drv.AVLTreeSet.drv Maven / Gradle / Ivy
Show all versions of phoenix-server-hbase-2.6
/*
* Copyright (C) 2002-2015 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
import java.util.Collection;
import java.util.Comparator;
import java.util.Iterator;
import java.util.SortedSet;
import java.util.NoSuchElementException;
/** A type-specific AVL tree set with a fast, small-footprint implementation.
*
* The iterators provided by this class are type-specific {@link
* it.unimi.dsi.fastutil.BidirectionalIterator bidirectional iterators}.
* Moreover, the iterator returned by iterator()
can be safely cast
* to a type-specific {@linkplain java.util.ListIterator list iterator}.
*/
public class AVL_TREE_SET KEY_GENERIC extends ABSTRACT_SORTED_SET KEY_GENERIC implements java.io.Serializable, Cloneable, SORTED_SET KEY_GENERIC {
/** A reference to the root entry. */
protected transient Entry KEY_GENERIC tree;
/** Number of elements in this set. */
protected int count;
/** The entry of the first element of this set. */
protected transient Entry KEY_GENERIC firstEntry;
/** The entry of the last element of this set. */
protected transient Entry KEY_GENERIC lastEntry;
/** This set's comparator, as provided in the constructor. */
protected Comparator super KEY_GENERIC_CLASS> storedComparator;
/** This set's actual comparator; it may differ from {@link #storedComparator} because it is
always a type-specific comparator, so it could be derived from the former by wrapping. */
protected transient KEY_COMPARATOR KEY_SUPER_GENERIC actualComparator;
private static final long serialVersionUID = -7046029254386353130L;
private static final boolean ASSERTS = ASSERTS_VALUE;
{
allocatePaths();
}
/** Creates a new empty tree set.
*/
public AVL_TREE_SET() {
tree = null;
count = 0;
}
/** Generates the comparator that will be actually used.
*
*
When a specific {@link Comparator} is specified and stored in {@link
* #storedComparator}, we must check whether it is type-specific. If it is
* so, we can used directly, and we store it in {@link #actualComparator}. Otherwise,
* we generate on-the-fly an anonymous class that wraps the non-specific {@link Comparator}
* and makes it into a type-specific one.
*/
private void setActualComparator() {
#if #keyclass(Object)
actualComparator = storedComparator;
#else
/* If the provided comparator is already type-specific, we use it. Otherwise,
we use a wrapper anonymous class to fake that it is type-specific. */
if ( storedComparator == null || storedComparator instanceof KEY_COMPARATOR ) actualComparator = (KEY_COMPARATOR)storedComparator;
else actualComparator = new KEY_COMPARATOR KEY_GENERIC() {
public int compare( KEY_GENERIC_TYPE k1, KEY_GENERIC_TYPE k2 ) {
return storedComparator.compare( KEY2OBJ( k1 ), KEY2OBJ( k2 ) );
}
public int compare( KEY_CLASS ok1, KEY_CLASS ok2 ) {
return storedComparator.compare( ok1, ok2 );
}
};
#endif
}
/** Creates a new empty tree set with the given comparator.
*
* @param c a {@link Comparator} (even better, a type-specific comparator).
*/
public AVL_TREE_SET( final Comparator super KEY_GENERIC_CLASS> c ) {
this();
storedComparator = c;
setActualComparator();
}
/** Creates a new tree set copying a given set.
*
* @param c a collection to be copied into the new tree set.
*/
public AVL_TREE_SET( final Collection extends KEY_GENERIC_CLASS> c ) {
this();
addAll( c );
}
/** Creates a new tree set copying a given sorted set (and its {@link Comparator}).
*
* @param s a {@link SortedSet} to be copied into the new tree set.
*/
public AVL_TREE_SET( final SortedSet s ) {
this( s.comparator() );
addAll( s );
}
/** Creates a new tree set copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new tree set.
*/
public AVL_TREE_SET( final COLLECTION KEY_EXTENDS_GENERIC c ) {
this();
addAll( c );
}
/** Creates a new tree set copying a given type-specific sorted set (and its {@link Comparator}).
*
* @param s a type-specific sorted set to be copied into the new tree set.
*/
public AVL_TREE_SET( final SORTED_SET KEY_GENERIC s ) {
this( s.comparator() );
addAll( s );
}
/** Creates a new tree set using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the set.
*/
public AVL_TREE_SET( final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i ) {
while( i.hasNext() ) add( i.NEXT_KEY() );
}
#if #keys(primitive)
/** Creates a new tree set using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the set.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public AVL_TREE_SET( final Iterator> i ) {
this( ITERATORS.AS_KEY_ITERATOR( i ) );
}
#endif
/** Creates a new tree set and fills it with the elements of a given array using a given {@link Comparator}.
*
* @param a an array whose elements will be used to fill the set.
* @param offset the first element to use.
* @param length the number of elements to use.
* @param c a {@link Comparator} (even better, a type-specific comparator).
*/
public AVL_TREE_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length, final Comparator super KEY_GENERIC_CLASS> c ) {
this( c );
ARRAYS.ensureOffsetLength( a, offset, length );
for( int i = 0; i < length; i++ ) add( a[ offset + i ] );
}
/** Creates a new tree set and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the set.
* @param offset the first element to use.
* @param length the number of elements to use.
*/
public AVL_TREE_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length ) {
this( a, offset, length, null );
}
/** Creates a new tree set copying the elements of an array.
*
* @param a an array to be copied into the new tree set.
*/
public AVL_TREE_SET( final KEY_GENERIC_TYPE[] a ) {
this();
int i = a.length;
while( i-- != 0 ) add( a[ i ] );
}
/** Creates a new tree set copying the elements of an array using a given {@link Comparator}.
*
* @param a an array to be copied into the new tree set.
* @param c a {@link Comparator} (even better, a type-specific comparator).
*/
public AVL_TREE_SET( final KEY_GENERIC_TYPE[] a, final Comparator super KEY_GENERIC_CLASS> c ) {
this( c );
int i = a.length;
while( i-- != 0 ) add( a[ i ] );
}
/*
* The following methods implements some basic building blocks used by
* all accessors. They are (and should be maintained) identical to those used in AVLTreeMap.drv.
*
* The add()/remove() code is derived from Ben Pfaff's GNU libavl
* (http://www.msu.edu/~pfaffben/avl/). If you want to understand what's
* going on, you should have a look at the literate code contained therein
* first.
*/
/** Compares two keys in the right way.
*
* This method uses the {@link #actualComparator} if it is non-null
.
* Otherwise, it resorts to primitive type comparisons or to {@link Comparable#compareTo(Object) compareTo()}.
*
* @param k1 the first key.
* @param k2 the second key.
* @return a number smaller than, equal to or greater than 0, as usual
* (i.e., when k1 < k2, k1 = k2 or k1 > k2, respectively).
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
final int compare( final KEY_GENERIC_TYPE k1, final KEY_GENERIC_TYPE k2 ) {
return actualComparator == null ? KEY_CMP( k1, k2 ) : actualComparator.compare( k1, k2 );
}
/** Returns the entry corresponding to the given key, if it is in the tree; null
, otherwise.
*
* @param k the key to search for.
* @return the corresponding entry, or null
if no entry with the given key exists.
*/
private Entry KEY_GENERIC findKey( final KEY_GENERIC_TYPE k ) {
Entry KEY_GENERIC e = tree;
int cmp;
while ( e != null && ( cmp = compare( k, e.key ) ) != 0 )
e = cmp < 0 ? e.left() : e.right();
return e;
}
/** Locates a key.
*
* @param k a key.
* @return the last entry on a search for the given key; this will be
* the given key, if it present; otherwise, it will be either the smallest greater key or the greatest smaller key.
*/
final Entry KEY_GENERIC locateKey( final KEY_GENERIC_TYPE k ) {
Entry KEY_GENERIC e = tree, last = tree;
int cmp = 0;
while ( e != null && ( cmp = compare( k, e.key ) ) != 0 ) {
last = e;
e = cmp < 0 ? e.left() : e.right();
}
return cmp == 0 ? e : last;
}
/** This vector remembers the path followed during the current insertion. It suffices for
about 232 entries. */
private transient boolean dirPath[];
private void allocatePaths() {
dirPath = new boolean[ 48 ];
}
public boolean add( final KEY_GENERIC_TYPE k ) {
if ( tree == null ) { // The case of the empty tree is treated separately.
count++;
tree = lastEntry = firstEntry = new Entry KEY_GENERIC( k );
}
else {
Entry KEY_GENERIC p = tree, q = null, y = tree, z = null, e = null, w = null;
int cmp, i = 0;
while( true ) {
if ( ( cmp = compare( k, p.key ) ) == 0 ) return false;
if ( p.balance() != 0 ) {
i = 0;
z = q;
y = p;
}
if ( dirPath[ i++ ] = cmp > 0 ) {
if ( p.succ() ) {
count++;
e = new Entry KEY_GENERIC( k );
if ( p.right == null ) lastEntry = e;
e.left = p;
e.right = p.right;
p.right( e );
break;
}
q = p;
p = p.right;
}
else {
if ( p.pred() ) {
count++;
e = new Entry KEY_GENERIC( k );
if ( p.left == null ) firstEntry = e;
e.right = p;
e.left = p.left;
p.left( e );
break;
}
q = p;
p = p.left;
}
}
p = y;
i = 0;
while( p != e ) {
if ( dirPath[ i ] ) p.incBalance();
else p.decBalance();
p = dirPath[ i++ ] ? p.right : p.left;
}
if ( y.balance() == -2 ) {
Entry KEY_GENERIC x = y.left;
if ( x.balance() == -1 ) {
w = x;
if ( x.succ() ) {
x.succ( false );
y.pred( x );
}
else y.left = x.right;
x.right = y;
x.balance( 0 );
y.balance( 0 );
}
else {
if ( ASSERTS ) assert x.balance() == 1;
w = x.right;
x.right = w.left;
w.left = x;
y.left = w.right;
w.right = y;
if ( w.balance() == -1 ) {
x.balance( 0 );
y.balance( 1 );
}
else if ( w.balance() == 0 ) {
x.balance( 0 );
y.balance( 0 );
}
else {
x.balance( -1 );
y.balance( 0 );
}
w.balance( 0 );
if ( w.pred() ) {
x.succ( w );
w.pred( false );
}
if ( w.succ() ) {
y.pred( w );
w.succ( false );
}
}
}
else if ( y.balance() == +2 ) {
Entry KEY_GENERIC x = y.right;
if ( x.balance() == 1 ) {
w = x;
if ( x.pred() ) {
x.pred( false );
y.succ( x );
}
else y.right = x.left;
x.left = y;
x.balance( 0 );
y.balance( 0 );
}
else {
if ( ASSERTS ) assert x.balance() == -1;
w = x.left;
x.left = w.right;
w.right = x;
y.right = w.left;
w.left = y;
if ( w.balance() == 1 ) {
x.balance( 0 );
y.balance( -1 );
}
else if ( w.balance() == 0 ) {
x.balance( 0 );
y.balance( 0 );
}
else {
x.balance( 1 );
y.balance( 0 );
}
w.balance( 0 );
if ( w.pred() ) {
y.succ( w );
w.pred( false );
}
if ( w.succ() ) {
x.pred( w );
w.succ( false );
}
}
}
else return true;
if ( z == null ) tree = w;
else {
if ( z.left == y ) z.left = w;
else z.right = w;
}
}
if ( ASSERTS ) checkTree( tree );
return true;
}
/** Finds the parent of an entry.
*
* @param e a node of the tree.
* @return the parent of the given node, or null
for the root.
*/
private Entry KEY_GENERIC parent( final Entry KEY_GENERIC e ) {
if ( e == tree ) return null;
Entry KEY_GENERIC x, y, p;
x = y = e;
while( true ) {
if ( y.succ() ) {
p = y.right;
if ( p == null || p.left != e ) {
while( ! x.pred() ) x = x.left;
p = x.left;
}
return p;
}
else if ( x.pred() ) {
p = x.left;
if ( p == null || p.right != e ) {
while( ! y.succ() ) y = y.right;
p = y.right;
}
return p;
}
x = x.left;
y = y.right;
}
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
public boolean remove( final KEY_TYPE k ) {
if ( tree == null ) return false;
int cmp;
Entry KEY_GENERIC p = tree, q = null;
boolean dir = false;
final KEY_GENERIC_TYPE kk = KEY_GENERIC_CAST k;
while( true ) {
if ( ( cmp = compare( kk, p.key ) ) == 0 ) break;
else if ( dir = cmp > 0 ) {
q = p;
if ( ( p = p.right() ) == null ) return false;
}
else {
q = p;
if ( ( p = p.left() ) == null ) return false;
}
}
if ( p.left == null ) firstEntry = p.next();
if ( p.right == null ) lastEntry = p.prev();
if ( p.succ() ) {
if ( p.pred() ) {
if ( q != null ) {
if ( dir ) q.succ( p.right );
else q.pred( p.left );
}
else tree = dir ? p.right : p.left;
}
else {
p.prev().right = p.right;
if ( q != null ) {
if ( dir ) q.right = p.left;
else q.left = p.left;
}
else tree = p.left;
}
}
else {
Entry KEY_GENERIC r = p.right;
if ( r.pred() ) {
r.left = p.left;
r.pred( p.pred() );
if ( ! r.pred() ) r.prev().right = r;
if ( q != null ) {
if ( dir ) q.right = r;
else q.left = r;
}
else tree = r;
r.balance( p.balance() );
q = r;
dir = true;
}
else {
Entry KEY_GENERIC s;
while( true ) {
s = r.left;
if ( s.pred() ) break;
r = s;
}
if ( s.succ() ) r.pred( s );
else r.left = s.right;
s.left = p.left;
if ( ! p.pred() ) {
p.prev().right = s;
s.pred( false );
}
s.right = p.right;
s.succ( false );
if ( q != null ) {
if ( dir ) q.right = s;
else q.left = s;
}
else tree = s;
s.balance( p.balance() );
q = r;
dir = false;
}
}
Entry KEY_GENERIC y;
while( q != null ) {
y = q;
q = parent( y );
if ( ! dir ) {
dir = q != null && q.left != y;
y.incBalance();
if ( y.balance() == 1 ) break;
else if ( y.balance() == 2 ) {
Entry KEY_GENERIC x = y.right;
if ( ASSERTS ) assert x != null;
if ( x.balance() == -1 ) {
Entry KEY_GENERIC w;
if ( ASSERTS ) assert x.balance() == -1;
w = x.left;
x.left = w.right;
w.right = x;
y.right = w.left;
w.left = y;
if ( w.balance() == 1 ) {
x.balance( 0 );
y.balance( -1 );
}
else if ( w.balance() == 0 ) {
x.balance( 0 );
y.balance( 0 );
}
else {
if ( ASSERTS ) assert w.balance() == -1;
x.balance( 1 );
y.balance( 0 );
}
w.balance( 0 );
if ( w.pred() ) {
y.succ( w );
w.pred( false );
}
if ( w.succ() ) {
x.pred( w );
w.succ( false );
}
if ( q != null ) {
if ( dir ) q.right = w;
else q.left = w;
}
else tree = w;
}
else {
if ( q != null ) {
if ( dir ) q.right = x;
else q.left = x;
}
else tree = x;
if ( x.balance() == 0 ) {
y.right = x.left;
x.left = y;
x.balance( -1 );
y.balance( +1 );
break;
}
if ( ASSERTS ) assert x.balance() == 1;
if ( x.pred() ) {
y.succ( true );
x.pred( false );
}
else y.right = x.left;
x.left = y;
y.balance( 0 );
x.balance( 0 );
}
}
}
else {
dir = q != null && q.left != y;
y.decBalance();
if ( y.balance() == -1 ) break;
else if ( y.balance() == -2 ) {
Entry KEY_GENERIC x = y.left;
if ( ASSERTS ) assert x != null;
if ( x.balance() == 1 ) {
Entry KEY_GENERIC w;
if ( ASSERTS ) assert x.balance() == 1;
w = x.right;
x.right = w.left;
w.left = x;
y.left = w.right;
w.right = y;
if ( w.balance() == -1 ) {
x.balance( 0 );
y.balance( 1 );
}
else if ( w.balance() == 0 ) {
x.balance( 0 );
y.balance( 0 );
}
else {
if ( ASSERTS ) assert w.balance() == 1;
x.balance( -1 );
y.balance( 0 );
}
w.balance( 0 );
if ( w.pred() ) {
x.succ( w );
w.pred( false );
}
if ( w.succ() ) {
y.pred( w );
w.succ( false );
}
if ( q != null ) {
if ( dir ) q.right = w;
else q.left = w;
}
else tree = w;
}
else {
if ( q != null ) {
if ( dir ) q.right = x;
else q.left = x;
}
else tree = x;
if ( x.balance() == 0 ) {
y.left = x.right;
x.right = y;
x.balance( +1 );
y.balance( -1 );
break;
}
if ( ASSERTS ) assert x.balance() == -1;
if ( x.succ() ) {
y.pred( true );
x.succ( false );
}
else y.left = x.right;
x.right = y;
y.balance( 0 );
x.balance( 0 );
}
}
}
}
count--;
if ( ASSERTS ) checkTree( tree );
return true;
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
public boolean contains( final KEY_TYPE k ) {
return findKey( KEY_GENERIC_CAST k ) != null;
}
#if #keysclass(Object)
public K get( final KEY_TYPE k ) {
final Entry KEY_GENERIC entry = findKey( KEY_GENERIC_CAST k );
return entry == null ? null : entry.getKey();
}
#endif
public void clear() {
count = 0;
tree = null;
firstEntry = lastEntry = null;
}
/** This class represent an entry in a tree set.
*
*
We use the only "metadata", i.e., {@link Entry#info}, to store
* information about balance, predecessor status and successor status.
*
*
Note that since the class is recursive, it can be
* considered equivalently a tree.
*/
private static final class Entry KEY_GENERIC implements Cloneable {
/** If the bit in this mask is true, {@link #right} points to a successor. */
private final static int SUCC_MASK = 1 << 31;
/** If the bit in this mask is true, {@link #left} points to a predecessor. */
private final static int PRED_MASK = 1 << 30;
/** The bits in this mask hold the node balance info. You can get it just by casting to byte. */
private final static int BALANCE_MASK = 0xFF;
/** The key of this entry. */
KEY_GENERIC_TYPE key;
/** The pointers to the left and right subtrees. */
Entry KEY_GENERIC left, right;
/** This integers holds different information in different bits (see {@link #SUCC_MASK}, {@link #PRED_MASK} and {@link #BALANCE_MASK}). */
int info;
Entry() {}
/** Creates a new entry with the given key.
*
* @param k a key.
*/
Entry( final KEY_GENERIC_TYPE k ) {
this.key = k;
info = SUCC_MASK | PRED_MASK;
}
/** Returns the left subtree.
*
* @return the left subtree (null
if the left
* subtree is empty).
*/
Entry KEY_GENERIC left() {
return ( info & PRED_MASK ) != 0 ? null : left;
}
/** Returns the right subtree.
*
* @return the right subtree (null
if the right
* subtree is empty).
*/
Entry KEY_GENERIC right() {
return ( info & SUCC_MASK ) != 0 ? null : right;
}
/** Checks whether the left pointer is really a predecessor.
* @return true if the left pointer is a predecessor.
*/
boolean pred() {
return ( info & PRED_MASK ) != 0;
}
/** Checks whether the right pointer is really a successor.
* @return true if the right pointer is a successor.
*/
boolean succ() {
return ( info & SUCC_MASK ) != 0;
}
/** Sets whether the left pointer is really a predecessor.
* @param pred if true then the left pointer will be considered a predecessor.
*/
void pred( final boolean pred ) {
if ( pred ) info |= PRED_MASK;
else info &= ~PRED_MASK;
}
/** Sets whether the right pointer is really a successor.
* @param succ if true then the right pointer will be considered a successor.
*/
void succ( final boolean succ ) {
if ( succ ) info |= SUCC_MASK;
else info &= ~SUCC_MASK;
}
/** Sets the left pointer to a predecessor.
* @param pred the predecessr.
*/
void pred( final Entry KEY_GENERIC pred ) {
info |= PRED_MASK;
left = pred;
}
/** Sets the right pointer to a successor.
* @param succ the successor.
*/
void succ( final Entry KEY_GENERIC succ ) {
info |= SUCC_MASK;
right = succ;
}
/** Sets the left pointer to the given subtree.
* @param left the new left subtree.
*/
void left( final Entry KEY_GENERIC left ) {
info &= ~PRED_MASK;
this.left = left;
}
/** Sets the right pointer to the given subtree.
* @param right the new right subtree.
*/
void right( final Entry KEY_GENERIC right ) {
info &= ~SUCC_MASK;
this.right = right;
}
/** Returns the current level of the node.
* @return the current level of this node.
*/
int balance() {
return (byte)info;
}
/** Sets the level of this node.
* @param level the new level of this node.
*/
void balance( int level ) {
info &= ~BALANCE_MASK;
info |= ( level & BALANCE_MASK );
}
/** Increments the level of this node. */
void incBalance() {
info = info & ~BALANCE_MASK | ( (byte)info + 1 ) & 0xFF;
}
/** Decrements the level of this node. */
protected void decBalance() {
info = info & ~BALANCE_MASK | ( (byte)info - 1 ) & 0xFF;
}
/** Computes the next entry in the set order.
*
* @return the next entry (null
) if this is the last entry).
*/
Entry KEY_GENERIC next() {
Entry KEY_GENERIC next = this.right;
if ( ( info & SUCC_MASK ) == 0 ) while ( ( next.info & PRED_MASK ) == 0 ) next = next.left;
return next;
}
/** Computes the previous entry in the set order.
*
* @return the previous entry (null
) if this is the first entry).
*/
Entry KEY_GENERIC prev() {
Entry KEY_GENERIC prev = this.left;
if ( ( info & PRED_MASK ) == 0 ) while ( ( prev.info & SUCC_MASK ) == 0 ) prev = prev.right;
return prev;
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
public Entry KEY_GENERIC clone() {
Entry KEY_GENERIC c;
try {
c = (Entry KEY_GENERIC)super.clone();
}
catch(CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.key = key;
c.info = info;
return c;
}
public boolean equals( final Object o ) {
if (!(o instanceof Entry)) return false;
Entry KEY_GENERIC_WILDCARD e = (Entry KEY_GENERIC_WILDCARD)o;
return KEY_EQUALS(key, e.key);
}
public int hashCode() {
return KEY2JAVAHASH_NOT_NULL(key);
}
public String toString() {
return String.valueOf( key );
}
/*
public void prettyPrint() {
prettyPrint(0);
}
public void prettyPrint(int level) {
if ( pred() ) {
for (int i = 0; i < level; i++)
System.err.print(" ");
System.err.println("pred: " + left );
}
else if (left != null)
left.prettyPrint(level +1 );
for (int i = 0; i < level; i++)
System.err.print(" ");
System.err.println(key + " (" + level() + ")");
if ( succ() ) {
for (int i = 0; i < level; i++)
System.err.print(" ");
System.err.println("succ: " + right );
}
else if (right != null)
right.prettyPrint(level + 1);
}
*/
}
/*
public void prettyPrint() {
System.err.println("size: " + count);
if (tree != null) tree.prettyPrint();
}
*/
public int size() {
return count;
}
public boolean isEmpty() {
return count == 0;
}
public KEY_GENERIC_TYPE FIRST() {
if ( tree == null ) throw new NoSuchElementException();
return firstEntry.key;
}
public KEY_GENERIC_TYPE LAST() {
if ( tree == null ) throw new NoSuchElementException();
return lastEntry.key;
}
/** An iterator on the whole range.
*
*
This class can iterate in both directions on a threaded tree.
*/
private class SetIterator extends KEY_ABSTRACT_LIST_ITERATOR KEY_GENERIC {
/** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or null
if no previous entry exists). */
Entry KEY_GENERIC prev;
/** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or null
if no next entry exists). */
Entry KEY_GENERIC next;
/** The last entry that was returned (or null
if we did not iterate or used {@link #remove()}). */
Entry KEY_GENERIC curr;
/** The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not meaningful when this {@link SetIterator} has been created using the nonempty constructor.*/
int index = 0;
SetIterator() {
next = firstEntry;
}
SetIterator( final KEY_GENERIC_TYPE k ) {
if ( ( next = locateKey( k ) ) != null ) {
if ( compare( next.key, k ) <= 0 ) {
prev = next;
next = next.next();
}
else prev = next.prev();
}
}
public boolean hasNext() { return next != null; }
public boolean hasPrevious() { return prev != null; }
void updateNext() {
next = next.next();
}
Entry KEY_GENERIC nextEntry() {
if ( ! hasNext() ) throw new NoSuchElementException();
curr = prev = next;
index++;
updateNext();
return curr;
}
public KEY_GENERIC_TYPE NEXT_KEY() { return nextEntry().key; }
public KEY_GENERIC_TYPE PREV_KEY() { return previousEntry().key; }
void updatePrevious() {
prev = prev.prev();
}
Entry KEY_GENERIC previousEntry() {
if ( ! hasPrevious() ) throw new NoSuchElementException();
curr = next = prev;
index--;
updatePrevious();
return curr;
}
public int nextIndex() {
return index;
}
public int previousIndex() {
return index - 1;
}
public void remove() {
if ( curr == null ) throw new IllegalStateException();
/* If the last operation was a next(), we are removing an entry that preceeds
the current index, and thus we must decrement it. */
if ( curr == prev ) index--;
next = prev = curr;
updatePrevious();
updateNext();
AVL_TREE_SET.this.remove( curr.key );
curr = null;
}
}
public KEY_BIDI_ITERATOR KEY_GENERIC iterator() {
return new SetIterator();
}
public KEY_BIDI_ITERATOR KEY_GENERIC iterator( final KEY_GENERIC_TYPE from ) {
return new SetIterator( from );
}
public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() {
return actualComparator;
}
public SORTED_SET KEY_GENERIC headSet( final KEY_GENERIC_TYPE to ) {
return new Subset( KEY_NULL, true, to, false );
}
public SORTED_SET KEY_GENERIC tailSet( final KEY_GENERIC_TYPE from ) {
return new Subset( from, false, KEY_NULL, true );
}
public SORTED_SET KEY_GENERIC subSet( final KEY_GENERIC_TYPE from, final KEY_GENERIC_TYPE to ) {
return new Subset( from, false, to, false );
}
/** A subset with given range.
*
*
This class represents a subset. One has to specify the left/right
* limits (which can be set to -∞ or ∞). Since the subset is a
* view on the set, at a given moment it could happen that the limits of
* the range are not any longer in the main set. Thus, things such as
* {@link java.util.SortedSet#first()} or {@link java.util.SortedSet#size()} must be always computed
* on-the-fly.
*/
private final class Subset extends ABSTRACT_SORTED_SET KEY_GENERIC implements java.io.Serializable, SORTED_SET KEY_GENERIC {
private static final long serialVersionUID = -7046029254386353129L;
/** The start of the subset range, unless {@link #bottom} is true. */
KEY_GENERIC_TYPE from;
/** The end of the subset range, unless {@link #top} is true. */
KEY_GENERIC_TYPE to;
/** If true, the subset range starts from -∞. */
boolean bottom;
/** If true, the subset range goes to ∞. */
boolean top;
/** Creates a new subset with given key range.
*
* @param from the start of the subset range.
* @param bottom if true, the first parameter is ignored and the range starts from -∞.
* @param to the end of the subset range.
* @param top if true, the third parameter is ignored and the range goes to ∞.
*/
public Subset( final KEY_GENERIC_TYPE from, final boolean bottom, final KEY_GENERIC_TYPE to, final boolean top ) {
if ( ! bottom && ! top && AVL_TREE_SET.this.compare( from, to ) > 0 ) throw new IllegalArgumentException( "Start element (" + from + ") is larger than end element (" + to + ")" );
this.from = from;
this.bottom = bottom;
this.to = to;
this.top = top;
}
public void clear() {
final SubsetIterator i = new SubsetIterator();
while( i.hasNext() ) {
i.next();
i.remove();
}
}
/** Checks whether a key is in the subset range.
* @param k a key.
* @return true if is the key is in the subset range.
*/
final boolean in( final KEY_GENERIC_TYPE k ) {
return ( bottom || AVL_TREE_SET.this.compare( k, from ) >= 0 ) &&
( top || AVL_TREE_SET.this.compare( k, to ) < 0 );
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
public boolean contains( final KEY_TYPE k ) {
return in( KEY_GENERIC_CAST k ) && AVL_TREE_SET.this.contains( k );
}
public boolean add( final KEY_GENERIC_TYPE k ) {
if ( ! in( k ) ) throw new IllegalArgumentException( "Element (" + k + ") out of range [" + ( bottom ? "-" : String.valueOf( from ) ) + ", " + ( top ? "-" : String.valueOf( to ) ) + ")" );
return AVL_TREE_SET.this.add( k );
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
public boolean remove( final KEY_TYPE k ) {
if ( ! in( KEY_GENERIC_CAST k ) ) return false;
return AVL_TREE_SET.this.remove( k );
}
public int size() {
final SubsetIterator i = new SubsetIterator();
int n = 0;
while( i.hasNext() ) {
n++;
i.next();
}
return n;
}
public boolean isEmpty() {
return ! new SubsetIterator().hasNext();
}
public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() {
return actualComparator;
}
public KEY_BIDI_ITERATOR KEY_GENERIC iterator() {
return new SubsetIterator();
}
public KEY_BIDI_ITERATOR KEY_GENERIC iterator( final KEY_GENERIC_TYPE from ) {
return new SubsetIterator( from );
}
public SORTED_SET KEY_GENERIC headSet( final KEY_GENERIC_TYPE to ) {
if ( top ) return new Subset( from, bottom, to, false );
return compare( to, this.to ) < 0 ? new Subset( from, bottom, to, false ) : this;
}
public SORTED_SET KEY_GENERIC tailSet( final KEY_GENERIC_TYPE from ) {
if ( bottom ) return new Subset( from, false, to, top );
return compare( from, this.from ) > 0 ? new Subset( from, false, to, top ) : this;
}
public SORTED_SET KEY_GENERIC subSet( KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to ) {
if ( top && bottom ) return new Subset( from, false, to, false );
if ( ! top ) to = compare( to, this.to ) < 0 ? to : this.to;
if ( ! bottom ) from = compare( from, this.from ) > 0 ? from : this.from;
if ( ! top && ! bottom && from == this.from && to == this.to ) return this;
return new Subset( from, false, to, false );
}
/** Locates the first entry.
*
* @return the first entry of this subset, or null
if the subset is empty.
*/
public AVL_TREE_SET.Entry KEY_GENERIC firstEntry() {
if ( tree == null ) return null;
// If this subset goes to -infinity, we return the main set first entry; otherwise, we locate the start of the set.
AVL_TREE_SET.Entry KEY_GENERIC e;
if ( bottom ) e = firstEntry;
else {
e = locateKey( from );
// If we find either the start or something greater we're OK.
if ( compare( e.key, from ) < 0 ) e = e.next();
}
// Finally, if this subset doesn't go to infinity, we check that the resulting key isn't greater than the end.
if ( e == null || ! top && compare( e.key, to ) >= 0 ) return null;
return e;
}
/** Locates the last entry.
*
* @return the last entry of this subset, or null
if the subset is empty.
*/
public AVL_TREE_SET.Entry KEY_GENERIC lastEntry() {
if ( tree == null ) return null;
// If this subset goes to infinity, we return the main set last entry; otherwise, we locate the end of the set.
AVL_TREE_SET.Entry KEY_GENERIC e;
if ( top ) e = lastEntry;
else {
e = locateKey( to );
// If we find something smaller than the end we're OK.
if ( compare( e.key, to ) >= 0 ) e = e.prev();
}
// Finally, if this subset doesn't go to -infinity, we check that the resulting key isn't smaller than the start.
if ( e == null || ! bottom && compare( e.key, from ) < 0 ) return null;
return e;
}
public KEY_GENERIC_TYPE FIRST() {
AVL_TREE_SET.Entry KEY_GENERIC e = firstEntry();
if ( e == null ) throw new NoSuchElementException();
return e.key;
}
public KEY_GENERIC_TYPE LAST() {
AVL_TREE_SET.Entry KEY_GENERIC e = lastEntry();
if ( e == null ) throw new NoSuchElementException();
return e.key;
}
/** An iterator for subranges.
*
*
This class inherits from {@link SetIterator}, but overrides the methods that
* update the pointer after a {@link java.util.ListIterator#next()} or {@link java.util.ListIterator#previous()}. If we would
* move out of the range of the subset we just overwrite the next or previous
* entry with null
.
*/
private final class SubsetIterator extends SetIterator {
SubsetIterator() {
next = firstEntry();
}
SubsetIterator( final KEY_GENERIC_TYPE k ) {
this();
if ( next != null ) {
if ( ! bottom && compare( k, next.key ) < 0 ) prev = null;
else if ( ! top && compare( k, ( prev = lastEntry() ).key ) >= 0 ) next = null;
else {
next = locateKey( k );
if ( compare( next.key, k ) <= 0 ) {
prev = next;
next = next.next();
}
else prev = next.prev();
}
}
}
void updatePrevious() {
prev = prev.prev();
if ( ! bottom && prev != null && AVL_TREE_SET.this.compare( prev.key, from ) < 0 ) prev = null;
}
void updateNext() {
next = next.next();
if ( ! top && next != null && AVL_TREE_SET.this.compare( next.key, to ) >= 0 ) next = null;
}
}
}
/** Returns a deep copy of this tree set.
*
*
This method performs a deep copy of this tree set; the data stored in the
* set, however, is not cloned. Note that this makes a difference only for object keys.
*
* @return a deep copy of this tree set.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public Object clone() {
AVL_TREE_SET KEY_GENERIC c;
try {
c = (AVL_TREE_SET KEY_GENERIC)super.clone();
}
catch(CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.allocatePaths();
if ( count != 0 ) {
// Also this apparently unfathomable code is derived from GNU libavl.
Entry KEY_GENERIC e, p, q, rp = new Entry KEY_GENERIC(), rq = new Entry KEY_GENERIC();
p = rp;
rp.left( tree );
q = rq;
rq.pred( null );
while( true ) {
if ( ! p.pred() ) {
e = p.left.clone();
e.pred( q.left );
e.succ( q );
q.left( e );
p = p.left;
q = q.left;
}
else {
while( p.succ() ) {
p = p.right;
if ( p == null ) {
q.right = null;
c.tree = rq.left;
c.firstEntry = c.tree;
while( c.firstEntry.left != null ) c.firstEntry = c.firstEntry.left;
c.lastEntry = c.tree;
while( c.lastEntry.right != null ) c.lastEntry = c.lastEntry.right;
return c;
}
q = q.right;
}
p = p.right;
q = q.right;
}
if ( ! p.succ() ) {
e = p.right.clone();
e.succ( q.right );
e.pred( q );
q.right( e );
}
}
}
return c;
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
int n = count;
SetIterator i = new SetIterator();
s.defaultWriteObject();
while( n-- != 0 ) s.WRITE_KEY( i.NEXT_KEY() );
}
/** Reads the given number of entries from the input stream, returning the corresponding tree.
*
* @param s the input stream.
* @param n the (positive) number of entries to read.
* @param pred the entry containing the key that preceeds the first key in the tree.
* @param succ the entry containing the key that follows the last key in the tree.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
private Entry KEY_GENERIC readTree( final java.io.ObjectInputStream s, final int n, final Entry KEY_GENERIC pred, final Entry KEY_GENERIC succ ) throws java.io.IOException, ClassNotFoundException {
if ( n == 1 ) {
final Entry KEY_GENERIC top = new Entry KEY_GENERIC( KEY_GENERIC_CAST s.READ_KEY() );
top.pred( pred );
top.succ( succ );
return top;
}
if ( n == 2 ) {
/* We handle separately this case so that recursion will
*always* be on nonempty subtrees. */
final Entry KEY_GENERIC top = new Entry KEY_GENERIC( KEY_GENERIC_CAST s.READ_KEY() );
top.right( new Entry KEY_GENERIC( KEY_GENERIC_CAST s.READ_KEY() ) );
top.right.pred( top );
top.balance( 1 );
top.pred( pred );
top.right.succ( succ );
return top;
}
// The right subtree is the largest one.
final int rightN = n / 2, leftN = n - rightN - 1;
final Entry KEY_GENERIC top = new Entry KEY_GENERIC();
top.left( readTree( s, leftN, pred, top ) );
top.key = KEY_GENERIC_CAST s.READ_KEY();
top.right( readTree( s, rightN, top, succ ) );
if ( n == ( n & -n ) ) top.balance( 1 ); // Quick test for determining whether n is a power of 2.
return top;
}
private void readObject( java.io.ObjectInputStream s ) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
/* The storedComparator is now correctly set, but we must restore
on-the-fly the actualComparator. */
setActualComparator();
allocatePaths();
if ( count != 0 ) {
tree = readTree( s, count, null, null );
Entry KEY_GENERIC e;
e = tree;
while( e.left() != null ) e = e.left();
firstEntry = e;
e = tree;
while( e.right() != null ) e = e.right();
lastEntry = e;
}
if ( ASSERTS ) checkTree( tree );
}
#ifdef ASSERTS_CODE
private static KEY_GENERIC int checkTree( Entry KEY_GENERIC e ) {
if ( e == null ) return 0;
final int leftN = checkTree( e.left() ), rightN = checkTree( e.right() );
if ( leftN + e.balance() != rightN )
throw new AssertionError( "Mismatch between left tree size (" + leftN + "), right tree size (" + rightN + ") and balance (" + e.balance() + ")" );
return Math.max( leftN , rightN ) + 1;
}
#else
private static KEY_GENERIC int checkTree( @SuppressWarnings("unused") Entry KEY_GENERIC e ) { return 0; }
#endif
#ifdef TEST
private static long seed = System.currentTimeMillis();
private static java.util.Random r = new java.util.Random( seed );
private static KEY_TYPE genKey() {
#if #keyclass(Byte) || #keyclass(Short) || #keyclass(Character)
return (KEY_TYPE)(r.nextInt());
#elif #keys(primitive)
return r.NEXT_KEY();
#else
return Integer.toBinaryString( r.nextInt() );
#endif
}
private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" );
private static java.text.FieldPosition p = new java.text.FieldPosition( 0 );
private static String format( double d ) {
StringBuffer s = new StringBuffer();
return format.format( d, s, p ).toString();
}
private static void speedTest( int n, boolean comp ) {
int i, j;
AVL_TREE_SET m;
java.util.TreeSet t;
KEY_TYPE k[] = new KEY_TYPE[n];
KEY_TYPE nk[] = new KEY_TYPE[n];
long ms;
for( i = 0; i < n; i++ ) {
k[i] = genKey();
nk[i] = genKey();
}
double totAdd = 0, totYes = 0, totNo = 0, totIterFor = 0, totIterBack = 0, totRemYes = 0, d, dd;
if ( comp ) {
for( j = 0; j < 20; j++ ) {
t = new java.util.TreeSet();
/* We first add all pairs to t. */
for( i = 0; i < n; i++ ) t.add( KEY2OBJ( k[i] ) );
/* Then we remove the first half and put it back. */
for( i = 0; i < n/2; i++ ) t.remove( KEY2OBJ( k[i] ) );
ms = System.currentTimeMillis();
for( i = 0; i < n/2; i++ ) t.add( KEY2OBJ( k[i] ) );
d = System.currentTimeMillis() - ms;
/* Then we remove the other half and put it back again. */
ms = System.currentTimeMillis();
for( i = n/2; i < n; i++ ) t.remove( KEY2OBJ( k[i] ) );
dd = System.currentTimeMillis() - ms ;
ms = System.currentTimeMillis();
for( i = n/2; i < n; i++ ) t.add( KEY2OBJ( k[i] ) );
d += System.currentTimeMillis() - ms;
if ( j > 2 ) totAdd += n/d;
System.out.print("Add: " + format( n/d ) +" K/s " );
/* Then we remove again the first half. */
ms = System.currentTimeMillis();
for( i = 0; i < n/2; i++ ) t.remove( KEY2OBJ( k[i] ) );
dd += System.currentTimeMillis() - ms ;
if ( j > 2 ) totRemYes += n/dd;
System.out.print("RemYes: " + format( n/dd ) +" K/s " );
/* And then we put it back. */
for( i = 0; i < n/2; i++ ) t.add( KEY2OBJ( k[i] ) );
/* We check for pairs in t. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) t.contains( KEY2OBJ( k[i] ) );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totYes += d;
System.out.print("Yes: " + format( d ) +" K/s " );
/* We check for pairs not in t. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) t.contains( KEY2OBJ( nk[i] ) );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totNo += d;
System.out.print("No: " + format( d ) +" K/s " );
/* We iterate on t. */
ms = System.currentTimeMillis();
for( Iterator it = t.iterator(); it.hasNext(); it.next() );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totIterFor += d;
System.out.print("IterFor: " + format( d ) +" K/s " );
System.out.println();
}
System.out.println();
System.out.println( "java.util Add: " + format( totAdd/(j-3) ) + " K/s RemYes: " + format( totRemYes/(j-3) ) + " K/s Yes: " + format( totYes/(j-3) ) + " K/s No: " + format( totNo/(j-3) ) + " K/s IterFor: " + format( totIterFor/(j-3) ) + " K/s" );
System.out.println();
totAdd = totYes = totNo = totIterFor = totIterBack = totRemYes = 0;
}
for( j = 0; j < 20; j++ ) {
m = new AVL_TREE_SET();
/* We first add all pairs to m. */
for( i = 0; i < n; i++ ) m.add( k[i] );
/* Then we remove the first half and put it back. */
for( i = 0; i < n/2; i++ ) m.remove( k[i] );
ms = System.currentTimeMillis();
for( i = 0; i < n/2; i++ ) m.add( k[i] );
d = System.currentTimeMillis() - ms;
/* Then we remove the other half and put it back again. */
ms = System.currentTimeMillis();
for( i = n/2; i < n; i++ ) m.remove( k[i] );
dd = System.currentTimeMillis() - ms ;
ms = System.currentTimeMillis();
for( i = n/2; i < n; i++ ) m.add( k[i] );
d += System.currentTimeMillis() - ms;
if ( j > 2 ) totAdd += n/d;
System.out.print("Add: " + format( n/d ) +" K/s " );
/* Then we remove again the first half. */
ms = System.currentTimeMillis();
for( i = 0; i < n/2; i++ ) m.remove( k[i] );
dd += System.currentTimeMillis() - ms ;
if ( j > 2 ) totRemYes += n/dd;
System.out.print("RemYes: " + format( n/dd ) +" K/s " );
/* And then we put it back. */
for( i = 0; i < n/2; i++ ) m.add( k[i] );
/* We check for pairs in m. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) m.contains( k[i] );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totYes += d;
System.out.print("Yes: " + format( d ) +" K/s " );
/* We check for pairs not in m. */
ms = System.currentTimeMillis();
for( i = 0; i < n; i++ ) m.contains( nk[i] );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totNo += d;
System.out.print("No: " + format( d ) +" K/s " );
/* We iterate on m. */
KEY_LIST_ITERATOR it = (KEY_LIST_ITERATOR)m.iterator();
ms = System.currentTimeMillis();
for( ; it.hasNext(); it.NEXT_KEY() );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totIterFor += d;
System.out.print("IterFor: " + format( d ) +" K/s " );
/* We iterate back on m. */
ms = System.currentTimeMillis();
for( ; it.hasPrevious(); it.PREV_KEY() );
d = 1.0 * n / (System.currentTimeMillis() - ms );
if ( j > 2 ) totIterBack += d;
System.out.print("IterBack: " + format( d ) +" K/s " );
System.out.println();
}
System.out.println();
System.out.println( "fastutil Add: " + format( totAdd/(j-3) ) + " K/s RemYes: " + format( totRemYes/(j-3) ) + " K/s Yes: " + format( totYes/(j-3) ) + " K/s No: " + format( totNo/(j-3) ) + " K/s IterFor: " + format( totIterFor/(j-3) ) + " K/s IterBack: " + format( totIterBack/(j-3) ) + "K/s" );
System.out.println();
}
private static boolean valEquals(Object o1, Object o2) {
return o1 == null ? o2 == null : o1.equals(o2);
}
private static void fatal( String msg ) {
System.out.println( msg );
System.exit( 1 );
}
private static void ensure( boolean cond, String msg ) {
if ( cond ) return;
fatal( msg );
}
private static Object[] k, v, nk;
private static KEY_TYPE kt[];
private static KEY_TYPE nkt[];
private static AVL_TREE_SET topSet;
protected static void testSets( SORTED_SET m, SortedSet t, int n, int level ) {
long ms;
boolean mThrowsIllegal, tThrowsIllegal, mThrowsNoElement, tThrowsNoElement;
boolean rt = false, rm = false;
if ( level > 4 ) return;
/* Now we check that both sets agree on first/last keys. */
mThrowsNoElement = mThrowsIllegal = tThrowsNoElement = tThrowsIllegal = false;
try {
m.first();
}
catch ( NoSuchElementException e ) { mThrowsNoElement = true; }
try {
t.first();
}
catch ( NoSuchElementException e ) { tThrowsNoElement = true; }
ensure( mThrowsNoElement == tThrowsNoElement, "Error (" + level + ", " + seed + "): first() divergence at start in NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")" );
if ( ! mThrowsNoElement ) ensure( t.first().equals( m.first() ), "Error (" + level + ", " + seed + "): m and t differ at start on their first key (" + m.first() + ", " + t.first() +")" );
mThrowsNoElement = mThrowsIllegal = tThrowsNoElement = tThrowsIllegal = false;
try {
m.last();
}
catch ( NoSuchElementException e ) { mThrowsNoElement = true; }
try {
t.last();
}
catch ( NoSuchElementException e ) { tThrowsNoElement = true; }
ensure( mThrowsNoElement == tThrowsNoElement, "Error (" + level + ", " + seed + "): last() divergence at start in NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")" );
if ( ! mThrowsNoElement ) ensure( t.last().equals( m.last() ), "Error (" + level + ", " + seed + "): m and t differ at start on their last key (" + m.last() + ", " + t.last() +")");
/* Now we check that m and t are equal. */
if ( !m.equals( t ) || ! t.equals( m ) ) System.err.println("m: " + m + " t: " + t);
ensure( m.equals( t ), "Error (" + level + ", " + seed + "): ! m.equals( t ) at start" );
ensure( t.equals( m ), "Error (" + level + ", " + seed + "): ! t.equals( m ) at start" );
/* Now we check that m actually holds that data. */
for(Iterator i=t.iterator(); i.hasNext(); ) {
ensure( m.contains( i.next() ), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on t)" );
}
/* Now we check that m actually holds that data, but iterating on m. */
for(Iterator i=m.iterator(); i.hasNext(); ) {
ensure( t.contains( i.next() ), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on m)" );
}
/* Now we check that inquiries about random data give the same answer in m and t. For
m we use the polymorphic method. */
for(int i=0; i 0 ) {
badPrevious = true;
j.previous();
break;
}
previous = k;
}
i = (it.unimi.dsi.fastutil.BidirectionalIterator)m.iterator( from );
for( int k = 0; k < 2*n; k++ ) {
ensure( i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext() (iterator with starting point " + from + ")" );
ensure( i.hasPrevious() == j.hasPrevious() || badPrevious && ( i.hasPrevious() == ( previous != null ) ), "Error (" + level + ", " + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")" );
if ( r.nextFloat() < .8 && i.hasNext() ) {
ensure( ( I = i.next() ).equals( J = j.next() ), "Error (" + level + ", " + seed + "): divergence in next() (" + I + ", " + J + ", iterator with starting point " + from + ")" );
//System.err.println("Done next " + I + " " + J + " " + badPrevious);
badPrevious = false;
if ( r.nextFloat() < 0.5 ) {
//System.err.println("Removing in next");
i.remove();
j.remove();
t.remove( J );
}
}
else if ( !badPrevious && r.nextFloat() < .2 && i.hasPrevious() ) {
ensure( ( I = i.previous() ).equals( J = j.previous() ), "Error (" + level + ", " + seed + "): divergence in previous() (" + I + ", " + J + ", iterator with starting point " + from + ")" );
if ( r.nextFloat() < 0.5 ) {
//System.err.println("Removing in prev");
i.remove();
j.remove();
t.remove( J );
}
}
}
}
/* Now we check that m actually holds that data. */
ensure( m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals( t ) after iteration" );
ensure( t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals( m ) after iteration" );
/* Now we select a pair of keys and create a subset. */
if ( ! m.isEmpty() ) {
java.util.ListIterator i;
Object start = m.first(), end = m.first();
for( i = (java.util.ListIterator)m.iterator(); i.hasNext() && r.nextFloat() < .3; start = end = i.next() );
for( ; i.hasNext() && r.nextFloat() < .95; end = i.next() );
//System.err.println("Checking subSet from " + start + " to " + end + " (level=" + (level+1) + ")..." );
testSets( (SORTED_SET)m.subSet( (KEY_CLASS)start, (KEY_CLASS)end ), t.subSet( start, end ), n, level + 1 );
ensure( m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals( t ) after subSet" );
ensure( t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals( m ) after subSet" );
//System.err.println("Checking headSet to " + end + " (level=" + (level+1) + ")..." );
testSets( (SORTED_SET)m.headSet( (KEY_CLASS)end ), t.headSet( end ), n, level + 1 );
ensure( m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals( t ) after headSet" );
ensure( t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals( m ) after headSet" );
//System.err.println("Checking tailSet from " + start + " (level=" + (level+1) + ")..." );
testSets( (SORTED_SET)m.tailSet( (KEY_CLASS)start ), t.tailSet( start ), n, level + 1 );
ensure( m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals( t ) after tailSet" );
ensure( t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals( m ) after tailSet" );
}
}
private static void test( int n ) {
AVL_TREE_SET m = new AVL_TREE_SET();
SortedSet t = new java.util.TreeSet();
topSet = m;
k = new Object[n];
nk = new Object[n];
kt = new KEY_TYPE[n];
nkt = new KEY_TYPE[n];
for( int i = 0; i < n; i++ ) {
#if #keyclass(Object)
k[i] = kt[i] = genKey();
nk[i] = nkt[i] = genKey();
#else
k[i] = new KEY_CLASS( kt[i] = genKey() );
nk[i] = new KEY_CLASS( nkt[i] = genKey() );
#endif
}
/* We add pairs to t. */
for( int i = 0; i < n; i++ ) t.add( k[i] );
/* We add to m the same data */
m.addAll(t);
testSets( m, t, n, 0 );
System.out.println("Test OK");
return;
}
public static void main( String args[] ) {
int n = Integer.parseInt(args[1]);
if ( args.length > 2 ) r = new java.util.Random( seed = Long.parseLong( args[ 2 ] ) );
try {
if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, "speedComp".equals(args[0]) );
else if ( "test".equals( args[0] ) ) test(n);
} catch( Throwable e ) {
e.printStackTrace( System.err );
System.err.println( "seed: " + seed );
}
}
#endif
}