size()}) entries, still satisfying the load factor. If the current * table size is smaller than or equal to N, this method does * nothing. Otherwise, it rehashes this map in a table of size * N. * *

This method is useful when reusing maps. {@linkplain #clear() Clearing a * map} leaves the table size untouched. If you are reusing a map * many times, you can call this method with a typical * size to avoid keeping around a very large table just * because of a few large transient maps. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the map. * @see #trim() */ public boolean trim( final int n ) { final int l = HashCommon.nextPowerOfTwo( (int)Math.ceil( n / f ) ); if ( this.n <= l ) return true; try { rehash( l ); } catch( OutOfMemoryError cantDoIt ) { return false; } return true; } /** Rehashes the map. * *

This method implements the basic rehashing strategy, and may be * overriden by subclasses implementing different rehashing strategies (e.g., * disk-based rehashing). However, you should not override this method * unless you understand the internal workings of this class. * * @param newN the new size */ @SuppressWarnings("unchecked") protected void rehash( final int newN ) { int i = first, prev = -1, newPrev = -1, t, pos; K k; final K key[] = this.key; final float value[] = this.value; final int newMask = newN - 1; final K newKey[] = (K[]) new Object[ newN ]; final float newValue[] = new float[newN]; final boolean newUsed[] = new boolean[ newN ]; final long link[] = this.link; final long newLink[] = new long[ newN ]; first = -1; for( int j = size; j-- != 0; ) { k = key[ i ]; pos = ( (k) == null ? 0x87fcd5c : it.unimi.dsi.fastutil.HashCommon.murmurHash3( System.identityHashCode(k) ) ) & newMask; while ( newUsed[ pos ] ) pos = ( pos + 1 ) & newMask; newUsed[ pos ] = true; newKey[ pos ] = k; newValue[ pos ] = value[ i ]; if ( prev != -1 ) { newLink[ newPrev ] ^= ( ( newLink[ newPrev ] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); newLink[ pos ] ^= ( ( newLink[ pos ] ^ ( ( newPrev & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); newPrev = pos; } else { newPrev = first = pos; // Special case of SET(newLink[ pos ], -1, -1); newLink[ pos ] = -1L; } t = i; i = (int) link[ i ]; prev = t; } n = newN; mask = newMask; maxFill = maxFill( n, f ); this.key = newKey; this.value = newValue; this.used = newUsed; this.link = newLink; this.last = newPrev; if ( newPrev != -1 ) // Special case of SET_NEXT( newLink[ newPrev ], -1 ); newLink[ newPrev ] |= -1 & 0xFFFFFFFFL; } /** Returns a deep copy of this map. * *

This method performs a deep copy of this hash map; the data stored in the * map, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this map. */ @SuppressWarnings("unchecked") public Reference2FloatLinkedOpenHashMap clone() { Reference2FloatLinkedOpenHashMap c; try { c = (Reference2FloatLinkedOpenHashMap )super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.keys = null; c.values = null; c.entries = null; c.key = key.clone(); c.value = value.clone(); c.used = used.clone(); c.link = link.clone(); return c; } /** Returns a hash code for this map. * * This method overrides the generic method provided by the superclass. * Since equals() is not overriden, it is important * that the value returned by this method is the same value as * the one returned by the overriden method. * * @return a hash code for this map. */ public int hashCode() { int h = 0; for( int j = size, i = 0, t = 0; j-- != 0; ) { while( ! used[ i ] ) i++; if ( this != key[ i ] ) t = ( (key[ i ]) == null ? 0 : System.identityHashCode(key[ i ]) ); t ^= it.unimi.dsi.fastutil.HashCommon.float2int(value[ i ]); h += t; i++; } return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final K key[] = this.key; final float value[] = this.value; final MapIterator i = new MapIterator(); s.defaultWriteObject(); for( int j = size, e; j-- != 0; ) { e = i.nextEntry(); s.writeObject( key[ e ] ); s.writeFloat( value[ e ] ); } } @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = arraySize( size, f ); maxFill = maxFill( n, f ); mask = n - 1; final K key[] = this.key = (K[]) new Object[ n ]; final float value[] = this.value = new float[ n ]; final boolean used[] = this.used = new boolean[ n ]; final long link[] = this.link = new long[ n ]; int prev = -1; first = last = -1; K k; float v; for( int i = size, pos = 0; i-- != 0; ) { k = (K) s.readObject(); v = s.readFloat(); pos = ( (k) == null ? 0x87fcd5c : it.unimi.dsi.fastutil.HashCommon.murmurHash3( System.identityHashCode(k) ) ) & mask; while ( used[ pos ] ) pos = ( pos + 1 ) & mask; used[ pos ] = true; key[ pos ] = k; value[ pos ] = v; if ( first != -1 ) { link[ prev ] ^= ( ( link[ prev ] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[ pos ] ^= ( ( link[ pos ] ^ ( ( prev & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); prev = pos; } else { prev = first = pos; // Special case of SET_PREV( newLink[ pos ], -1 ); link[ pos ] |= (-1L & 0xFFFFFFFFL) << 32; } } last = prev; if ( prev != -1 ) // Special case of SET_NEXT( link[ prev ], -1 ); link[ prev ] |= -1 & 0xFFFFFFFFL; if ( ASSERTS ) checkTable(); } private void checkTable() {} }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy