All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.it.unimi.dsi.fastutil.longs.Long2ReferenceOpenHashMap Maven / Gradle / Ivy

/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Primitive-type-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/*		 
 * Copyright (C) 2002-2015 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */
package it.unimi.dsi.fastutil.longs;

import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Map;
import java.util.Arrays;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.objects.ReferenceCollection;
import it.unimi.dsi.fastutil.objects.AbstractReferenceCollection;
import it.unimi.dsi.fastutil.objects.AbstractObjectSet;
import it.unimi.dsi.fastutil.objects.ObjectIterator;

/** A type-specific hash map with a fast, small-footprint implementation.
 *
 * 

Instances of this class use a hash table to represent a map. The table is filled up to a specified load factor, and then doubled in size to accommodate new entries. If the table is * emptied below one fourth of the load factor, it is halved in size. However, halving is not performed when deleting entries from an iterator, as it would interfere with the iteration * process. * *

Note that {@link #clear()} does not modify the hash table size. Rather, a family of {@linkplain #trim() trimming methods} lets you control the size of the table; this is particularly useful if * you reuse instances of this class. * * @see Hash * @see HashCommon */ public class Long2ReferenceOpenHashMap extends AbstractLong2ReferenceMap implements java.io.Serializable, Cloneable, Hash { private static final long serialVersionUID = 0L; private static final boolean ASSERTS = false; /** The array of keys. */ protected transient long[] key; /** The array of values. */ protected transient V[] value; /** The mask for wrapping a position counter. */ protected transient int mask; /** Whether this set contains the key zero. */ protected transient boolean containsNullKey; /** The current table size. */ protected transient int n; /** Threshold after which we rehash. It must be the table size times {@link #f}. */ protected transient int maxFill; /** Number of entries in the set (including the key zero, if present). */ protected int size; /** The acceptable load factor. */ protected final float f; /** Cached set of entries. */ protected transient volatile FastEntrySet entries; /** Cached set of keys. */ protected transient volatile LongSet keys; /** Cached collection of values. */ protected transient volatile ReferenceCollection values; /** Creates a new hash map. * *

The actual table size will be the least power of two greater than expected/f. * * @param expected the expected number of elements in the hash set. * @param f the load factor. */ @SuppressWarnings("unchecked") public Long2ReferenceOpenHashMap( final int expected, final float f ) { if ( f <= 0 || f > 1 ) throw new IllegalArgumentException( "Load factor must be greater than 0 and smaller than or equal to 1" ); if ( expected < 0 ) throw new IllegalArgumentException( "The expected number of elements must be nonnegative" ); this.f = f; n = arraySize( expected, f ); mask = n - 1; maxFill = maxFill( n, f ); key = new long[ n + 1 ]; value = (V[])new Object[ n + 1 ]; } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash map. */ public Long2ReferenceOpenHashMap( final int expected ) { this( expected, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash map with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} entries and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public Long2ReferenceOpenHashMap() { this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash map copying a given one. * * @param m a {@link Map} to be copied into the new hash map. * @param f the load factor. */ public Long2ReferenceOpenHashMap( final Map m, final float f ) { this( m.size(), f ); putAll( m ); } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given one. * * @param m a {@link Map} to be copied into the new hash map. */ public Long2ReferenceOpenHashMap( final Map m ) { this( m, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash map copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. * @param f the load factor. */ public Long2ReferenceOpenHashMap( final Long2ReferenceMap m, final float f ) { this( m.size(), f ); putAll( m ); } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. */ public Long2ReferenceOpenHashMap( final Long2ReferenceMap m ) { this( m, DEFAULT_LOAD_FACTOR ); } /** Creates a new hash map using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @param f the load factor. * @throws IllegalArgumentException if k and v have different lengths. */ public Long2ReferenceOpenHashMap( final long[] k, final V[] v, final float f ) { this( k.length, f ); if ( k.length != v.length ) throw new IllegalArgumentException( "The key array and the value array have different lengths (" + k.length + " and " + v.length + ")" ); for ( int i = 0; i < k.length; i++ ) this.put( k[ i ], v[ i ] ); } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @throws IllegalArgumentException if k and v have different lengths. */ public Long2ReferenceOpenHashMap( final long[] k, final V[] v ) { this( k, v, DEFAULT_LOAD_FACTOR ); } private int realSize() { return containsNullKey ? size - 1 : size; } private void ensureCapacity( final int capacity ) { final int needed = arraySize( capacity, f ); if ( needed > n ) rehash( needed ); } private void tryCapacity( final long capacity ) { final int needed = (int)Math.min( 1 << 30, Math.max( 2, HashCommon.nextPowerOfTwo( (long)Math.ceil( capacity / f ) ) ) ); if ( needed > n ) rehash( needed ); } private V removeEntry( final int pos ) { final V oldValue = value[ pos ]; value[ pos ] = ( null ); size--; shiftKeys( pos ); if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 ); return oldValue; } private V removeNullEntry() { containsNullKey = false; final V oldValue = value[ n ]; value[ n ] = ( null ); size--; if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 ); return oldValue; } /** {@inheritDoc} */ public void putAll( Map m ) { if ( f <= .5 ) ensureCapacity( m.size() ); // The resulting map will be sized for m.size() elements else tryCapacity( size() + m.size() ); // The resulting map will be tentatively sized for size() + m.size() elements super.putAll( m ); } private int insert( final long k, final V v ) { int pos; if ( ( ( k ) == ( 0 ) ) ) { if ( containsNullKey ) return n; containsNullKey = true; pos = n; } else { long curr; final long[] key = this.key; // The starting point. if ( !( ( curr = key[ pos = (int)it.unimi.dsi.fastutil.HashCommon.mix( ( k ) ) & mask ] ) == ( 0 ) ) ) { if ( ( ( curr ) == ( k ) ) ) return pos; while ( !( ( curr = key[ pos = ( pos + 1 ) & mask ] ) == ( 0 ) ) ) if ( ( ( curr ) == ( k ) ) ) return pos; } key[ pos ] = k; } value[ pos ] = v; if ( size++ >= maxFill ) rehash( arraySize( size + 1, f ) ); if ( ASSERTS ) checkTable(); return -1; } public V put( final long k, final V v ) { final int pos = insert( k, v ); if ( pos < 0 ) return defRetValue; final V oldValue = value[ pos ]; value[ pos ] = v; return oldValue; } public V put( final Long ok, final V ov ) { final V v = ( ov ); final int pos = insert( ( ( ok ).longValue() ), v ); if ( pos < 0 ) return ( this.defRetValue ); final V oldValue = value[ pos ]; value[ pos ] = v; return ( oldValue ); } /** Shifts left entries with the specified hash code, starting at the specified position, and empties the resulting free entry. * * @param pos a starting position. */ protected final void shiftKeys( int pos ) { // Shift entries with the same hash. int last, slot; long curr; final long[] key = this.key; for ( ;; ) { pos = ( ( last = pos ) + 1 ) & mask; for ( ;; ) { if ( ( ( curr = key[ pos ] ) == ( 0 ) ) ) { key[ last ] = ( 0 ); value[ last ] = null; return; } slot = (int)it.unimi.dsi.fastutil.HashCommon.mix( ( curr ) ) & mask; if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break; pos = ( pos + 1 ) & mask; } key[ last ] = curr; value[ last ] = value[ pos ]; } } public V remove( final long k ) { if ( ( ( k ) == ( 0 ) ) ) { if ( containsNullKey ) return removeNullEntry(); return defRetValue; } long curr; final long[] key = this.key; int pos; // The starting point. if ( ( ( curr = key[ pos = (int)it.unimi.dsi.fastutil.HashCommon.mix( ( k ) ) & mask ] ) == ( 0 ) ) ) return defRetValue; if ( ( ( k ) == ( curr ) ) ) return removeEntry( pos ); while ( true ) { if ( ( ( curr = key[ pos = ( pos + 1 ) & mask ] ) == ( 0 ) ) ) return defRetValue; if ( ( ( k ) == ( curr ) ) ) return removeEntry( pos ); } } public V remove( final Object ok ) { final long k = ( ( ( (Long)( ok ) ).longValue() ) ); if ( ( ( k ) == ( 0 ) ) ) { if ( containsNullKey ) return ( removeNullEntry() ); return ( this.defRetValue ); } long curr; final long[] key = this.key; int pos; // The starting point. if ( ( ( curr = key[ pos = (int)it.unimi.dsi.fastutil.HashCommon.mix( ( k ) ) & mask ] ) == ( 0 ) ) ) return ( this.defRetValue ); if ( ( ( curr ) == ( k ) ) ) return ( removeEntry( pos ) ); while ( true ) { if ( ( ( curr = key[ pos = ( pos + 1 ) & mask ] ) == ( 0 ) ) ) return ( this.defRetValue ); if ( ( ( curr ) == ( k ) ) ) return ( removeEntry( pos ) ); } } public V get( final Long ok ) { final long k = ( ( ok ).longValue() ); if ( ( ( k ) == ( 0 ) ) ) return containsNullKey ? ( value[ n ] ) : ( this.defRetValue ); long curr; final long[] key = this.key; int pos; // The starting point. if ( ( ( curr = key[ pos = (int)it.unimi.dsi.fastutil.HashCommon.mix( ( k ) ) & mask ] ) == ( 0 ) ) ) return ( this.defRetValue ); if ( ( ( k ) == ( curr ) ) ) return ( value[ pos ] ); // There's always an unused entry. while ( true ) { if ( ( ( curr = key[ pos = ( pos + 1 ) & mask ] ) == ( 0 ) ) ) return ( this.defRetValue ); if ( ( ( k ) == ( curr ) ) ) return ( value[ pos ] ); } } public V get( final long k ) { if ( ( ( k ) == ( 0 ) ) ) return containsNullKey ? value[ n ] : defRetValue; long curr; final long[] key = this.key; int pos; // The starting point. if ( ( ( curr = key[ pos = (int)it.unimi.dsi.fastutil.HashCommon.mix( ( k ) ) & mask ] ) == ( 0 ) ) ) return defRetValue; if ( ( ( k ) == ( curr ) ) ) return value[ pos ]; // There's always an unused entry. while ( true ) { if ( ( ( curr = key[ pos = ( pos + 1 ) & mask ] ) == ( 0 ) ) ) return defRetValue; if ( ( ( k ) == ( curr ) ) ) return value[ pos ]; } } public boolean containsKey( final long k ) { if ( ( ( k ) == ( 0 ) ) ) return containsNullKey; long curr; final long[] key = this.key; int pos; // The starting point. if ( ( ( curr = key[ pos = (int)it.unimi.dsi.fastutil.HashCommon.mix( ( k ) ) & mask ] ) == ( 0 ) ) ) return false; if ( ( ( k ) == ( curr ) ) ) return true; // There's always an unused entry. while ( true ) { if ( ( ( curr = key[ pos = ( pos + 1 ) & mask ] ) == ( 0 ) ) ) return false; if ( ( ( k ) == ( curr ) ) ) return true; } } public boolean containsValue( final Object v ) { final V value[] = this.value; final long key[] = this.key; if ( containsNullKey && ( ( value[ n ] ) == ( v ) ) ) return true; for ( int i = n; i-- != 0; ) if ( !( ( key[ i ] ) == ( 0 ) ) && ( ( value[ i ] ) == ( v ) ) ) return true; return false; } /* Removes all elements from this map. * *

To increase object reuse, this method does not change the table size. If you want to reduce the table size, you must use {@link #trim()}. */ public void clear() { if ( size == 0 ) return; size = 0; containsNullKey = false; Arrays.fill( key, ( 0 ) ); Arrays.fill( value, null ); } public int size() { return size; } public boolean isEmpty() { return size == 0; } /** A no-op for backward compatibility. * * @param growthFactor unused. * @deprecated Since fastutil 6.1.0, hash tables are doubled when they are too full. */ @Deprecated public void growthFactor( int growthFactor ) {} /** Gets the growth factor (2). * * @return the growth factor of this set, which is fixed (2). * @see #growthFactor(int) * @deprecated Since fastutil 6.1.0, hash tables are doubled when they are too full. */ @Deprecated public int growthFactor() { return 16; } /** The entry class for a hash map does not record key and value, but rather the position in the hash table of the corresponding entry. This is necessary so that calls to * {@link java.util.Map.Entry#setValue(Object)} are reflected in the map */ final class MapEntry implements Long2ReferenceMap.Entry, Map.Entry { // The table index this entry refers to, or -1 if this entry has been deleted. int index; MapEntry( final int index ) { this.index = index; } MapEntry() {} public Long getKey() { return ( Long.valueOf( key[ index ] ) ); } public long getLongKey() { return key[ index ]; } public V getValue() { return ( value[ index ] ); } public V setValue( final V v ) { final V oldValue = value[ index ]; value[ index ] = v; return oldValue; } @SuppressWarnings("unchecked") public boolean equals( final Object o ) { if ( !( o instanceof Map.Entry ) ) return false; Map.Entry e = (Map.Entry)o; return ( ( key[ index ] ) == ( ( ( e.getKey() ).longValue() ) ) ) && ( ( value[ index ] ) == ( ( e.getValue() ) ) ); } public int hashCode() { return it.unimi.dsi.fastutil.HashCommon.long2int( key[ index ] ) ^ ( ( value[ index ] ) == null ? 0 : System.identityHashCode( value[ index ] ) ); } public String toString() { return key[ index ] + "=>" + value[ index ]; } } /** An iterator over a hash map. */ private class MapIterator { /** The index of the last entry returned, if positive or zero; initially, {@link #n}. If negative, the last entry returned was that of the key of index {@code - pos - 1} from the * {@link #wrapped} list. */ int pos = n; /** The index of the last entry that has been returned (more precisely, the value of {@link #pos} if {@link #pos} is positive, or {@link Integer#MIN_VALUE} if {@link #pos} is negative). It is * -1 if either we did not return an entry yet, or the last returned entry has been removed. */ int last = -1; /** A downward counter measuring how many entries must still be returned. */ int c = size; /** A boolean telling us whether we should return the entry with the null key. */ boolean mustReturnNullKey = Long2ReferenceOpenHashMap.this.containsNullKey; /** A lazily allocated list containing keys of entries that have wrapped around the table because of removals. */ LongArrayList wrapped; public boolean hasNext() { return c != 0; } public int nextEntry() { if ( !hasNext() ) throw new NoSuchElementException(); c--; if ( mustReturnNullKey ) { mustReturnNullKey = false; return last = n; } final long key[] = Long2ReferenceOpenHashMap.this.key; for ( ;; ) { if ( --pos < 0 ) { // We are just enumerating elements from the wrapped list. last = Integer.MIN_VALUE; final long k = wrapped.getLong( -pos - 1 ); int p = (int)it.unimi.dsi.fastutil.HashCommon.mix( ( k ) ) & mask; while ( !( ( k ) == ( key[ p ] ) ) ) p = ( p + 1 ) & mask; return p; } if ( !( ( key[ pos ] ) == ( 0 ) ) ) return last = pos; } } /** Shifts left entries with the specified hash code, starting at the specified position, and empties the resulting free entry. * * @param pos a starting position. */ private final void shiftKeys( int pos ) { // Shift entries with the same hash. int last, slot; long curr; final long[] key = Long2ReferenceOpenHashMap.this.key; for ( ;; ) { pos = ( ( last = pos ) + 1 ) & mask; for ( ;; ) { if ( ( ( curr = key[ pos ] ) == ( 0 ) ) ) { key[ last ] = ( 0 ); value[ last ] = null; return; } slot = (int)it.unimi.dsi.fastutil.HashCommon.mix( ( curr ) ) & mask; if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break; pos = ( pos + 1 ) & mask; } if ( pos < last ) { // Wrapped entry. if ( wrapped == null ) wrapped = new LongArrayList( 2 ); wrapped.add( key[ pos ] ); } key[ last ] = curr; value[ last ] = value[ pos ]; } } public void remove() { if ( last == -1 ) throw new IllegalStateException(); if ( last == n ) { containsNullKey = false; value[ n ] = ( null ); } else if ( pos >= 0 ) shiftKeys( last ); else { // We're removing wrapped entries. Long2ReferenceOpenHashMap.this.remove( wrapped.getLong( -pos - 1 ) ); last = -1; // Note that we must not decrement size return; } size--; last = -1; // You can no longer remove this entry. if ( ASSERTS ) checkTable(); } public int skip( final int n ) { int i = n; while ( i-- != 0 && hasNext() ) nextEntry(); return n - i - 1; } } private class EntryIterator extends MapIterator implements ObjectIterator> { private MapEntry entry; public Long2ReferenceMap.Entry next() { return entry = new MapEntry( nextEntry() ); } @Override public void remove() { super.remove(); entry.index = -1; // You cannot use a deleted entry. } } private class FastEntryIterator extends MapIterator implements ObjectIterator> { private final MapEntry entry = new MapEntry(); public MapEntry next() { entry.index = nextEntry(); return entry; } } private final class MapEntrySet extends AbstractObjectSet> implements FastEntrySet { public ObjectIterator> iterator() { return new EntryIterator(); } public ObjectIterator> fastIterator() { return new FastEntryIterator(); } @SuppressWarnings("unchecked") public boolean contains( final Object o ) { if ( !( o instanceof Map.Entry ) ) return false; final Map.Entry e = (Map.Entry)o; final long k = ( ( e.getKey() ).longValue() ); if ( ( ( k ) == ( 0 ) ) ) return ( Long2ReferenceOpenHashMap.this.containsNullKey && ( ( value[ n ] ) == ( ( e.getValue() ) ) ) ); long curr; final long[] key = Long2ReferenceOpenHashMap.this.key; int pos; // The starting point. if ( ( ( curr = key[ pos = (int)it.unimi.dsi.fastutil.HashCommon.mix( ( k ) ) & mask ] ) == ( 0 ) ) ) return false; if ( ( ( k ) == ( curr ) ) ) return ( ( value[ pos ] ) == ( ( e.getValue() ) ) ); // There's always an unused entry. while ( true ) { if ( ( ( curr = key[ pos = ( pos + 1 ) & mask ] ) == ( 0 ) ) ) return false; if ( ( ( k ) == ( curr ) ) ) return ( ( value[ pos ] ) == ( ( e.getValue() ) ) ); } } @SuppressWarnings("unchecked") public boolean remove( final Object o ) { if ( !( o instanceof Map.Entry ) ) return false; final Map.Entry e = (Map.Entry)o; final long k = ( ( e.getKey() ).longValue() ); final V v = ( e.getValue() ); if ( ( ( k ) == ( 0 ) ) ) { if ( containsNullKey && ( ( value[ n ] ) == ( v ) ) ) { removeNullEntry(); return true; } return false; } long curr; final long[] key = Long2ReferenceOpenHashMap.this.key; int pos; // The starting point. if ( ( ( curr = key[ pos = (int)it.unimi.dsi.fastutil.HashCommon.mix( ( k ) ) & mask ] ) == ( 0 ) ) ) return false; if ( ( ( curr ) == ( k ) ) ) { if ( ( ( value[ pos ] ) == ( v ) ) ) { removeEntry( pos ); return true; } return false; } while ( true ) { if ( ( ( curr = key[ pos = ( pos + 1 ) & mask ] ) == ( 0 ) ) ) return false; if ( ( ( curr ) == ( k ) ) ) { if ( ( ( value[ pos ] ) == ( v ) ) ) { removeEntry( pos ); return true; } } } } public int size() { return size; } public void clear() { Long2ReferenceOpenHashMap.this.clear(); } } public FastEntrySet long2ReferenceEntrySet() { if ( entries == null ) entries = new MapEntrySet(); return entries; } /** An iterator on keys. * *

We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and possibly their type-specific counterparts) so that they return keys * instead of entries. */ private final class KeyIterator extends MapIterator implements LongIterator { public KeyIterator() { super(); } public long nextLong() { return key[ nextEntry() ]; } public Long next() { return ( Long.valueOf( key[ nextEntry() ] ) ); } } private final class KeySet extends AbstractLongSet { public LongIterator iterator() { return new KeyIterator(); } public int size() { return size; } public boolean contains( long k ) { return containsKey( k ); } public boolean remove( long k ) { final int oldSize = size; Long2ReferenceOpenHashMap.this.remove( k ); return size != oldSize; } public void clear() { Long2ReferenceOpenHashMap.this.clear(); } } public LongSet keySet() { if ( keys == null ) keys = new KeySet(); return keys; } /** An iterator on values. * *

We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and possibly their type-specific counterparts) so that they return values * instead of entries. */ private final class ValueIterator extends MapIterator implements ObjectIterator { public ValueIterator() { super(); } public V next() { return value[ nextEntry() ]; } } public ReferenceCollection values() { if ( values == null ) values = new AbstractReferenceCollection() { public ObjectIterator iterator() { return new ValueIterator(); } public int size() { return size; } public boolean contains( Object v ) { return containsValue( v ); } public void clear() { Long2ReferenceOpenHashMap.this.clear(); } }; return values; } /** A no-op for backward compatibility. The kind of tables implemented by this class never need rehashing. * *

If you need to reduce the table size to fit exactly this set, use {@link #trim()}. * * @return true. * @see #trim() * @deprecated A no-op. */ @Deprecated public boolean rehash() { return true; } /** Rehashes the map, making the table as small as possible. * *

This method rehashes the table to the smallest size satisfying the load factor. It can be used when the set will not be changed anymore, so to optimize access speed and size. * *

If the table size is already the minimum possible, this method does nothing. * * @return true if there was enough memory to trim the map. * @see #trim(int) */ public boolean trim() { final int l = arraySize( size, f ); if ( l >= n ) return true; try { rehash( l ); } catch ( OutOfMemoryError cantDoIt ) { return false; } return true; } /** Rehashes this map if the table is too large. * *

Let N be the smallest table size that can hold max(n,{@link #size()}) entries, still satisfying the load factor. If the current table size is smaller than or equal to * N, this method does nothing. Otherwise, it rehashes this map in a table of size N. * *

This method is useful when reusing maps. {@linkplain #clear() Clearing a map} leaves the table size untouched. If you are reusing a map many times, you can call this method with a typical * size to avoid keeping around a very large table just because of a few large transient maps. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the map. * @see #trim() */ public boolean trim( final int n ) { final int l = HashCommon.nextPowerOfTwo( (int)Math.ceil( n / f ) ); if ( this.n <= l ) return true; try { rehash( l ); } catch ( OutOfMemoryError cantDoIt ) { return false; } return true; } /** Rehashes the map. * *

This method implements the basic rehashing strategy, and may be overriden by subclasses implementing different rehashing strategies (e.g., disk-based rehashing). However, you should not * override this method unless you understand the internal workings of this class. * * @param newN the new size */ @SuppressWarnings("unchecked") protected void rehash( final int newN ) { final long key[] = this.key; final V value[] = this.value; final int mask = newN - 1; // Note that this is used by the hashing macro final long newKey[] = new long[ newN + 1 ]; final V newValue[] = (V[])new Object[ newN + 1 ]; int i = n, pos; for ( int j = realSize(); j-- != 0; ) { while ( ( ( key[ --i ] ) == ( 0 ) ) ); if ( !( ( newKey[ pos = (int)it.unimi.dsi.fastutil.HashCommon.mix( ( key[ i ] ) ) & mask ] ) == ( 0 ) ) ) while ( !( ( newKey[ pos = ( pos + 1 ) & mask ] ) == ( 0 ) ) ); newKey[ pos ] = key[ i ]; newValue[ pos ] = value[ i ]; } newValue[ newN ] = value[ n ]; n = newN; this.mask = mask; maxFill = maxFill( n, f ); this.key = newKey; this.value = newValue; } /** Returns a deep copy of this map. * *

This method performs a deep copy of this hash map; the data stored in the map, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this map. */ @SuppressWarnings("unchecked") public Long2ReferenceOpenHashMap clone() { Long2ReferenceOpenHashMap c; try { c = (Long2ReferenceOpenHashMap)super.clone(); } catch ( CloneNotSupportedException cantHappen ) { throw new InternalError(); } c.keys = null; c.values = null; c.entries = null; c.containsNullKey = containsNullKey; c.key = key.clone(); c.value = value.clone(); return c; } /** Returns a hash code for this map. * * This method overrides the generic method provided by the superclass. Since equals() is not overriden, it is important that the value returned by this method is the same value as * the one returned by the overriden method. * * @return a hash code for this map. */ public int hashCode() { int h = 0; for ( int j = realSize(), i = 0, t = 0; j-- != 0; ) { while ( ( ( key[ i ] ) == ( 0 ) ) ) i++; t = it.unimi.dsi.fastutil.HashCommon.long2int( key[ i ] ); if ( this != value[ i ] ) t ^= ( ( value[ i ] ) == null ? 0 : System.identityHashCode( value[ i ] ) ); h += t; i++; } // Zero / null keys have hash zero. if ( containsNullKey ) h += ( ( value[ n ] ) == null ? 0 : System.identityHashCode( value[ n ] ) ); return h; } private void writeObject( java.io.ObjectOutputStream s ) throws java.io.IOException { final long key[] = this.key; final V value[] = this.value; final MapIterator i = new MapIterator(); s.defaultWriteObject(); for ( int j = size, e; j-- != 0; ) { e = i.nextEntry(); s.writeLong( key[ e ] ); s.writeObject( value[ e ] ); } } @SuppressWarnings("unchecked") private void readObject( java.io.ObjectInputStream s ) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = arraySize( size, f ); maxFill = maxFill( n, f ); mask = n - 1; final long key[] = this.key = new long[ n + 1 ]; final V value[] = this.value = (V[])new Object[ n + 1 ]; long k; V v; for ( int i = size, pos; i-- != 0; ) { k = s.readLong(); v = (V)s.readObject(); if ( ( ( k ) == ( 0 ) ) ) { pos = n; containsNullKey = true; } else { pos = (int)it.unimi.dsi.fastutil.HashCommon.mix( ( k ) ) & mask; while ( !( ( key[ pos ] ) == ( 0 ) ) ) pos = ( pos + 1 ) & mask; key[ pos ] = k; } value[ pos ] = v; } if ( ASSERTS ) checkTable(); } private void checkTable() {} }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy