All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.AVLTreeSet.drv Maven / Gradle / Ivy

The newest version!
/*		 
 * Copyright (C) 2002-2015 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */


package PACKAGE;

import java.util.Collection;
import java.util.Comparator;
import java.util.Iterator;
import java.util.SortedSet;
import java.util.NoSuchElementException;

/** A type-specific AVL tree set with a fast, small-footprint implementation.
 *
 * 

The iterators provided by this class are type-specific {@link * it.unimi.dsi.fastutil.BidirectionalIterator bidirectional iterators}. * Moreover, the iterator returned by iterator() can be safely cast * to a type-specific {@linkplain java.util.ListIterator list iterator}. */ public class AVL_TREE_SET KEY_GENERIC extends ABSTRACT_SORTED_SET KEY_GENERIC implements java.io.Serializable, Cloneable, SORTED_SET KEY_GENERIC { /** A reference to the root entry. */ protected transient Entry KEY_GENERIC tree; /** Number of elements in this set. */ protected int count; /** The entry of the first element of this set. */ protected transient Entry KEY_GENERIC firstEntry; /** The entry of the last element of this set. */ protected transient Entry KEY_GENERIC lastEntry; /** This set's comparator, as provided in the constructor. */ protected Comparator storedComparator; /** This set's actual comparator; it may differ from {@link #storedComparator} because it is always a type-specific comparator, so it could be derived from the former by wrapping. */ protected transient KEY_COMPARATOR KEY_SUPER_GENERIC actualComparator; private static final long serialVersionUID = -7046029254386353130L; private static final boolean ASSERTS = ASSERTS_VALUE; { allocatePaths(); } /** Creates a new empty tree set. */ public AVL_TREE_SET() { tree = null; count = 0; } /** Generates the comparator that will be actually used. * *

When a specific {@link Comparator} is specified and stored in {@link * #storedComparator}, we must check whether it is type-specific. If it is * so, we can used directly, and we store it in {@link #actualComparator}. Otherwise, * we generate on-the-fly an anonymous class that wraps the non-specific {@link Comparator} * and makes it into a type-specific one. */ private void setActualComparator() { #if #keyclass(Object) actualComparator = storedComparator; #else /* If the provided comparator is already type-specific, we use it. Otherwise, we use a wrapper anonymous class to fake that it is type-specific. */ if ( storedComparator == null || storedComparator instanceof KEY_COMPARATOR ) actualComparator = (KEY_COMPARATOR)storedComparator; else actualComparator = new KEY_COMPARATOR KEY_GENERIC() { public int compare( KEY_GENERIC_TYPE k1, KEY_GENERIC_TYPE k2 ) { return storedComparator.compare( KEY2OBJ( k1 ), KEY2OBJ( k2 ) ); } public int compare( KEY_CLASS ok1, KEY_CLASS ok2 ) { return storedComparator.compare( ok1, ok2 ); } }; #endif } /** Creates a new empty tree set with the given comparator. * * @param c a {@link Comparator} (even better, a type-specific comparator). */ public AVL_TREE_SET( final Comparator c ) { this(); storedComparator = c; setActualComparator(); } /** Creates a new tree set copying a given set. * * @param c a collection to be copied into the new tree set. */ public AVL_TREE_SET( final Collection c ) { this(); addAll( c ); } /** Creates a new tree set copying a given sorted set (and its {@link Comparator}). * * @param s a {@link SortedSet} to be copied into the new tree set. */ public AVL_TREE_SET( final SortedSet s ) { this( s.comparator() ); addAll( s ); } /** Creates a new tree set copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new tree set. */ public AVL_TREE_SET( final COLLECTION KEY_EXTENDS_GENERIC c ) { this(); addAll( c ); } /** Creates a new tree set copying a given type-specific sorted set (and its {@link Comparator}). * * @param s a type-specific sorted set to be copied into the new tree set. */ public AVL_TREE_SET( final SORTED_SET KEY_GENERIC s ) { this( s.comparator() ); addAll( s ); } /** Creates a new tree set using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. */ public AVL_TREE_SET( final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i ) { while( i.hasNext() ) add( i.NEXT_KEY() ); } #if #keys(primitive) /** Creates a new tree set using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public AVL_TREE_SET( final Iterator i ) { this( ITERATORS.AS_KEY_ITERATOR( i ) ); } #endif /** Creates a new tree set and fills it with the elements of a given array using a given {@link Comparator}. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. * @param c a {@link Comparator} (even better, a type-specific comparator). */ public AVL_TREE_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length, final Comparator c ) { this( c ); ARRAYS.ensureOffsetLength( a, offset, length ); for( int i = 0; i < length; i++ ) add( a[ offset + i ] ); } /** Creates a new tree set and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. */ public AVL_TREE_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length ) { this( a, offset, length, null ); } /** Creates a new tree set copying the elements of an array. * * @param a an array to be copied into the new tree set. */ public AVL_TREE_SET( final KEY_GENERIC_TYPE[] a ) { this(); int i = a.length; while( i-- != 0 ) add( a[ i ] ); } /** Creates a new tree set copying the elements of an array using a given {@link Comparator}. * * @param a an array to be copied into the new tree set. * @param c a {@link Comparator} (even better, a type-specific comparator). */ public AVL_TREE_SET( final KEY_GENERIC_TYPE[] a, final Comparator c ) { this( c ); int i = a.length; while( i-- != 0 ) add( a[ i ] ); } /* * The following methods implements some basic building blocks used by * all accessors. They are (and should be maintained) identical to those used in AVLTreeMap.drv. * * The add()/remove() code is derived from Ben Pfaff's GNU libavl * (http://www.msu.edu/~pfaffben/avl/). If you want to understand what's * going on, you should have a look at the literate code contained therein * first. */ /** Compares two keys in the right way. * *

This method uses the {@link #actualComparator} if it is non-null. * Otherwise, it resorts to primitive type comparisons or to {@link Comparable#compareTo(Object) compareTo()}. * * @param k1 the first key. * @param k2 the second key. * @return a number smaller than, equal to or greater than 0, as usual * (i.e., when k1 < k2, k1 = k2 or k1 > k2, respectively). */ SUPPRESS_WARNINGS_KEY_UNCHECKED final int compare( final KEY_GENERIC_TYPE k1, final KEY_GENERIC_TYPE k2 ) { return actualComparator == null ? KEY_CMP( k1, k2 ) : actualComparator.compare( k1, k2 ); } /** Returns the entry corresponding to the given key, if it is in the tree; null, otherwise. * * @param k the key to search for. * @return the corresponding entry, or null if no entry with the given key exists. */ private Entry KEY_GENERIC findKey( final KEY_GENERIC_TYPE k ) { Entry KEY_GENERIC e = tree; int cmp; while ( e != null && ( cmp = compare( k, e.key ) ) != 0 ) e = cmp < 0 ? e.left() : e.right(); return e; } /** Locates a key. * * @param k a key. * @return the last entry on a search for the given key; this will be * the given key, if it present; otherwise, it will be either the smallest greater key or the greatest smaller key. */ final Entry KEY_GENERIC locateKey( final KEY_GENERIC_TYPE k ) { Entry KEY_GENERIC e = tree, last = tree; int cmp = 0; while ( e != null && ( cmp = compare( k, e.key ) ) != 0 ) { last = e; e = cmp < 0 ? e.left() : e.right(); } return cmp == 0 ? e : last; } /** This vector remembers the path followed during the current insertion. It suffices for about 232 entries. */ private transient boolean dirPath[]; private void allocatePaths() { dirPath = new boolean[ 48 ]; } public boolean add( final KEY_GENERIC_TYPE k ) { if ( tree == null ) { // The case of the empty tree is treated separately. count++; tree = lastEntry = firstEntry = new Entry KEY_GENERIC( k ); } else { Entry KEY_GENERIC p = tree, q = null, y = tree, z = null, e = null, w = null; int cmp, i = 0; while( true ) { if ( ( cmp = compare( k, p.key ) ) == 0 ) return false; if ( p.balance() != 0 ) { i = 0; z = q; y = p; } if ( dirPath[ i++ ] = cmp > 0 ) { if ( p.succ() ) { count++; e = new Entry KEY_GENERIC( k ); if ( p.right == null ) lastEntry = e; e.left = p; e.right = p.right; p.right( e ); break; } q = p; p = p.right; } else { if ( p.pred() ) { count++; e = new Entry KEY_GENERIC( k ); if ( p.left == null ) firstEntry = e; e.right = p; e.left = p.left; p.left( e ); break; } q = p; p = p.left; } } p = y; i = 0; while( p != e ) { if ( dirPath[ i ] ) p.incBalance(); else p.decBalance(); p = dirPath[ i++ ] ? p.right : p.left; } if ( y.balance() == -2 ) { Entry KEY_GENERIC x = y.left; if ( x.balance() == -1 ) { w = x; if ( x.succ() ) { x.succ( false ); y.pred( x ); } else y.left = x.right; x.right = y; x.balance( 0 ); y.balance( 0 ); } else { if ( ASSERTS ) assert x.balance() == 1; w = x.right; x.right = w.left; w.left = x; y.left = w.right; w.right = y; if ( w.balance() == -1 ) { x.balance( 0 ); y.balance( 1 ); } else if ( w.balance() == 0 ) { x.balance( 0 ); y.balance( 0 ); } else { x.balance( -1 ); y.balance( 0 ); } w.balance( 0 ); if ( w.pred() ) { x.succ( w ); w.pred( false ); } if ( w.succ() ) { y.pred( w ); w.succ( false ); } } } else if ( y.balance() == +2 ) { Entry KEY_GENERIC x = y.right; if ( x.balance() == 1 ) { w = x; if ( x.pred() ) { x.pred( false ); y.succ( x ); } else y.right = x.left; x.left = y; x.balance( 0 ); y.balance( 0 ); } else { if ( ASSERTS ) assert x.balance() == -1; w = x.left; x.left = w.right; w.right = x; y.right = w.left; w.left = y; if ( w.balance() == 1 ) { x.balance( 0 ); y.balance( -1 ); } else if ( w.balance() == 0 ) { x.balance( 0 ); y.balance( 0 ); } else { x.balance( 1 ); y.balance( 0 ); } w.balance( 0 ); if ( w.pred() ) { y.succ( w ); w.pred( false ); } if ( w.succ() ) { x.pred( w ); w.succ( false ); } } } else return true; if ( z == null ) tree = w; else { if ( z.left == y ) z.left = w; else z.right = w; } } if ( ASSERTS ) checkTree( tree ); return true; } /** Finds the parent of an entry. * * @param e a node of the tree. * @return the parent of the given node, or null for the root. */ private Entry KEY_GENERIC parent( final Entry KEY_GENERIC e ) { if ( e == tree ) return null; Entry KEY_GENERIC x, y, p; x = y = e; while( true ) { if ( y.succ() ) { p = y.right; if ( p == null || p.left != e ) { while( ! x.pred() ) x = x.left; p = x.left; } return p; } else if ( x.pred() ) { p = x.left; if ( p == null || p.right != e ) { while( ! y.succ() ) y = y.right; p = y.right; } return p; } x = x.left; y = y.right; } } SUPPRESS_WARNINGS_KEY_UNCHECKED public boolean remove( final KEY_TYPE k ) { if ( tree == null ) return false; int cmp; Entry KEY_GENERIC p = tree, q = null; boolean dir = false; final KEY_GENERIC_TYPE kk = KEY_GENERIC_CAST k; while( true ) { if ( ( cmp = compare( kk, p.key ) ) == 0 ) break; else if ( dir = cmp > 0 ) { q = p; if ( ( p = p.right() ) == null ) return false; } else { q = p; if ( ( p = p.left() ) == null ) return false; } } if ( p.left == null ) firstEntry = p.next(); if ( p.right == null ) lastEntry = p.prev(); if ( p.succ() ) { if ( p.pred() ) { if ( q != null ) { if ( dir ) q.succ( p.right ); else q.pred( p.left ); } else tree = dir ? p.right : p.left; } else { p.prev().right = p.right; if ( q != null ) { if ( dir ) q.right = p.left; else q.left = p.left; } else tree = p.left; } } else { Entry KEY_GENERIC r = p.right; if ( r.pred() ) { r.left = p.left; r.pred( p.pred() ); if ( ! r.pred() ) r.prev().right = r; if ( q != null ) { if ( dir ) q.right = r; else q.left = r; } else tree = r; r.balance( p.balance() ); q = r; dir = true; } else { Entry KEY_GENERIC s; while( true ) { s = r.left; if ( s.pred() ) break; r = s; } if ( s.succ() ) r.pred( s ); else r.left = s.right; s.left = p.left; if ( ! p.pred() ) { p.prev().right = s; s.pred( false ); } s.right = p.right; s.succ( false ); if ( q != null ) { if ( dir ) q.right = s; else q.left = s; } else tree = s; s.balance( p.balance() ); q = r; dir = false; } } Entry KEY_GENERIC y; while( q != null ) { y = q; q = parent( y ); if ( ! dir ) { dir = q != null && q.left != y; y.incBalance(); if ( y.balance() == 1 ) break; else if ( y.balance() == 2 ) { Entry KEY_GENERIC x = y.right; if ( ASSERTS ) assert x != null; if ( x.balance() == -1 ) { Entry KEY_GENERIC w; if ( ASSERTS ) assert x.balance() == -1; w = x.left; x.left = w.right; w.right = x; y.right = w.left; w.left = y; if ( w.balance() == 1 ) { x.balance( 0 ); y.balance( -1 ); } else if ( w.balance() == 0 ) { x.balance( 0 ); y.balance( 0 ); } else { if ( ASSERTS ) assert w.balance() == -1; x.balance( 1 ); y.balance( 0 ); } w.balance( 0 ); if ( w.pred() ) { y.succ( w ); w.pred( false ); } if ( w.succ() ) { x.pred( w ); w.succ( false ); } if ( q != null ) { if ( dir ) q.right = w; else q.left = w; } else tree = w; } else { if ( q != null ) { if ( dir ) q.right = x; else q.left = x; } else tree = x; if ( x.balance() == 0 ) { y.right = x.left; x.left = y; x.balance( -1 ); y.balance( +1 ); break; } if ( ASSERTS ) assert x.balance() == 1; if ( x.pred() ) { y.succ( true ); x.pred( false ); } else y.right = x.left; x.left = y; y.balance( 0 ); x.balance( 0 ); } } } else { dir = q != null && q.left != y; y.decBalance(); if ( y.balance() == -1 ) break; else if ( y.balance() == -2 ) { Entry KEY_GENERIC x = y.left; if ( ASSERTS ) assert x != null; if ( x.balance() == 1 ) { Entry KEY_GENERIC w; if ( ASSERTS ) assert x.balance() == 1; w = x.right; x.right = w.left; w.left = x; y.left = w.right; w.right = y; if ( w.balance() == -1 ) { x.balance( 0 ); y.balance( 1 ); } else if ( w.balance() == 0 ) { x.balance( 0 ); y.balance( 0 ); } else { if ( ASSERTS ) assert w.balance() == 1; x.balance( -1 ); y.balance( 0 ); } w.balance( 0 ); if ( w.pred() ) { x.succ( w ); w.pred( false ); } if ( w.succ() ) { y.pred( w ); w.succ( false ); } if ( q != null ) { if ( dir ) q.right = w; else q.left = w; } else tree = w; } else { if ( q != null ) { if ( dir ) q.right = x; else q.left = x; } else tree = x; if ( x.balance() == 0 ) { y.left = x.right; x.right = y; x.balance( +1 ); y.balance( -1 ); break; } if ( ASSERTS ) assert x.balance() == -1; if ( x.succ() ) { y.pred( true ); x.succ( false ); } else y.left = x.right; x.right = y; y.balance( 0 ); x.balance( 0 ); } } } } count--; if ( ASSERTS ) checkTree( tree ); return true; } SUPPRESS_WARNINGS_KEY_UNCHECKED public boolean contains( final KEY_TYPE k ) { return findKey( KEY_GENERIC_CAST k ) != null; } #if #keysclass(Object) public K get( final KEY_TYPE k ) { final Entry KEY_GENERIC entry = findKey( KEY_GENERIC_CAST k ); return entry == null ? null : entry.getKey(); } #endif public void clear() { count = 0; tree = null; firstEntry = lastEntry = null; } /** This class represent an entry in a tree set. * *

We use the only "metadata", i.e., {@link Entry#info}, to store * information about balance, predecessor status and successor status. * *

Note that since the class is recursive, it can be * considered equivalently a tree. */ private static final class Entry KEY_GENERIC implements Cloneable { /** If the bit in this mask is true, {@link #right} points to a successor. */ private final static int SUCC_MASK = 1 << 31; /** If the bit in this mask is true, {@link #left} points to a predecessor. */ private final static int PRED_MASK = 1 << 30; /** The bits in this mask hold the node balance info. You can get it just by casting to byte. */ private final static int BALANCE_MASK = 0xFF; /** The key of this entry. */ KEY_GENERIC_TYPE key; /** The pointers to the left and right subtrees. */ Entry KEY_GENERIC left, right; /** This integers holds different information in different bits (see {@link #SUCC_MASK}, {@link #PRED_MASK} and {@link #BALANCE_MASK}). */ int info; Entry() {} /** Creates a new entry with the given key. * * @param k a key. */ Entry( final KEY_GENERIC_TYPE k ) { this.key = k; info = SUCC_MASK | PRED_MASK; } /** Returns the left subtree. * * @return the left subtree (null if the left * subtree is empty). */ Entry KEY_GENERIC left() { return ( info & PRED_MASK ) != 0 ? null : left; } /** Returns the right subtree. * * @return the right subtree (null if the right * subtree is empty). */ Entry KEY_GENERIC right() { return ( info & SUCC_MASK ) != 0 ? null : right; } /** Checks whether the left pointer is really a predecessor. * @return true if the left pointer is a predecessor. */ boolean pred() { return ( info & PRED_MASK ) != 0; } /** Checks whether the right pointer is really a successor. * @return true if the right pointer is a successor. */ boolean succ() { return ( info & SUCC_MASK ) != 0; } /** Sets whether the left pointer is really a predecessor. * @param pred if true then the left pointer will be considered a predecessor. */ void pred( final boolean pred ) { if ( pred ) info |= PRED_MASK; else info &= ~PRED_MASK; } /** Sets whether the right pointer is really a successor. * @param succ if true then the right pointer will be considered a successor. */ void succ( final boolean succ ) { if ( succ ) info |= SUCC_MASK; else info &= ~SUCC_MASK; } /** Sets the left pointer to a predecessor. * @param pred the predecessr. */ void pred( final Entry KEY_GENERIC pred ) { info |= PRED_MASK; left = pred; } /** Sets the right pointer to a successor. * @param succ the successor. */ void succ( final Entry KEY_GENERIC succ ) { info |= SUCC_MASK; right = succ; } /** Sets the left pointer to the given subtree. * @param left the new left subtree. */ void left( final Entry KEY_GENERIC left ) { info &= ~PRED_MASK; this.left = left; } /** Sets the right pointer to the given subtree. * @param right the new right subtree. */ void right( final Entry KEY_GENERIC right ) { info &= ~SUCC_MASK; this.right = right; } /** Returns the current level of the node. * @return the current level of this node. */ int balance() { return (byte)info; } /** Sets the level of this node. * @param level the new level of this node. */ void balance( int level ) { info &= ~BALANCE_MASK; info |= ( level & BALANCE_MASK ); } /** Increments the level of this node. */ void incBalance() { info = info & ~BALANCE_MASK | ( (byte)info + 1 ) & 0xFF; } /** Decrements the level of this node. */ protected void decBalance() { info = info & ~BALANCE_MASK | ( (byte)info - 1 ) & 0xFF; } /** Computes the next entry in the set order. * * @return the next entry (null) if this is the last entry). */ Entry KEY_GENERIC next() { Entry KEY_GENERIC next = this.right; if ( ( info & SUCC_MASK ) == 0 ) while ( ( next.info & PRED_MASK ) == 0 ) next = next.left; return next; } /** Computes the previous entry in the set order. * * @return the previous entry (null) if this is the first entry). */ Entry KEY_GENERIC prev() { Entry KEY_GENERIC prev = this.left; if ( ( info & PRED_MASK ) == 0 ) while ( ( prev.info & SUCC_MASK ) == 0 ) prev = prev.right; return prev; } SUPPRESS_WARNINGS_KEY_UNCHECKED public Entry KEY_GENERIC clone() { Entry KEY_GENERIC c; try { c = (Entry KEY_GENERIC)super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.key = key; c.info = info; return c; } public boolean equals( final Object o ) { if (!(o instanceof Entry)) return false; Entry KEY_GENERIC_WILDCARD e = (Entry KEY_GENERIC_WILDCARD)o; return KEY_EQUALS(key, e.key); } public int hashCode() { return KEY2JAVAHASH_NOT_NULL(key); } public String toString() { return String.valueOf( key ); } /* public void prettyPrint() { prettyPrint(0); } public void prettyPrint(int level) { if ( pred() ) { for (int i = 0; i < level; i++) System.err.print(" "); System.err.println("pred: " + left ); } else if (left != null) left.prettyPrint(level +1 ); for (int i = 0; i < level; i++) System.err.print(" "); System.err.println(key + " (" + level() + ")"); if ( succ() ) { for (int i = 0; i < level; i++) System.err.print(" "); System.err.println("succ: " + right ); } else if (right != null) right.prettyPrint(level + 1); } */ } /* public void prettyPrint() { System.err.println("size: " + count); if (tree != null) tree.prettyPrint(); } */ public int size() { return count; } public boolean isEmpty() { return count == 0; } public KEY_GENERIC_TYPE FIRST() { if ( tree == null ) throw new NoSuchElementException(); return firstEntry.key; } public KEY_GENERIC_TYPE LAST() { if ( tree == null ) throw new NoSuchElementException(); return lastEntry.key; } /** An iterator on the whole range. * *

This class can iterate in both directions on a threaded tree. */ private class SetIterator extends KEY_ABSTRACT_LIST_ITERATOR KEY_GENERIC { /** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or null if no previous entry exists). */ Entry KEY_GENERIC prev; /** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or null if no next entry exists). */ Entry KEY_GENERIC next; /** The last entry that was returned (or null if we did not iterate or used {@link #remove()}). */ Entry KEY_GENERIC curr; /** The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not meaningful when this {@link SetIterator} has been created using the nonempty constructor.*/ int index = 0; SetIterator() { next = firstEntry; } SetIterator( final KEY_GENERIC_TYPE k ) { if ( ( next = locateKey( k ) ) != null ) { if ( compare( next.key, k ) <= 0 ) { prev = next; next = next.next(); } else prev = next.prev(); } } public boolean hasNext() { return next != null; } public boolean hasPrevious() { return prev != null; } void updateNext() { next = next.next(); } Entry KEY_GENERIC nextEntry() { if ( ! hasNext() ) throw new NoSuchElementException(); curr = prev = next; index++; updateNext(); return curr; } public KEY_GENERIC_TYPE NEXT_KEY() { return nextEntry().key; } public KEY_GENERIC_TYPE PREV_KEY() { return previousEntry().key; } void updatePrevious() { prev = prev.prev(); } Entry KEY_GENERIC previousEntry() { if ( ! hasPrevious() ) throw new NoSuchElementException(); curr = next = prev; index--; updatePrevious(); return curr; } public int nextIndex() { return index; } public int previousIndex() { return index - 1; } public void remove() { if ( curr == null ) throw new IllegalStateException(); /* If the last operation was a next(), we are removing an entry that preceeds the current index, and thus we must decrement it. */ if ( curr == prev ) index--; next = prev = curr; updatePrevious(); updateNext(); AVL_TREE_SET.this.remove( curr.key ); curr = null; } } public KEY_BIDI_ITERATOR KEY_GENERIC iterator() { return new SetIterator(); } public KEY_BIDI_ITERATOR KEY_GENERIC iterator( final KEY_GENERIC_TYPE from ) { return new SetIterator( from ); } public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return actualComparator; } public SORTED_SET KEY_GENERIC headSet( final KEY_GENERIC_TYPE to ) { return new Subset( KEY_NULL, true, to, false ); } public SORTED_SET KEY_GENERIC tailSet( final KEY_GENERIC_TYPE from ) { return new Subset( from, false, KEY_NULL, true ); } public SORTED_SET KEY_GENERIC subSet( final KEY_GENERIC_TYPE from, final KEY_GENERIC_TYPE to ) { return new Subset( from, false, to, false ); } /** A subset with given range. * *

This class represents a subset. One has to specify the left/right * limits (which can be set to -∞ or ∞). Since the subset is a * view on the set, at a given moment it could happen that the limits of * the range are not any longer in the main set. Thus, things such as * {@link java.util.SortedSet#first()} or {@link java.util.SortedSet#size()} must be always computed * on-the-fly. */ private final class Subset extends ABSTRACT_SORTED_SET KEY_GENERIC implements java.io.Serializable, SORTED_SET KEY_GENERIC { private static final long serialVersionUID = -7046029254386353129L; /** The start of the subset range, unless {@link #bottom} is true. */ KEY_GENERIC_TYPE from; /** The end of the subset range, unless {@link #top} is true. */ KEY_GENERIC_TYPE to; /** If true, the subset range starts from -∞. */ boolean bottom; /** If true, the subset range goes to ∞. */ boolean top; /** Creates a new subset with given key range. * * @param from the start of the subset range. * @param bottom if true, the first parameter is ignored and the range starts from -∞. * @param to the end of the subset range. * @param top if true, the third parameter is ignored and the range goes to ∞. */ public Subset( final KEY_GENERIC_TYPE from, final boolean bottom, final KEY_GENERIC_TYPE to, final boolean top ) { if ( ! bottom && ! top && AVL_TREE_SET.this.compare( from, to ) > 0 ) throw new IllegalArgumentException( "Start element (" + from + ") is larger than end element (" + to + ")" ); this.from = from; this.bottom = bottom; this.to = to; this.top = top; } public void clear() { final SubsetIterator i = new SubsetIterator(); while( i.hasNext() ) { i.next(); i.remove(); } } /** Checks whether a key is in the subset range. * @param k a key. * @return true if is the key is in the subset range. */ final boolean in( final KEY_GENERIC_TYPE k ) { return ( bottom || AVL_TREE_SET.this.compare( k, from ) >= 0 ) && ( top || AVL_TREE_SET.this.compare( k, to ) < 0 ); } SUPPRESS_WARNINGS_KEY_UNCHECKED public boolean contains( final KEY_TYPE k ) { return in( KEY_GENERIC_CAST k ) && AVL_TREE_SET.this.contains( k ); } public boolean add( final KEY_GENERIC_TYPE k ) { if ( ! in( k ) ) throw new IllegalArgumentException( "Element (" + k + ") out of range [" + ( bottom ? "-" : String.valueOf( from ) ) + ", " + ( top ? "-" : String.valueOf( to ) ) + ")" ); return AVL_TREE_SET.this.add( k ); } SUPPRESS_WARNINGS_KEY_UNCHECKED public boolean remove( final KEY_TYPE k ) { if ( ! in( KEY_GENERIC_CAST k ) ) return false; return AVL_TREE_SET.this.remove( k ); } public int size() { final SubsetIterator i = new SubsetIterator(); int n = 0; while( i.hasNext() ) { n++; i.next(); } return n; } public boolean isEmpty() { return ! new SubsetIterator().hasNext(); } public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return actualComparator; } public KEY_BIDI_ITERATOR KEY_GENERIC iterator() { return new SubsetIterator(); } public KEY_BIDI_ITERATOR KEY_GENERIC iterator( final KEY_GENERIC_TYPE from ) { return new SubsetIterator( from ); } public SORTED_SET KEY_GENERIC headSet( final KEY_GENERIC_TYPE to ) { if ( top ) return new Subset( from, bottom, to, false ); return compare( to, this.to ) < 0 ? new Subset( from, bottom, to, false ) : this; } public SORTED_SET KEY_GENERIC tailSet( final KEY_GENERIC_TYPE from ) { if ( bottom ) return new Subset( from, false, to, top ); return compare( from, this.from ) > 0 ? new Subset( from, false, to, top ) : this; } public SORTED_SET KEY_GENERIC subSet( KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to ) { if ( top && bottom ) return new Subset( from, false, to, false ); if ( ! top ) to = compare( to, this.to ) < 0 ? to : this.to; if ( ! bottom ) from = compare( from, this.from ) > 0 ? from : this.from; if ( ! top && ! bottom && from == this.from && to == this.to ) return this; return new Subset( from, false, to, false ); } /** Locates the first entry. * * @return the first entry of this subset, or null if the subset is empty. */ public AVL_TREE_SET.Entry KEY_GENERIC firstEntry() { if ( tree == null ) return null; // If this subset goes to -infinity, we return the main set first entry; otherwise, we locate the start of the set. AVL_TREE_SET.Entry KEY_GENERIC e; if ( bottom ) e = firstEntry; else { e = locateKey( from ); // If we find either the start or something greater we're OK. if ( compare( e.key, from ) < 0 ) e = e.next(); } // Finally, if this subset doesn't go to infinity, we check that the resulting key isn't greater than the end. if ( e == null || ! top && compare( e.key, to ) >= 0 ) return null; return e; } /** Locates the last entry. * * @return the last entry of this subset, or null if the subset is empty. */ public AVL_TREE_SET.Entry KEY_GENERIC lastEntry() { if ( tree == null ) return null; // If this subset goes to infinity, we return the main set last entry; otherwise, we locate the end of the set. AVL_TREE_SET.Entry KEY_GENERIC e; if ( top ) e = lastEntry; else { e = locateKey( to ); // If we find something smaller than the end we're OK. if ( compare( e.key, to ) >= 0 ) e = e.prev(); } // Finally, if this subset doesn't go to -infinity, we check that the resulting key isn't smaller than the start. if ( e == null || ! bottom && compare( e.key, from ) < 0 ) return null; return e; } public KEY_GENERIC_TYPE FIRST() { AVL_TREE_SET.Entry KEY_GENERIC e = firstEntry(); if ( e == null ) throw new NoSuchElementException(); return e.key; } public KEY_GENERIC_TYPE LAST() { AVL_TREE_SET.Entry KEY_GENERIC e = lastEntry(); if ( e == null ) throw new NoSuchElementException(); return e.key; } /** An iterator for subranges. * *

This class inherits from {@link SetIterator}, but overrides the methods that * update the pointer after a {@link java.util.ListIterator#next()} or {@link java.util.ListIterator#previous()}. If we would * move out of the range of the subset we just overwrite the next or previous * entry with null. */ private final class SubsetIterator extends SetIterator { SubsetIterator() { next = firstEntry(); } SubsetIterator( final KEY_GENERIC_TYPE k ) { this(); if ( next != null ) { if ( ! bottom && compare( k, next.key ) < 0 ) prev = null; else if ( ! top && compare( k, ( prev = lastEntry() ).key ) >= 0 ) next = null; else { next = locateKey( k ); if ( compare( next.key, k ) <= 0 ) { prev = next; next = next.next(); } else prev = next.prev(); } } } void updatePrevious() { prev = prev.prev(); if ( ! bottom && prev != null && AVL_TREE_SET.this.compare( prev.key, from ) < 0 ) prev = null; } void updateNext() { next = next.next(); if ( ! top && next != null && AVL_TREE_SET.this.compare( next.key, to ) >= 0 ) next = null; } } } /** Returns a deep copy of this tree set. * *

This method performs a deep copy of this tree set; the data stored in the * set, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this tree set. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public Object clone() { AVL_TREE_SET KEY_GENERIC c; try { c = (AVL_TREE_SET KEY_GENERIC)super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.allocatePaths(); if ( count != 0 ) { // Also this apparently unfathomable code is derived from GNU libavl. Entry KEY_GENERIC e, p, q, rp = new Entry KEY_GENERIC(), rq = new Entry KEY_GENERIC(); p = rp; rp.left( tree ); q = rq; rq.pred( null ); while( true ) { if ( ! p.pred() ) { e = p.left.clone(); e.pred( q.left ); e.succ( q ); q.left( e ); p = p.left; q = q.left; } else { while( p.succ() ) { p = p.right; if ( p == null ) { q.right = null; c.tree = rq.left; c.firstEntry = c.tree; while( c.firstEntry.left != null ) c.firstEntry = c.firstEntry.left; c.lastEntry = c.tree; while( c.lastEntry.right != null ) c.lastEntry = c.lastEntry.right; return c; } q = q.right; } p = p.right; q = q.right; } if ( ! p.succ() ) { e = p.right.clone(); e.succ( q.right ); e.pred( q ); q.right( e ); } } } return c; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { int n = count; SetIterator i = new SetIterator(); s.defaultWriteObject(); while( n-- != 0 ) s.WRITE_KEY( i.NEXT_KEY() ); } /** Reads the given number of entries from the input stream, returning the corresponding tree. * * @param s the input stream. * @param n the (positive) number of entries to read. * @param pred the entry containing the key that preceeds the first key in the tree. * @param succ the entry containing the key that follows the last key in the tree. */ SUPPRESS_WARNINGS_KEY_UNCHECKED private Entry KEY_GENERIC readTree( final java.io.ObjectInputStream s, final int n, final Entry KEY_GENERIC pred, final Entry KEY_GENERIC succ ) throws java.io.IOException, ClassNotFoundException { if ( n == 1 ) { final Entry KEY_GENERIC top = new Entry KEY_GENERIC( KEY_GENERIC_CAST s.READ_KEY() ); top.pred( pred ); top.succ( succ ); return top; } if ( n == 2 ) { /* We handle separately this case so that recursion will *always* be on nonempty subtrees. */ final Entry KEY_GENERIC top = new Entry KEY_GENERIC( KEY_GENERIC_CAST s.READ_KEY() ); top.right( new Entry KEY_GENERIC( KEY_GENERIC_CAST s.READ_KEY() ) ); top.right.pred( top ); top.balance( 1 ); top.pred( pred ); top.right.succ( succ ); return top; } // The right subtree is the largest one. final int rightN = n / 2, leftN = n - rightN - 1; final Entry KEY_GENERIC top = new Entry KEY_GENERIC(); top.left( readTree( s, leftN, pred, top ) ); top.key = KEY_GENERIC_CAST s.READ_KEY(); top.right( readTree( s, rightN, top, succ ) ); if ( n == ( n & -n ) ) top.balance( 1 ); // Quick test for determining whether n is a power of 2. return top; } private void readObject( java.io.ObjectInputStream s ) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); /* The storedComparator is now correctly set, but we must restore on-the-fly the actualComparator. */ setActualComparator(); allocatePaths(); if ( count != 0 ) { tree = readTree( s, count, null, null ); Entry KEY_GENERIC e; e = tree; while( e.left() != null ) e = e.left(); firstEntry = e; e = tree; while( e.right() != null ) e = e.right(); lastEntry = e; } if ( ASSERTS ) checkTree( tree ); } #ifdef ASSERTS_CODE private static KEY_GENERIC int checkTree( Entry KEY_GENERIC e ) { if ( e == null ) return 0; final int leftN = checkTree( e.left() ), rightN = checkTree( e.right() ); if ( leftN + e.balance() != rightN ) throw new AssertionError( "Mismatch between left tree size (" + leftN + "), right tree size (" + rightN + ") and balance (" + e.balance() + ")" ); return Math.max( leftN , rightN ) + 1; } #else private static KEY_GENERIC int checkTree( @SuppressWarnings("unused") Entry KEY_GENERIC e ) { return 0; } #endif #ifdef TEST private static long seed = System.currentTimeMillis(); private static java.util.Random r = new java.util.Random( seed ); private static KEY_TYPE genKey() { #if #keyclass(Byte) || #keyclass(Short) || #keyclass(Character) return (KEY_TYPE)(r.nextInt()); #elif #keys(primitive) return r.NEXT_KEY(); #else return Integer.toBinaryString( r.nextInt() ); #endif } private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" ); private static java.text.FieldPosition p = new java.text.FieldPosition( 0 ); private static String format( double d ) { StringBuffer s = new StringBuffer(); return format.format( d, s, p ).toString(); } private static void speedTest( int n, boolean comp ) { int i, j; AVL_TREE_SET m; java.util.TreeSet t; KEY_TYPE k[] = new KEY_TYPE[n]; KEY_TYPE nk[] = new KEY_TYPE[n]; long ms; for( i = 0; i < n; i++ ) { k[i] = genKey(); nk[i] = genKey(); } double totAdd = 0, totYes = 0, totNo = 0, totIterFor = 0, totIterBack = 0, totRemYes = 0, d, dd; if ( comp ) { for( j = 0; j < 20; j++ ) { t = new java.util.TreeSet(); /* We first add all pairs to t. */ for( i = 0; i < n; i++ ) t.add( KEY2OBJ( k[i] ) ); /* Then we remove the first half and put it back. */ for( i = 0; i < n/2; i++ ) t.remove( KEY2OBJ( k[i] ) ); ms = System.currentTimeMillis(); for( i = 0; i < n/2; i++ ) t.add( KEY2OBJ( k[i] ) ); d = System.currentTimeMillis() - ms; /* Then we remove the other half and put it back again. */ ms = System.currentTimeMillis(); for( i = n/2; i < n; i++ ) t.remove( KEY2OBJ( k[i] ) ); dd = System.currentTimeMillis() - ms ; ms = System.currentTimeMillis(); for( i = n/2; i < n; i++ ) t.add( KEY2OBJ( k[i] ) ); d += System.currentTimeMillis() - ms; if ( j > 2 ) totAdd += n/d; System.out.print("Add: " + format( n/d ) +" K/s " ); /* Then we remove again the first half. */ ms = System.currentTimeMillis(); for( i = 0; i < n/2; i++ ) t.remove( KEY2OBJ( k[i] ) ); dd += System.currentTimeMillis() - ms ; if ( j > 2 ) totRemYes += n/dd; System.out.print("RemYes: " + format( n/dd ) +" K/s " ); /* And then we put it back. */ for( i = 0; i < n/2; i++ ) t.add( KEY2OBJ( k[i] ) ); /* We check for pairs in t. */ ms = System.currentTimeMillis(); for( i = 0; i < n; i++ ) t.contains( KEY2OBJ( k[i] ) ); d = 1.0 * n / (System.currentTimeMillis() - ms ); if ( j > 2 ) totYes += d; System.out.print("Yes: " + format( d ) +" K/s " ); /* We check for pairs not in t. */ ms = System.currentTimeMillis(); for( i = 0; i < n; i++ ) t.contains( KEY2OBJ( nk[i] ) ); d = 1.0 * n / (System.currentTimeMillis() - ms ); if ( j > 2 ) totNo += d; System.out.print("No: " + format( d ) +" K/s " ); /* We iterate on t. */ ms = System.currentTimeMillis(); for( Iterator it = t.iterator(); it.hasNext(); it.next() ); d = 1.0 * n / (System.currentTimeMillis() - ms ); if ( j > 2 ) totIterFor += d; System.out.print("IterFor: " + format( d ) +" K/s " ); System.out.println(); } System.out.println(); System.out.println( "java.util Add: " + format( totAdd/(j-3) ) + " K/s RemYes: " + format( totRemYes/(j-3) ) + " K/s Yes: " + format( totYes/(j-3) ) + " K/s No: " + format( totNo/(j-3) ) + " K/s IterFor: " + format( totIterFor/(j-3) ) + " K/s" ); System.out.println(); totAdd = totYes = totNo = totIterFor = totIterBack = totRemYes = 0; } for( j = 0; j < 20; j++ ) { m = new AVL_TREE_SET(); /* We first add all pairs to m. */ for( i = 0; i < n; i++ ) m.add( k[i] ); /* Then we remove the first half and put it back. */ for( i = 0; i < n/2; i++ ) m.remove( k[i] ); ms = System.currentTimeMillis(); for( i = 0; i < n/2; i++ ) m.add( k[i] ); d = System.currentTimeMillis() - ms; /* Then we remove the other half and put it back again. */ ms = System.currentTimeMillis(); for( i = n/2; i < n; i++ ) m.remove( k[i] ); dd = System.currentTimeMillis() - ms ; ms = System.currentTimeMillis(); for( i = n/2; i < n; i++ ) m.add( k[i] ); d += System.currentTimeMillis() - ms; if ( j > 2 ) totAdd += n/d; System.out.print("Add: " + format( n/d ) +" K/s " ); /* Then we remove again the first half. */ ms = System.currentTimeMillis(); for( i = 0; i < n/2; i++ ) m.remove( k[i] ); dd += System.currentTimeMillis() - ms ; if ( j > 2 ) totRemYes += n/dd; System.out.print("RemYes: " + format( n/dd ) +" K/s " ); /* And then we put it back. */ for( i = 0; i < n/2; i++ ) m.add( k[i] ); /* We check for pairs in m. */ ms = System.currentTimeMillis(); for( i = 0; i < n; i++ ) m.contains( k[i] ); d = 1.0 * n / (System.currentTimeMillis() - ms ); if ( j > 2 ) totYes += d; System.out.print("Yes: " + format( d ) +" K/s " ); /* We check for pairs not in m. */ ms = System.currentTimeMillis(); for( i = 0; i < n; i++ ) m.contains( nk[i] ); d = 1.0 * n / (System.currentTimeMillis() - ms ); if ( j > 2 ) totNo += d; System.out.print("No: " + format( d ) +" K/s " ); /* We iterate on m. */ KEY_LIST_ITERATOR it = (KEY_LIST_ITERATOR)m.iterator(); ms = System.currentTimeMillis(); for( ; it.hasNext(); it.NEXT_KEY() ); d = 1.0 * n / (System.currentTimeMillis() - ms ); if ( j > 2 ) totIterFor += d; System.out.print("IterFor: " + format( d ) +" K/s " ); /* We iterate back on m. */ ms = System.currentTimeMillis(); for( ; it.hasPrevious(); it.PREV_KEY() ); d = 1.0 * n / (System.currentTimeMillis() - ms ); if ( j > 2 ) totIterBack += d; System.out.print("IterBack: " + format( d ) +" K/s " ); System.out.println(); } System.out.println(); System.out.println( "fastutil Add: " + format( totAdd/(j-3) ) + " K/s RemYes: " + format( totRemYes/(j-3) ) + " K/s Yes: " + format( totYes/(j-3) ) + " K/s No: " + format( totNo/(j-3) ) + " K/s IterFor: " + format( totIterFor/(j-3) ) + " K/s IterBack: " + format( totIterBack/(j-3) ) + "K/s" ); System.out.println(); } private static boolean valEquals(Object o1, Object o2) { return o1 == null ? o2 == null : o1.equals(o2); } private static void fatal( String msg ) { System.out.println( msg ); System.exit( 1 ); } private static void ensure( boolean cond, String msg ) { if ( cond ) return; fatal( msg ); } private static Object[] k, v, nk; private static KEY_TYPE kt[]; private static KEY_TYPE nkt[]; private static AVL_TREE_SET topSet; protected static void testSets( SORTED_SET m, SortedSet t, int n, int level ) { long ms; boolean mThrowsIllegal, tThrowsIllegal, mThrowsNoElement, tThrowsNoElement; boolean rt = false, rm = false; if ( level > 4 ) return; /* Now we check that both sets agree on first/last keys. */ mThrowsNoElement = mThrowsIllegal = tThrowsNoElement = tThrowsIllegal = false; try { m.first(); } catch ( NoSuchElementException e ) { mThrowsNoElement = true; } try { t.first(); } catch ( NoSuchElementException e ) { tThrowsNoElement = true; } ensure( mThrowsNoElement == tThrowsNoElement, "Error (" + level + ", " + seed + "): first() divergence at start in NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")" ); if ( ! mThrowsNoElement ) ensure( t.first().equals( m.first() ), "Error (" + level + ", " + seed + "): m and t differ at start on their first key (" + m.first() + ", " + t.first() +")" ); mThrowsNoElement = mThrowsIllegal = tThrowsNoElement = tThrowsIllegal = false; try { m.last(); } catch ( NoSuchElementException e ) { mThrowsNoElement = true; } try { t.last(); } catch ( NoSuchElementException e ) { tThrowsNoElement = true; } ensure( mThrowsNoElement == tThrowsNoElement, "Error (" + level + ", " + seed + "): last() divergence at start in NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")" ); if ( ! mThrowsNoElement ) ensure( t.last().equals( m.last() ), "Error (" + level + ", " + seed + "): m and t differ at start on their last key (" + m.last() + ", " + t.last() +")"); /* Now we check that m and t are equal. */ if ( !m.equals( t ) || ! t.equals( m ) ) System.err.println("m: " + m + " t: " + t); ensure( m.equals( t ), "Error (" + level + ", " + seed + "): ! m.equals( t ) at start" ); ensure( t.equals( m ), "Error (" + level + ", " + seed + "): ! t.equals( m ) at start" ); /* Now we check that m actually holds that data. */ for(Iterator i=t.iterator(); i.hasNext(); ) { ensure( m.contains( i.next() ), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on t)" ); } /* Now we check that m actually holds that data, but iterating on m. */ for(Iterator i=m.iterator(); i.hasNext(); ) { ensure( t.contains( i.next() ), "Error (" + level + ", " + seed + "): m and t differ on an entry after insertion (iterating on m)" ); } /* Now we check that inquiries about random data give the same answer in m and t. For m we use the polymorphic method. */ for(int i=0; i 0 ) { badPrevious = true; j.previous(); break; } previous = k; } i = (it.unimi.dsi.fastutil.BidirectionalIterator)m.iterator( from ); for( int k = 0; k < 2*n; k++ ) { ensure( i.hasNext() == j.hasNext(), "Error (" + level + ", " + seed + "): divergence in hasNext() (iterator with starting point " + from + ")" ); ensure( i.hasPrevious() == j.hasPrevious() || badPrevious && ( i.hasPrevious() == ( previous != null ) ), "Error (" + level + ", " + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")" ); if ( r.nextFloat() < .8 && i.hasNext() ) { ensure( ( I = i.next() ).equals( J = j.next() ), "Error (" + level + ", " + seed + "): divergence in next() (" + I + ", " + J + ", iterator with starting point " + from + ")" ); //System.err.println("Done next " + I + " " + J + " " + badPrevious); badPrevious = false; if ( r.nextFloat() < 0.5 ) { //System.err.println("Removing in next"); i.remove(); j.remove(); t.remove( J ); } } else if ( !badPrevious && r.nextFloat() < .2 && i.hasPrevious() ) { ensure( ( I = i.previous() ).equals( J = j.previous() ), "Error (" + level + ", " + seed + "): divergence in previous() (" + I + ", " + J + ", iterator with starting point " + from + ")" ); if ( r.nextFloat() < 0.5 ) { //System.err.println("Removing in prev"); i.remove(); j.remove(); t.remove( J ); } } } } /* Now we check that m actually holds that data. */ ensure( m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals( t ) after iteration" ); ensure( t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals( m ) after iteration" ); /* Now we select a pair of keys and create a subset. */ if ( ! m.isEmpty() ) { java.util.ListIterator i; Object start = m.first(), end = m.first(); for( i = (java.util.ListIterator)m.iterator(); i.hasNext() && r.nextFloat() < .3; start = end = i.next() ); for( ; i.hasNext() && r.nextFloat() < .95; end = i.next() ); //System.err.println("Checking subSet from " + start + " to " + end + " (level=" + (level+1) + ")..." ); testSets( (SORTED_SET)m.subSet( (KEY_CLASS)start, (KEY_CLASS)end ), t.subSet( start, end ), n, level + 1 ); ensure( m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals( t ) after subSet" ); ensure( t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals( m ) after subSet" ); //System.err.println("Checking headSet to " + end + " (level=" + (level+1) + ")..." ); testSets( (SORTED_SET)m.headSet( (KEY_CLASS)end ), t.headSet( end ), n, level + 1 ); ensure( m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals( t ) after headSet" ); ensure( t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals( m ) after headSet" ); //System.err.println("Checking tailSet from " + start + " (level=" + (level+1) + ")..." ); testSets( (SORTED_SET)m.tailSet( (KEY_CLASS)start ), t.tailSet( start ), n, level + 1 ); ensure( m.equals(t), "Error (" + level + ", " + seed + "): ! m.equals( t ) after tailSet" ); ensure( t.equals(m), "Error (" + level + ", " + seed + "): ! t.equals( m ) after tailSet" ); } } private static void test( int n ) { AVL_TREE_SET m = new AVL_TREE_SET(); SortedSet t = new java.util.TreeSet(); topSet = m; k = new Object[n]; nk = new Object[n]; kt = new KEY_TYPE[n]; nkt = new KEY_TYPE[n]; for( int i = 0; i < n; i++ ) { #if #keyclass(Object) k[i] = kt[i] = genKey(); nk[i] = nkt[i] = genKey(); #else k[i] = new KEY_CLASS( kt[i] = genKey() ); nk[i] = new KEY_CLASS( nkt[i] = genKey() ); #endif } /* We add pairs to t. */ for( int i = 0; i < n; i++ ) t.add( k[i] ); /* We add to m the same data */ m.addAll(t); testSets( m, t, n, 0 ); System.out.println("Test OK"); return; } public static void main( String args[] ) { int n = Integer.parseInt(args[1]); if ( args.length > 2 ) r = new java.util.Random( seed = Long.parseLong( args[ 2 ] ) ); try { if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, "speedComp".equals(args[0]) ); else if ( "test".equals( args[0] ) ) test(n); } catch( Throwable e ) { e.printStackTrace( System.err ); System.err.println( "seed: " + seed ); } } #endif }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy