drv.HeapPriorityQueue.drv Maven / Gradle / Ivy
Show all versions of phoenix-mapreduce-byo-shaded-hbase-hbase-2.6
/*
* Copyright (C) 2003-2015 Paolo Boldi and Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
#if #keyclass(Object)
import java.util.Arrays;
import java.util.Comparator;
import it.unimi.dsi.fastutil.AbstractPriorityQueue;
#else
import java.util.Iterator;
#endif
import java.util.Collection;
import java.util.NoSuchElementException;
/** A type-specific heap-based priority queue.
*
* Instances of this class represent a priority queue using a heap. The heap is enlarged as needed, but
* it is never shrunk. Use the {@link #trim()} method to reduce its size, if necessary.
*/
public class HEAP_PRIORITY_QUEUE KEY_GENERIC extends ABSTRACT_PRIORITY_QUEUE KEY_GENERIC {
/** The heap array. */
SUPPRESS_WARNINGS_KEY_UNCHECKED
protected KEY_GENERIC_TYPE[] heap = KEY_GENERIC_ARRAY_CAST ARRAYS.EMPTY_ARRAY;
/** The number of elements in this queue. */
protected int size;
/** The type-specific comparator used in this queue. */
protected KEY_COMPARATOR KEY_SUPER_GENERIC c;
/** Creates a new empty queue with a given capacity and comparator.
*
* @param capacity the initial capacity of this queue.
* @param c the comparator used in this queue, or null
for the natural order.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public HEAP_PRIORITY_QUEUE( int capacity, KEY_COMPARATOR KEY_SUPER_GENERIC c ) {
if ( capacity > 0 ) this.heap = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ capacity ];
this.c = c;
}
/** Creates a new empty queue with a given capacity and using the natural order.
*
* @param capacity the initial capacity of this queue.
*/
public HEAP_PRIORITY_QUEUE( int capacity ) {
this( capacity, null );
}
/** Creates a new empty queue with a given comparator.
*
* @param c the comparator used in this queue, or null
for the natural order.
*/
public HEAP_PRIORITY_QUEUE( KEY_COMPARATOR KEY_SUPER_GENERIC c ) {
this( 0, c );
}
/** Creates a new empty queue using the natural order.
*/
public HEAP_PRIORITY_QUEUE() {
this( 0, null );
}
/** Wraps a given array in a queue using a given comparator.
*
*
The queue returned by this method will be backed by the given array.
* The first size
element of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of a
one by one).
*
* @param a an array.
* @param size the number of elements to be included in the queue.
* @param c the comparator used in this queue, or null
for the natural order.
*/
public HEAP_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] a, int size, final KEY_COMPARATOR KEY_SUPER_GENERIC c ) {
this( c );
this.heap = a;
this.size = size;
HEAPS.makeHeap( a, size, c );
}
/** Wraps a given array in a queue using a given comparator.
*
*
The queue returned by this method will be backed by the given array.
* The elements of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of a
one by one).
*
* @param a an array.
* @param c the comparator used in this queue, or null
for the natural order.
*/
public HEAP_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] a, final KEY_COMPARATOR KEY_SUPER_GENERIC c ) {
this( a, a.length, c );
}
/** Wraps a given array in a queue using the natural order.
*
*
The queue returned by this method will be backed by the given array.
* The first size
element of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of a
one by one).
*
* @param a an array.
* @param size the number of elements to be included in the queue.
*/
public HEAP_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] a, int size ) {
this( a, size, null );
}
/** Wraps a given array in a queue using the natural order.
*
*
The queue returned by this method will be backed by the given array.
* The elements of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of a
one by one).
*
* @param a an array.
*/
public HEAP_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] a ) {
this( a, a.length );
}
#if #keys(primitive)
/** Creates a queue using the elements in a type-specific collection using a given comparator.
*
*
This constructor is more efficient than enqueing the elements of collection
one by one.
*
* @param collection a collection; its elements will be used to initialize the queue.
* @param c the comparator used in this queue, or null
for the natural order.
*/
public HEAP_PRIORITY_QUEUE( final COLLECTION KEY_EXTENDS_GENERIC collection, final KEY_COMPARATOR KEY_SUPER_GENERIC c ) {
this( collection.TO_KEY_ARRAY(), c );
}
/** Creates a queue using the elements in a type-specific collection using the natural order.
*
*
This constructor is
* more efficient than enqueing the elements of collection
one by one.
*
* @param collection a collection; its elements will be used to initialize the queue.
*/
public HEAP_PRIORITY_QUEUE( final COLLECTION KEY_EXTENDS_GENERIC collection ) {
this( collection, null );
}
/** Creates a queue using the elements in a collection using a given comparator.
*
*
This constructor is more efficient than enqueing the elements of collection
one by one.
*
* @param collection a collection; its elements will be used to initialize the queue.
* @param c the comparator used in this queue, or null
for the natural order.
*/
public HEAP_PRIORITY_QUEUE( final Collection extends KEY_GENERIC_CLASS> collection, final KEY_COMPARATOR KEY_SUPER_GENERIC c ) {
this( collection.size(), c );
final Iterator extends KEY_GENERIC_CLASS> iterator = collection.iterator();
final int size = collection.size();
for( int i = 0 ; i < size; i++ ) heap[ i ] = KEY_OBJ2TYPE( iterator.next() );
}
/** Creates a queue using the elements in a collection using the natural order.
*
*
This constructor is
* more efficient than enqueing the elements of collection
one by one.
*
* @param collection a collection; its elements will be used to initialize the queue.
*/
public HEAP_PRIORITY_QUEUE( final Collection extends KEY_GENERIC_CLASS> collection ) {
this( collection, null );
}
#else
/** Creates a queue using the elements in a collection using a given comparator.
*
*
This constructor is more efficient than enqueing the elements of collection
one by one.
*
* @param collection a collection; its elements will be used to initialize the queue.
* @param c the comparator used in this queue, or null
for the natural order.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public HEAP_PRIORITY_QUEUE( final Collection extends KEY_GENERIC_CLASS> collection, final KEY_COMPARATOR KEY_SUPER_GENERIC c ) {
this( KEY_GENERIC_ARRAY_CAST collection.toArray(), c );
}
/** Creates a queue using the elements in a collection using the natural order.
*
*
This constructor is
* more efficient than enqueing the elements of collection
one by one.
*
* @param collection a collection; its elements will be used to initialize the queue.
*/
public HEAP_PRIORITY_QUEUE( final Collection extends KEY_GENERIC_CLASS> collection ) {
this( collection, null );
}
#endif
public void enqueue( KEY_GENERIC_TYPE x ) {
if ( size == heap.length ) heap = ARRAYS.grow( heap, size + 1 );
heap[ size++ ] = x;
HEAPS.upHeap( heap, size, size - 1, c );
}
public KEY_GENERIC_TYPE DEQUEUE() {
if ( size == 0 ) throw new NoSuchElementException();
final KEY_GENERIC_TYPE result = heap[ 0 ];
heap[ 0 ] = heap[ --size ];
#if #keyclass(Object)
heap[ size ] = null;
#endif
if ( size != 0 ) HEAPS.downHeap( heap, size, 0, c );
return result;
}
public KEY_GENERIC_TYPE FIRST() {
if ( size == 0 ) throw new NoSuchElementException();
return heap[ 0 ];
}
public void changed() {
HEAPS.downHeap( heap, size, 0, c );
}
public int size() { return size; }
public void clear() {
#if #keyclass(Object)
Arrays.fill( heap, 0, size, null );
#endif
size = 0;
}
/** Trims the underlying heap array so that it has exactly {@link #size()} elements.
*/
public void trim() {
heap = ARRAYS.trim( heap, size );
}
public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return c; }
#ifdef TEST
private static long seed = System.currentTimeMillis();
private static java.util.Random r = new java.util.Random( seed );
private static KEY_TYPE genKey() {
#if #keyclass(Byte) || #keyclass(Short) || #keyclass(Character)
return (KEY_TYPE)(r.nextInt());
#elif #keys(primitive)
return r.NEXT_KEY();
#elif #keyclass(Object)
return Integer.toBinaryString( r.nextInt() );
#else
return new java.io.Serializable() {};
#endif
}
private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" );
private static java.text.FieldPosition p = new java.text.FieldPosition( 0 );
private static String format( double d ) {
StringBuffer s = new StringBuffer();
return format.format( d, s, p ).toString();
}
private static void speedTest( int n, boolean comp ) {
System.out.println( "There are presently no speed tests for this class." );
}
private static void fatal( String msg ) {
System.out.println( msg );
System.exit( 1 );
}
private static void ensure( boolean cond, String msg ) {
if ( cond ) return;
fatal( msg );
}
private static boolean heapEqual( KEY_TYPE[] a, KEY_TYPE[] b, int sizea, int sizeb ) {
if ( sizea != sizeb ) return false;
KEY_TYPE[] aa = (KEY_TYPE[])a.clone();
KEY_TYPE[] bb = (KEY_TYPE[])b.clone();
java.util.Arrays.sort( aa, 0, sizea );
java.util.Arrays.sort( bb, 0, sizeb );
while( sizea-- != 0 ) if ( ! KEY_EQUALS( aa[sizea], bb[sizea] ) ) return false;
return true;
}
private static KEY_TYPE k[];
protected static void test( int n ) {
long ms;
Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds, mThrowsNoElement, tThrowsNoElement;
KEY_TYPE rm = KEY_NULL, rt = KEY_NULL;
k = new KEY_TYPE[ n ];
for( int i = 0; i < n; i++ ) k[i] = genKey();
HEAP_PRIORITY_QUEUE m = new HEAP_PRIORITY_QUEUE( COMPARATORS.NATURAL_COMPARATOR );
ARRAY_PRIORITY_QUEUE t = new ARRAY_PRIORITY_QUEUE( COMPARATORS.NATURAL_COMPARATOR );
/* We add pairs to t. */
for( int i = 0; i < n / 2; i++ ) {
t.enqueue( k[ i ] );
m.enqueue( k[ i ] );
}
ensure( heapEqual( m.heap, t.array, m.size(), t.size() ), "Error (" + seed + "): m and t differ after creation (" + m + ", " + t + ")" );
if ( m.size() != 0 ) {
ensure( KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after creation (" + m.FIRST() + ", " + t.FIRST() + ")");
}
/* Now we add and remove random data in m and t, checking that the result is the same. */
for(int i=0; i<2*n; i++ ) {
if ( r.nextDouble() < 0.01 ) {
t.clear();
m.clear();
for( int j = 0; j < n / 2; j++ ) {
t.enqueue( k[ j ] );
m.enqueue( k[ j ] );
}
}
KEY_TYPE T = genKey();
mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null;
try {
m.enqueue( T );
}
catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
catch ( IllegalArgumentException e ) { mThrowsIllegal = e; }
try {
t.enqueue( T );
}
catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
catch ( IllegalArgumentException e ) { tThrowsIllegal = e; }
ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + seed + "): enqueue() divergence in IndexOutOfBoundsException for " + T + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
ensure( ( mThrowsIllegal == null ) == ( tThrowsIllegal == null ), "Error (" + seed + "): enqueue() divergence in IllegalArgumentException for " + T + " (" + mThrowsIllegal + ", " + tThrowsIllegal + ")" );
ensure( heapEqual( m.heap, t.array, m.size(), t.size() ), "Error (" + seed + "): m and t differ after enqueue (" + m + ", " + t + ")" );
if ( m.size() != 0 ) {
ensure( KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after enqueue (" + m.FIRST() + ", " + t.FIRST() + ")");
}
mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null;
try {
rm = m.DEQUEUE();
}
catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
catch ( IllegalArgumentException e ) { mThrowsIllegal = e; }
catch ( NoSuchElementException e ) { mThrowsNoElement = e; }
try {
rt = t.DEQUEUE();
}
catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
catch ( IllegalArgumentException e ) { tThrowsIllegal = e; }
catch ( NoSuchElementException e ) { tThrowsNoElement = e; }
ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + seed + "): dequeue() divergence in IndexOutOfBoundsException (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
ensure( ( mThrowsIllegal == null ) == ( tThrowsIllegal == null ), "Error (" + seed + "): dequeue() divergence in IllegalArgumentException (" + mThrowsIllegal + ", " + tThrowsIllegal + ")" );
ensure( ( mThrowsNoElement == null ) == ( tThrowsNoElement == null ), "Error (" + seed + "): dequeue() divergence in NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")" );
if ( mThrowsOutOfBounds == null ) ensure( rt == rm , "Error (" + seed + "): divergence in dequeue() between t and m (" + rt + ", " + rm + ")" );
ensure( heapEqual( m.heap, t.array, m.size(), t.size() ), "Error (" + seed + "): m and t differ after dequeue (" + m + ", " + t + ")");
if ( m.size() != 0 ) {
ensure( KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after dequeue (" + m.FIRST() + ", " + t.FIRST() + ")");
}
HEAP_PRIORITY_QUEUE m2 = new HEAP_PRIORITY_QUEUE( t.array, t.size() );
ARRAY_PRIORITY_QUEUE t2 = new ARRAY_PRIORITY_QUEUE( m.heap, m.size() );
m = m2;
t = t2;
ensure( heapEqual( m.heap, t.array, m.size(), t.size() ), "Error (" + seed + "): m and t differ after wrap (" + m + ", " + t + ")");
if ( m.size() != 0 ) {
ensure( KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after wrap (" + m.FIRST() + ", " + t.FIRST() + ")");
}
if ( m.size() != 0 && ( ( new OPEN_HASH_SET( m.heap, 0, m.size ) ).size() == m.size() ) ) {
int j = t.size(), M = --j;
#if #keys(primitive)
while( j-- != 0 ) if ( KEY_LESS( t.array[ j ], t.array[ M ] ) ) M = j;
#else
while( j-- != 0 ) if ( ((Comparable)t.array[ j ]).compareTo( t.array[ M ] )< 0 ) M = j;
#endif
m.heap[ 0 ] = t.array[ M ] = genKey();
m.changed();
t.changed();
ensure( heapEqual( m.heap, t.array, m.size(), t.size() ), "Error (" + seed + "): m and t differ after change (" + m + ", " + t + ")");
if ( m.size() != 0 ) {
ensure( KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after change (" + m.FIRST() + ", " + t.FIRST() + ")");
}
}
}
/* Now we check that m actually holds the same data. */
m.clear();
ensure( m.isEmpty(), "Error (" + seed + "): m is not empty after clear()" );
System.out.println("Test OK");
}
public static void main( String args[] ) {
int n = Integer.parseInt(args[1]);
if ( args.length > 2 ) r = new java.util.Random( seed = Long.parseLong( args[ 2 ] ) );
try {
if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, "speedComp".equals(args[0]) );
else if ( "test".equals( args[0] ) ) test(n);
} catch( Throwable e ) {
e.printStackTrace( System.err );
System.err.println( "seed: " + seed );
}
}
#endif
}