drv.HeapSemiIndirectPriorityQueue.drv Maven / Gradle / Ivy
Show all versions of phoenix-server-hbase-2.6
/*
* Copyright (C) 2003-2015 Paolo Boldi and Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
#if #keyclass(Object)
import java.util.Comparator;
import it.unimi.dsi.fastutil.IndirectPriorityQueue;
#endif
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.ints.IntArrays;
import it.unimi.dsi.fastutil.AbstractIndirectPriorityQueue;
/** A type-specific heap-based semi-indirect priority queue.
*
* Instances of this class use as reference list a reference array,
* which must be provided to each constructor. The priority queue is
* represented using a heap. The heap is enlarged as needed, but it is never
* shrunk. Use the {@link #trim()} method to reduce its size, if necessary.
*
*
This implementation allows one to enqueue several time the same index, but
* you must be careful when calling {@link #changed()}.
*/
public class HEAP_SEMI_INDIRECT_PRIORITY_QUEUE KEY_GENERIC extends AbstractIndirectPriorityQueue implements INDIRECT_PRIORITY_QUEUE KEY_GENERIC {
/** The reference array. */
protected final KEY_GENERIC_TYPE refArray[];
/** The semi-indirect heap. */
protected int heap[] = IntArrays.EMPTY_ARRAY;
/** The number of elements in this queue. */
protected int size;
/** The type-specific comparator used in this queue. */
protected KEY_COMPARATOR KEY_SUPER_GENERIC c;
/** Creates a new empty queue without elements with a given capacity and comparator.
*
* @param refArray the reference array.
* @param capacity the initial capacity of this queue.
* @param c the comparator used in this queue, or null
for the natural order.
*/
public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE( KEY_GENERIC_TYPE[] refArray, int capacity, KEY_COMPARATOR KEY_SUPER_GENERIC c ) {
if ( capacity > 0 ) this.heap = new int[ capacity ];
this.refArray = refArray;
this.c = c;
}
/** Creates a new empty queue with given capacity and using the natural order.
*
* @param refArray the reference array.
* @param capacity the initial capacity of this queue.
*/
public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE( KEY_GENERIC_TYPE[] refArray, int capacity ) {
this( refArray, capacity, null );
}
/** Creates a new empty queue with capacity equal to the length of the reference array and a given comparator.
*
* @param refArray the reference array.
* @param c the comparator used in this queue, or null
for the natural order.
*/
public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE( KEY_GENERIC_TYPE[] refArray, KEY_COMPARATOR KEY_SUPER_GENERIC c ) {
this( refArray, refArray.length, c );
}
/** Creates a new empty queue with capacity equal to the length of the reference array and using the natural order.
* @param refArray the reference array.
*/
public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray ) {
this( refArray, refArray.length, null );
}
/** Wraps a given array in a queue using a given comparator.
*
* The queue returned by this method will be backed by the given array.
* The first size
element of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of a
one by one).
*
* @param refArray the reference array.
* @param a an array of indices into refArray
.
* @param size the number of elements to be included in the queue.
* @param c the comparator used in this queue, or null
for the natural order.
*/
public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray, final int[] a, int size, final KEY_COMPARATOR KEY_SUPER_GENERIC c ) {
this( refArray, 0, c );
this.heap = a;
this.size = size;
SEMI_INDIRECT_HEAPS.makeHeap( refArray, a, size, c );
}
/** Wraps a given array in a queue using a given comparator.
*
*
The queue returned by this method will be backed by the given array.
* The elements of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of a
one by one).
*
* @param refArray the reference array.
* @param a an array of indices into refArray
.
* @param c the comparator used in this queue, or null
for the natural order.
*/
public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray, final int[] a, final KEY_COMPARATOR KEY_SUPER_GENERIC c ) {
this( refArray, a, a.length, c );
}
/** Wraps a given array in a queue using the natural order.
*
*
The queue returned by this method will be backed by the given array.
* The first size
element of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of a
one by one).
*
* @param refArray the reference array.
* @param a an array of indices into refArray
.
* @param size the number of elements to be included in the queue.
*/
public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray, final int[] a, int size ) {
this( refArray, a, size, null );
}
/** Wraps a given array in a queue using the natural order.
*
*
The queue returned by this method will be backed by the given array.
* The elements of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of a
one by one).
*
* @param refArray the reference array.
* @param a an array of indices into refArray
.
*/
public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray, final int[] a ) {
this( refArray, a, a.length );
}
/** Ensures that the given index is a valid reference.
*
* @param index an index in the reference array.
* @throws IndexOutOfBoundsException if the given index is negative or larger than the reference array length.
*/
protected void ensureElement( final int index ) {
if ( index < 0 ) throw new IndexOutOfBoundsException( "Index (" + index + ") is negative" );
if ( index >= refArray.length ) throw new IndexOutOfBoundsException( "Index (" + index + ") is larger than or equal to reference array size (" + refArray.length + ")" );
}
public void enqueue( int x ) {
ensureElement( x );
if ( size == heap.length ) heap = IntArrays.grow( heap, size + 1 );
heap[ size++ ] = x;
SEMI_INDIRECT_HEAPS.upHeap( refArray, heap, size, size - 1, c );
}
public int dequeue() {
if ( size == 0 ) throw new NoSuchElementException();
final int result = heap[ 0 ];
heap[ 0 ] = heap[ --size ];
if ( size != 0 ) SEMI_INDIRECT_HEAPS.downHeap( refArray, heap, size, 0, c );
return result;
}
public int first() {
if ( size == 0 ) throw new NoSuchElementException();
return heap[ 0 ];
}
/** {@inheritDoc}
*
*
The caller must guarantee that when this method is called the
* index of the first element appears just once in the queue. Failure to do so
* will bring the queue in an inconsistent state, and will cause
* unpredictable behaviour.
*/
public void changed() {
SEMI_INDIRECT_HEAPS.downHeap( refArray, heap, size, 0, c );
}
/** Rebuilds this heap in a bottom-up fashion.
*/
public void allChanged() {
SEMI_INDIRECT_HEAPS.makeHeap( refArray, heap, size, c );
}
public int size() { return size; }
public void clear() { size = 0; }
/** Trims the backing array so that it has exactly {@link #size()} elements.
*/
public void trim() {
heap = IntArrays.trim( heap, size );
}
public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return c; }
public int front( final int[] a ) {
return c == null ? SEMI_INDIRECT_HEAPS.front( refArray, heap, size, a ) : SEMI_INDIRECT_HEAPS.front( refArray, heap, size, a, c );
}
public String toString() {
StringBuffer s = new StringBuffer();
s.append( "[" );
for ( int i = 0; i < size; i++ ) {
if ( i != 0 ) s.append( ", " );
s.append( refArray[ heap [ i ] ] );
}
s.append( "]" );
return s.toString();
}
#ifdef TEST
/** The original class, now just used for testing. */
private static class TestQueue {
/** The reference array */
private KEY_TYPE refArray[];
/** Its length */
private int N;
/** The number of elements in the heaps */
private int n;
/** The two comparators */
private KEY_COMPARATOR primaryComp, secondaryComp;
/** Two indirect heaps are used, called primary
and secondary
. Each of them contains
a permutation of n
among the indices 0, 1, ..., N
-1 in such a way that the corresponding
objects be sorted with respect to the two comparators.
We also need an array inSec[]
so that inSec[k]
is the index of secondary
containing k
.
*/
private int primary[], secondary[], inSec[];
/** Builds a double indirect priority queue.
* @param refArray The reference array.
* @param primaryComp The primary comparator.
* @param secondaryComp The secondary comparator.
*/
public TestQueue( KEY_TYPE refArray[], KEY_COMPARATOR primaryComp, KEY_COMPARATOR secondaryComp ) {
this.refArray = refArray;
this.N = refArray.length;
assert this.N != 0;
this.n = 0;
this.primaryComp = primaryComp;
this.secondaryComp = secondaryComp;
this.primary = new int[N];
this.secondary = new int[N];
this.inSec = new int[N];
java.util.Arrays.fill( inSec, -1 );
}
/** Adds an index to the queue. Notice that the index should not be already present in the queue.
* @param i The index to be added
*/
public void add( int i ) {
if ( i < 0 || i >= refArray.length ) throw new IndexOutOfBoundsException();
//if ( inSec[ i ] >= 0 ) throw new IllegalArgumentException();
primary[n] = i;
n++;
swimPrimary( n-1 );
}
/** Heapify the primary heap.
* @param i The index of the heap to be heapified.
*/
private void heapifyPrimary( int i ) {
int dep = primary[i];
int child;
while ( ( child = 2*i+1 ) < n ) {
if ( child+1 < n && primaryComp.compare( refArray[primary[child+1]], refArray[primary[child]] ) < 0 ) child++;
if ( primaryComp.compare( refArray[dep], refArray[primary[child]] ) <= 0 ) break;
primary[i] = primary[child];
i = child;
}
primary[i] = dep;
}
/** Heapify the secondary heap.
* @param i The index of the heap to be heapified.
*/
private void heapifySecondary( int i ) {
int dep = secondary[i];
int child;
while ( ( child = 2*i+1 ) < n ) {
if ( child+1 < n && secondaryComp.compare( refArray[secondary[child+1]], refArray[secondary[child]] ) < 0 ) child++;
if ( secondaryComp.compare( refArray[dep], refArray[secondary[child]] ) <= 0 ) break;
secondary[i] = secondary[child]; inSec[secondary[i]] = i;
i = child;
}
secondary[i] = dep; inSec[secondary[i]] = i;
}
/** Swim and heapify the primary heap.
* @param i The index to be moved.
*/
private void swimPrimary( int i ) {
int dep = primary[i];
int parent;
while ( i != 0 && ( parent = ( i - 1 ) / 2 ) >= 0 ) {
if ( primaryComp.compare( refArray[primary[parent]], refArray[dep] ) <= 0 ) break;
primary[i] = primary[parent];
i = parent;
}
primary[i] = dep;
heapifyPrimary( i );
}
/** Swim and heapify the secondary heap.
* @param i The index to be moved.
*/
private void swimSecondary( int i ) {
int dep = secondary[i];
int parent;
while ( i != 0 && ( parent = ( i - 1 ) / 2 ) >= 0 ) {
if ( secondaryComp.compare( refArray[secondary[parent]], refArray[dep] ) <= 0 ) break;
secondary[i] = secondary[parent]; inSec[secondary[i]] = i;
i = parent;
}
secondary[i] = dep; inSec[secondary[i]] = i;
heapifySecondary( i );
}
/** Returns the minimum element with respect to the primary comparator.
@return the minimum element.
*/
public int top() {
if ( n == 0 ) throw new NoSuchElementException();
return primary[0];
}
/** Returns the minimum element with respect to the secondary comparator.
@return the minimum element.
*/
public int secTop() {
if ( n == 0 ) throw new NoSuchElementException();
return secondary[0];
}
/** Removes the minimum element with respect to the primary comparator.
* @return the removed element.
*/
public void remove() {
if ( n == 0 ) throw new NoSuchElementException();
int result = primary[0];
// Copy a leaf
primary[0] = primary[n-1];
n--;
heapifyPrimary( 0 );
return;
}
public void clear() {
while( size() != 0 ) remove();
}
/** Signals that the minimum element with respect to the comparator has changed.
*/
public void change() {
heapifyPrimary( 0 );
}
/** Returns the number of elements in the queue.
* @return the size of the queue
*/
public int size() {
return n;
}
public String toString() {
String s = "[";
for ( int i = 0; i < n; i++ )
s += refArray[primary[i]]+", ";
return s+ "]";
}
}
private static long seed = System.currentTimeMillis();
private static java.util.Random r = new java.util.Random( seed );
private static KEY_TYPE genKey() {
#if #keyclass(Byte) || #keyclass(Short) || #keyclass(Character)
return (KEY_TYPE)(r.nextInt());
#elif #keys(primitive)
return r.NEXT_KEY();
#elif #keyclass(Object)
return Integer.toBinaryString( r.nextInt() );
#else
return new java.io.Serializable() {};
#endif
}
private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" );
private static java.text.FieldPosition p = new java.text.FieldPosition( 0 );
private static String format( double d ) {
StringBuffer s = new StringBuffer();
return format.format( d, s, p ).toString();
}
private static void speedTest( int n, boolean comp ) {
System.out.println( "There are presently no speed tests for this class." );
}
private static void fatal( String msg ) {
System.out.println( msg );
System.exit( 1 );
}
private static void ensure( boolean cond, String msg ) {
if ( cond ) return;
fatal( msg );
}
private static boolean heapEqual( int[] a, int[] b, int sizea, int sizeb ) {
if ( sizea != sizeb ) return false;
while( sizea-- != 0 ) if ( a[sizea] != b[sizea] ) return false;
return true;
}
protected static void test( int n ) {
long ms;
Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds, mThrowsNoElement, tThrowsNoElement;
int rm = 0, rt = 0;
KEY_TYPE[] refArray = new KEY_TYPE[ n ];
for( int i = 0; i < n; i++ ) refArray[ i ] = genKey();
HEAP_SEMI_INDIRECT_PRIORITY_QUEUE m = new HEAP_SEMI_INDIRECT_PRIORITY_QUEUE( refArray, COMPARATORS.NATURAL_COMPARATOR );
TestQueue t = new TestQueue( refArray, COMPARATORS.NATURAL_COMPARATOR, COMPARATORS.OPPOSITE_COMPARATOR );
/* We add pairs to t. */
for( int i = 0; i < n / 2; i++ ) {
t.add( i );
m.enqueue( i );
}
ensure( heapEqual( m.heap, t.primary, m.size(), t.size() ), "Error (" + seed + "): m and t differ after creation (" + m + ", " + t + ")" );
/* Now we add and remove random data in m and t, checking that the result is the same. */
for(int i=0; i<2*n; i++ ) {
if ( r.nextDouble() < 0.01 ) {
t.clear();
m.clear();
for( int j = 0; j < n / 2; j++ ) {
t.add( j );
m.enqueue( j );
}
}
int T = r.nextInt( 2 * n );
mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null;
try {
m.enqueue( T );
}
catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
catch ( IllegalArgumentException e ) { mThrowsIllegal = e; }
try {
t.add( T );
}
catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
catch ( IllegalArgumentException e ) { tThrowsIllegal = e; }
ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + seed + "): enqueue() divergence in IndexOutOfBoundsException for " + T + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
ensure( ( mThrowsIllegal == null ) == ( tThrowsIllegal == null ), "Error (" + seed + "): enqueue() divergence in IllegalArgumentException for " + T + " (" + mThrowsIllegal + ", " + tThrowsIllegal + ")" );
ensure( heapEqual( m.heap, t.primary, m.size(), t.size() ), "Error (" + seed + "): m and t differ after enqueue (" + m + ", " + t + ")" );
if ( m.size() != 0 ) {
ensure( m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after enqueue (" + m.first() + ", " + t.top() + ")");
}
mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null;
try {
rm = m.dequeue();
}
catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; }
catch ( IllegalArgumentException e ) { mThrowsIllegal = e; }
catch ( NoSuchElementException e ) { mThrowsNoElement = e; }
try {
rt = t.top();
t.remove();
}
catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; }
catch ( IllegalArgumentException e ) { tThrowsIllegal = e; }
catch ( NoSuchElementException e ) { tThrowsNoElement = e; }
ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + seed + "): dequeue() divergence in IndexOutOfBoundsException (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" );
ensure( ( mThrowsIllegal == null ) == ( tThrowsIllegal == null ), "Error (" + seed + "): dequeue() divergence in IllegalArgumentException (" + mThrowsIllegal + ", " + tThrowsIllegal + ")" );
ensure( ( mThrowsNoElement == null ) == ( tThrowsNoElement == null ), "Error (" + seed + "): dequeue() divergence in NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")" );
if ( mThrowsOutOfBounds == null ) ensure( rt == rm , "Error (" + seed + "): divergence in dequeue() between t and m (" + rt + ", " + rm + ")" );
ensure( heapEqual( m.heap, t.primary, m.size(), t.size() ), "Error (" + seed + "): m and t differ after dequeue (" + m + ", " + t + ")");
if ( m.size() != 0 ) {
ensure( m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after dequeue (" + m.first() + ", " + t.top() + ")");
}
if ( m.size() != 0 && ( ( new it.unimi.dsi.fastutil.ints.IntOpenHashSet( m.heap, 0, m.size ) ).size() == m.size() ) ) {
refArray[ m.first() ] = genKey();
m.changed();
t.change();
ensure( heapEqual( m.heap, t.primary, m.size(), t.size() ), "Error (" + seed + "): m and t differ after change (" + m + ", " + t + ")");
if ( m.size() != 0 ) {
ensure( m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after change (" + m.first() + ", " + t.top() + ")");
}
}
}
/* Now we check that m actually holds the same data. */
m.clear();
ensure( m.isEmpty(), "Error (" + seed + "): m is not empty after clear()" );
System.out.println("Test OK");
}
public static void main( String args[] ) {
int n = Integer.parseInt(args[1]);
if ( args.length > 2 ) r = new java.util.Random( seed = Long.parseLong( args[ 2 ] ) );
try {
if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, "speedComp".equals(args[0]) );
else if ( "test".equals( args[0] ) ) test(n);
} catch( Throwable e ) {
e.printStackTrace( System.err );
System.err.println( "seed: " + seed );
}
}
#endif
}