All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.HeapPriorityQueue.drv Maven / Gradle / Ivy

The newest version!
/*		 
 * Copyright (C) 2003-2015 Paolo Boldi and Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */


package PACKAGE;

#if #keyclass(Object)
import java.util.Arrays;
import java.util.Comparator;

import it.unimi.dsi.fastutil.AbstractPriorityQueue;
#else
import java.util.Iterator;
#endif

import java.util.Collection;
import java.util.NoSuchElementException;


/** A type-specific heap-based priority queue.
 *
 * 

Instances of this class represent a priority queue using a heap. The heap is enlarged as needed, but * it is never shrunk. Use the {@link #trim()} method to reduce its size, if necessary. */ public class HEAP_PRIORITY_QUEUE KEY_GENERIC extends ABSTRACT_PRIORITY_QUEUE KEY_GENERIC { /** The heap array. */ SUPPRESS_WARNINGS_KEY_UNCHECKED protected KEY_GENERIC_TYPE[] heap = KEY_GENERIC_ARRAY_CAST ARRAYS.EMPTY_ARRAY; /** The number of elements in this queue. */ protected int size; /** The type-specific comparator used in this queue. */ protected KEY_COMPARATOR KEY_SUPER_GENERIC c; /** Creates a new empty queue with a given capacity and comparator. * * @param capacity the initial capacity of this queue. * @param c the comparator used in this queue, or null for the natural order. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public HEAP_PRIORITY_QUEUE( int capacity, KEY_COMPARATOR KEY_SUPER_GENERIC c ) { if ( capacity > 0 ) this.heap = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ capacity ]; this.c = c; } /** Creates a new empty queue with a given capacity and using the natural order. * * @param capacity the initial capacity of this queue. */ public HEAP_PRIORITY_QUEUE( int capacity ) { this( capacity, null ); } /** Creates a new empty queue with a given comparator. * * @param c the comparator used in this queue, or null for the natural order. */ public HEAP_PRIORITY_QUEUE( KEY_COMPARATOR KEY_SUPER_GENERIC c ) { this( 0, c ); } /** Creates a new empty queue using the natural order. */ public HEAP_PRIORITY_QUEUE() { this( 0, null ); } /** Wraps a given array in a queue using a given comparator. * *

The queue returned by this method will be backed by the given array. * The first size element of the array will be rearranged so to form a heap (this is * more efficient than enqueing the elements of a one by one). * * @param a an array. * @param size the number of elements to be included in the queue. * @param c the comparator used in this queue, or null for the natural order. */ public HEAP_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] a, int size, final KEY_COMPARATOR KEY_SUPER_GENERIC c ) { this( c ); this.heap = a; this.size = size; HEAPS.makeHeap( a, size, c ); } /** Wraps a given array in a queue using a given comparator. * *

The queue returned by this method will be backed by the given array. * The elements of the array will be rearranged so to form a heap (this is * more efficient than enqueing the elements of a one by one). * * @param a an array. * @param c the comparator used in this queue, or null for the natural order. */ public HEAP_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] a, final KEY_COMPARATOR KEY_SUPER_GENERIC c ) { this( a, a.length, c ); } /** Wraps a given array in a queue using the natural order. * *

The queue returned by this method will be backed by the given array. * The first size element of the array will be rearranged so to form a heap (this is * more efficient than enqueing the elements of a one by one). * * @param a an array. * @param size the number of elements to be included in the queue. */ public HEAP_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] a, int size ) { this( a, size, null ); } /** Wraps a given array in a queue using the natural order. * *

The queue returned by this method will be backed by the given array. * The elements of the array will be rearranged so to form a heap (this is * more efficient than enqueing the elements of a one by one). * * @param a an array. */ public HEAP_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] a ) { this( a, a.length ); } #if #keys(primitive) /** Creates a queue using the elements in a type-specific collection using a given comparator. * *

This constructor is more efficient than enqueing the elements of collection one by one. * * @param collection a collection; its elements will be used to initialize the queue. * @param c the comparator used in this queue, or null for the natural order. */ public HEAP_PRIORITY_QUEUE( final COLLECTION KEY_EXTENDS_GENERIC collection, final KEY_COMPARATOR KEY_SUPER_GENERIC c ) { this( collection.TO_KEY_ARRAY(), c ); } /** Creates a queue using the elements in a type-specific collection using the natural order. * *

This constructor is * more efficient than enqueing the elements of collection one by one. * * @param collection a collection; its elements will be used to initialize the queue. */ public HEAP_PRIORITY_QUEUE( final COLLECTION KEY_EXTENDS_GENERIC collection ) { this( collection, null ); } /** Creates a queue using the elements in a collection using a given comparator. * *

This constructor is more efficient than enqueing the elements of collection one by one. * * @param collection a collection; its elements will be used to initialize the queue. * @param c the comparator used in this queue, or null for the natural order. */ public HEAP_PRIORITY_QUEUE( final Collection collection, final KEY_COMPARATOR KEY_SUPER_GENERIC c ) { this( collection.size(), c ); final Iterator iterator = collection.iterator(); final int size = collection.size(); for( int i = 0 ; i < size; i++ ) heap[ i ] = KEY_OBJ2TYPE( iterator.next() ); } /** Creates a queue using the elements in a collection using the natural order. * *

This constructor is * more efficient than enqueing the elements of collection one by one. * * @param collection a collection; its elements will be used to initialize the queue. */ public HEAP_PRIORITY_QUEUE( final Collection collection ) { this( collection, null ); } #else /** Creates a queue using the elements in a collection using a given comparator. * *

This constructor is more efficient than enqueing the elements of collection one by one. * * @param collection a collection; its elements will be used to initialize the queue. * @param c the comparator used in this queue, or null for the natural order. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public HEAP_PRIORITY_QUEUE( final Collection collection, final KEY_COMPARATOR KEY_SUPER_GENERIC c ) { this( KEY_GENERIC_ARRAY_CAST collection.toArray(), c ); } /** Creates a queue using the elements in a collection using the natural order. * *

This constructor is * more efficient than enqueing the elements of collection one by one. * * @param collection a collection; its elements will be used to initialize the queue. */ public HEAP_PRIORITY_QUEUE( final Collection collection ) { this( collection, null ); } #endif public void enqueue( KEY_GENERIC_TYPE x ) { if ( size == heap.length ) heap = ARRAYS.grow( heap, size + 1 ); heap[ size++ ] = x; HEAPS.upHeap( heap, size, size - 1, c ); } public KEY_GENERIC_TYPE DEQUEUE() { if ( size == 0 ) throw new NoSuchElementException(); final KEY_GENERIC_TYPE result = heap[ 0 ]; heap[ 0 ] = heap[ --size ]; #if #keyclass(Object) heap[ size ] = null; #endif if ( size != 0 ) HEAPS.downHeap( heap, size, 0, c ); return result; } public KEY_GENERIC_TYPE FIRST() { if ( size == 0 ) throw new NoSuchElementException(); return heap[ 0 ]; } public void changed() { HEAPS.downHeap( heap, size, 0, c ); } public int size() { return size; } public void clear() { #if #keyclass(Object) Arrays.fill( heap, 0, size, null ); #endif size = 0; } /** Trims the underlying heap array so that it has exactly {@link #size()} elements. */ public void trim() { heap = ARRAYS.trim( heap, size ); } public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return c; } #ifdef TEST private static long seed = System.currentTimeMillis(); private static java.util.Random r = new java.util.Random( seed ); private static KEY_TYPE genKey() { #if #keyclass(Byte) || #keyclass(Short) || #keyclass(Character) return (KEY_TYPE)(r.nextInt()); #elif #keys(primitive) return r.NEXT_KEY(); #elif #keyclass(Object) return Integer.toBinaryString( r.nextInt() ); #else return new java.io.Serializable() {}; #endif } private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" ); private static java.text.FieldPosition p = new java.text.FieldPosition( 0 ); private static String format( double d ) { StringBuffer s = new StringBuffer(); return format.format( d, s, p ).toString(); } private static void speedTest( int n, boolean comp ) { System.out.println( "There are presently no speed tests for this class." ); } private static void fatal( String msg ) { System.out.println( msg ); System.exit( 1 ); } private static void ensure( boolean cond, String msg ) { if ( cond ) return; fatal( msg ); } private static boolean heapEqual( KEY_TYPE[] a, KEY_TYPE[] b, int sizea, int sizeb ) { if ( sizea != sizeb ) return false; KEY_TYPE[] aa = (KEY_TYPE[])a.clone(); KEY_TYPE[] bb = (KEY_TYPE[])b.clone(); java.util.Arrays.sort( aa, 0, sizea ); java.util.Arrays.sort( bb, 0, sizeb ); while( sizea-- != 0 ) if ( ! KEY_EQUALS( aa[sizea], bb[sizea] ) ) return false; return true; } private static KEY_TYPE k[]; protected static void test( int n ) { long ms; Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds, mThrowsNoElement, tThrowsNoElement; KEY_TYPE rm = KEY_NULL, rt = KEY_NULL; k = new KEY_TYPE[ n ]; for( int i = 0; i < n; i++ ) k[i] = genKey(); HEAP_PRIORITY_QUEUE m = new HEAP_PRIORITY_QUEUE( COMPARATORS.NATURAL_COMPARATOR ); ARRAY_PRIORITY_QUEUE t = new ARRAY_PRIORITY_QUEUE( COMPARATORS.NATURAL_COMPARATOR ); /* We add pairs to t. */ for( int i = 0; i < n / 2; i++ ) { t.enqueue( k[ i ] ); m.enqueue( k[ i ] ); } ensure( heapEqual( m.heap, t.array, m.size(), t.size() ), "Error (" + seed + "): m and t differ after creation (" + m + ", " + t + ")" ); if ( m.size() != 0 ) { ensure( KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after creation (" + m.FIRST() + ", " + t.FIRST() + ")"); } /* Now we add and remove random data in m and t, checking that the result is the same. */ for(int i=0; i<2*n; i++ ) { if ( r.nextDouble() < 0.01 ) { t.clear(); m.clear(); for( int j = 0; j < n / 2; j++ ) { t.enqueue( k[ j ] ); m.enqueue( k[ j ] ); } } KEY_TYPE T = genKey(); mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null; try { m.enqueue( T ); } catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; } catch ( IllegalArgumentException e ) { mThrowsIllegal = e; } try { t.enqueue( T ); } catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; } catch ( IllegalArgumentException e ) { tThrowsIllegal = e; } ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + seed + "): enqueue() divergence in IndexOutOfBoundsException for " + T + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" ); ensure( ( mThrowsIllegal == null ) == ( tThrowsIllegal == null ), "Error (" + seed + "): enqueue() divergence in IllegalArgumentException for " + T + " (" + mThrowsIllegal + ", " + tThrowsIllegal + ")" ); ensure( heapEqual( m.heap, t.array, m.size(), t.size() ), "Error (" + seed + "): m and t differ after enqueue (" + m + ", " + t + ")" ); if ( m.size() != 0 ) { ensure( KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after enqueue (" + m.FIRST() + ", " + t.FIRST() + ")"); } mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null; try { rm = m.DEQUEUE(); } catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; } catch ( IllegalArgumentException e ) { mThrowsIllegal = e; } catch ( NoSuchElementException e ) { mThrowsNoElement = e; } try { rt = t.DEQUEUE(); } catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; } catch ( IllegalArgumentException e ) { tThrowsIllegal = e; } catch ( NoSuchElementException e ) { tThrowsNoElement = e; } ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + seed + "): dequeue() divergence in IndexOutOfBoundsException (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" ); ensure( ( mThrowsIllegal == null ) == ( tThrowsIllegal == null ), "Error (" + seed + "): dequeue() divergence in IllegalArgumentException (" + mThrowsIllegal + ", " + tThrowsIllegal + ")" ); ensure( ( mThrowsNoElement == null ) == ( tThrowsNoElement == null ), "Error (" + seed + "): dequeue() divergence in NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")" ); if ( mThrowsOutOfBounds == null ) ensure( rt == rm , "Error (" + seed + "): divergence in dequeue() between t and m (" + rt + ", " + rm + ")" ); ensure( heapEqual( m.heap, t.array, m.size(), t.size() ), "Error (" + seed + "): m and t differ after dequeue (" + m + ", " + t + ")"); if ( m.size() != 0 ) { ensure( KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after dequeue (" + m.FIRST() + ", " + t.FIRST() + ")"); } HEAP_PRIORITY_QUEUE m2 = new HEAP_PRIORITY_QUEUE( t.array, t.size() ); ARRAY_PRIORITY_QUEUE t2 = new ARRAY_PRIORITY_QUEUE( m.heap, m.size() ); m = m2; t = t2; ensure( heapEqual( m.heap, t.array, m.size(), t.size() ), "Error (" + seed + "): m and t differ after wrap (" + m + ", " + t + ")"); if ( m.size() != 0 ) { ensure( KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after wrap (" + m.FIRST() + ", " + t.FIRST() + ")"); } if ( m.size() != 0 && ( ( new OPEN_HASH_SET( m.heap, 0, m.size ) ).size() == m.size() ) ) { int j = t.size(), M = --j; #if #keys(primitive) while( j-- != 0 ) if ( KEY_LESS( t.array[ j ], t.array[ M ] ) ) M = j; #else while( j-- != 0 ) if ( ((Comparable)t.array[ j ]).compareTo( t.array[ M ] )< 0 ) M = j; #endif m.heap[ 0 ] = t.array[ M ] = genKey(); m.changed(); t.changed(); ensure( heapEqual( m.heap, t.array, m.size(), t.size() ), "Error (" + seed + "): m and t differ after change (" + m + ", " + t + ")"); if ( m.size() != 0 ) { ensure( KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after change (" + m.FIRST() + ", " + t.FIRST() + ")"); } } } /* Now we check that m actually holds the same data. */ m.clear(); ensure( m.isEmpty(), "Error (" + seed + "): m is not empty after clear()" ); System.out.println("Test OK"); } public static void main( String args[] ) { int n = Integer.parseInt(args[1]); if ( args.length > 2 ) r = new java.util.Random( seed = Long.parseLong( args[ 2 ] ) ); try { if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, "speedComp".equals(args[0]) ); else if ( "test".equals( args[0] ) ) test(n); } catch( Throwable e ) { e.printStackTrace( System.err ); System.err.println( "seed: " + seed ); } } #endif }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy