All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.HeapSemiIndirectPriorityQueue.drv Maven / Gradle / Ivy

The newest version!
/*		 
 * Copyright (C) 2003-2015 Paolo Boldi and Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */


package PACKAGE;

#if #keyclass(Object)
import java.util.Comparator;
import it.unimi.dsi.fastutil.IndirectPriorityQueue;
#endif

import java.util.NoSuchElementException;

import it.unimi.dsi.fastutil.ints.IntArrays;
import it.unimi.dsi.fastutil.AbstractIndirectPriorityQueue;

/** A type-specific heap-based semi-indirect priority queue. 
 *
 * 

Instances of this class use as reference list a reference array, * which must be provided to each constructor. The priority queue is * represented using a heap. The heap is enlarged as needed, but it is never * shrunk. Use the {@link #trim()} method to reduce its size, if necessary. * *

This implementation allows one to enqueue several time the same index, but * you must be careful when calling {@link #changed()}. */ public class HEAP_SEMI_INDIRECT_PRIORITY_QUEUE KEY_GENERIC extends AbstractIndirectPriorityQueue implements INDIRECT_PRIORITY_QUEUE KEY_GENERIC { /** The reference array. */ protected final KEY_GENERIC_TYPE refArray[]; /** The semi-indirect heap. */ protected int heap[] = IntArrays.EMPTY_ARRAY; /** The number of elements in this queue. */ protected int size; /** The type-specific comparator used in this queue. */ protected KEY_COMPARATOR KEY_SUPER_GENERIC c; /** Creates a new empty queue without elements with a given capacity and comparator. * * @param refArray the reference array. * @param capacity the initial capacity of this queue. * @param c the comparator used in this queue, or null for the natural order. */ public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE( KEY_GENERIC_TYPE[] refArray, int capacity, KEY_COMPARATOR KEY_SUPER_GENERIC c ) { if ( capacity > 0 ) this.heap = new int[ capacity ]; this.refArray = refArray; this.c = c; } /** Creates a new empty queue with given capacity and using the natural order. * * @param refArray the reference array. * @param capacity the initial capacity of this queue. */ public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE( KEY_GENERIC_TYPE[] refArray, int capacity ) { this( refArray, capacity, null ); } /** Creates a new empty queue with capacity equal to the length of the reference array and a given comparator. * * @param refArray the reference array. * @param c the comparator used in this queue, or null for the natural order. */ public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE( KEY_GENERIC_TYPE[] refArray, KEY_COMPARATOR KEY_SUPER_GENERIC c ) { this( refArray, refArray.length, c ); } /** Creates a new empty queue with capacity equal to the length of the reference array and using the natural order. * @param refArray the reference array. */ public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray ) { this( refArray, refArray.length, null ); } /** Wraps a given array in a queue using a given comparator. * *

The queue returned by this method will be backed by the given array. * The first size element of the array will be rearranged so to form a heap (this is * more efficient than enqueing the elements of a one by one). * * @param refArray the reference array. * @param a an array of indices into refArray. * @param size the number of elements to be included in the queue. * @param c the comparator used in this queue, or null for the natural order. */ public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray, final int[] a, int size, final KEY_COMPARATOR KEY_SUPER_GENERIC c ) { this( refArray, 0, c ); this.heap = a; this.size = size; SEMI_INDIRECT_HEAPS.makeHeap( refArray, a, size, c ); } /** Wraps a given array in a queue using a given comparator. * *

The queue returned by this method will be backed by the given array. * The elements of the array will be rearranged so to form a heap (this is * more efficient than enqueing the elements of a one by one). * * @param refArray the reference array. * @param a an array of indices into refArray. * @param c the comparator used in this queue, or null for the natural order. */ public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray, final int[] a, final KEY_COMPARATOR KEY_SUPER_GENERIC c ) { this( refArray, a, a.length, c ); } /** Wraps a given array in a queue using the natural order. * *

The queue returned by this method will be backed by the given array. * The first size element of the array will be rearranged so to form a heap (this is * more efficient than enqueing the elements of a one by one). * * @param refArray the reference array. * @param a an array of indices into refArray. * @param size the number of elements to be included in the queue. */ public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray, final int[] a, int size ) { this( refArray, a, size, null ); } /** Wraps a given array in a queue using the natural order. * *

The queue returned by this method will be backed by the given array. * The elements of the array will be rearranged so to form a heap (this is * more efficient than enqueing the elements of a one by one). * * @param refArray the reference array. * @param a an array of indices into refArray. */ public HEAP_SEMI_INDIRECT_PRIORITY_QUEUE( final KEY_GENERIC_TYPE[] refArray, final int[] a ) { this( refArray, a, a.length ); } /** Ensures that the given index is a valid reference. * * @param index an index in the reference array. * @throws IndexOutOfBoundsException if the given index is negative or larger than the reference array length. */ protected void ensureElement( final int index ) { if ( index < 0 ) throw new IndexOutOfBoundsException( "Index (" + index + ") is negative" ); if ( index >= refArray.length ) throw new IndexOutOfBoundsException( "Index (" + index + ") is larger than or equal to reference array size (" + refArray.length + ")" ); } public void enqueue( int x ) { ensureElement( x ); if ( size == heap.length ) heap = IntArrays.grow( heap, size + 1 ); heap[ size++ ] = x; SEMI_INDIRECT_HEAPS.upHeap( refArray, heap, size, size - 1, c ); } public int dequeue() { if ( size == 0 ) throw new NoSuchElementException(); final int result = heap[ 0 ]; heap[ 0 ] = heap[ --size ]; if ( size != 0 ) SEMI_INDIRECT_HEAPS.downHeap( refArray, heap, size, 0, c ); return result; } public int first() { if ( size == 0 ) throw new NoSuchElementException(); return heap[ 0 ]; } /** {@inheritDoc} * *

The caller must guarantee that when this method is called the * index of the first element appears just once in the queue. Failure to do so * will bring the queue in an inconsistent state, and will cause * unpredictable behaviour. */ public void changed() { SEMI_INDIRECT_HEAPS.downHeap( refArray, heap, size, 0, c ); } /** Rebuilds this heap in a bottom-up fashion. */ public void allChanged() { SEMI_INDIRECT_HEAPS.makeHeap( refArray, heap, size, c ); } public int size() { return size; } public void clear() { size = 0; } /** Trims the backing array so that it has exactly {@link #size()} elements. */ public void trim() { heap = IntArrays.trim( heap, size ); } public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return c; } public int front( final int[] a ) { return c == null ? SEMI_INDIRECT_HEAPS.front( refArray, heap, size, a ) : SEMI_INDIRECT_HEAPS.front( refArray, heap, size, a, c ); } public String toString() { StringBuffer s = new StringBuffer(); s.append( "[" ); for ( int i = 0; i < size; i++ ) { if ( i != 0 ) s.append( ", " ); s.append( refArray[ heap [ i ] ] ); } s.append( "]" ); return s.toString(); } #ifdef TEST /** The original class, now just used for testing. */ private static class TestQueue { /** The reference array */ private KEY_TYPE refArray[]; /** Its length */ private int N; /** The number of elements in the heaps */ private int n; /** The two comparators */ private KEY_COMPARATOR primaryComp, secondaryComp; /** Two indirect heaps are used, called primary and secondary. Each of them contains a permutation of n among the indices 0, 1, ..., N-1 in such a way that the corresponding objects be sorted with respect to the two comparators. We also need an array inSec[] so that inSec[k] is the index of secondary containing k. */ private int primary[], secondary[], inSec[]; /** Builds a double indirect priority queue. * @param refArray The reference array. * @param primaryComp The primary comparator. * @param secondaryComp The secondary comparator. */ public TestQueue( KEY_TYPE refArray[], KEY_COMPARATOR primaryComp, KEY_COMPARATOR secondaryComp ) { this.refArray = refArray; this.N = refArray.length; assert this.N != 0; this.n = 0; this.primaryComp = primaryComp; this.secondaryComp = secondaryComp; this.primary = new int[N]; this.secondary = new int[N]; this.inSec = new int[N]; java.util.Arrays.fill( inSec, -1 ); } /** Adds an index to the queue. Notice that the index should not be already present in the queue. * @param i The index to be added */ public void add( int i ) { if ( i < 0 || i >= refArray.length ) throw new IndexOutOfBoundsException(); //if ( inSec[ i ] >= 0 ) throw new IllegalArgumentException(); primary[n] = i; n++; swimPrimary( n-1 ); } /** Heapify the primary heap. * @param i The index of the heap to be heapified. */ private void heapifyPrimary( int i ) { int dep = primary[i]; int child; while ( ( child = 2*i+1 ) < n ) { if ( child+1 < n && primaryComp.compare( refArray[primary[child+1]], refArray[primary[child]] ) < 0 ) child++; if ( primaryComp.compare( refArray[dep], refArray[primary[child]] ) <= 0 ) break; primary[i] = primary[child]; i = child; } primary[i] = dep; } /** Heapify the secondary heap. * @param i The index of the heap to be heapified. */ private void heapifySecondary( int i ) { int dep = secondary[i]; int child; while ( ( child = 2*i+1 ) < n ) { if ( child+1 < n && secondaryComp.compare( refArray[secondary[child+1]], refArray[secondary[child]] ) < 0 ) child++; if ( secondaryComp.compare( refArray[dep], refArray[secondary[child]] ) <= 0 ) break; secondary[i] = secondary[child]; inSec[secondary[i]] = i; i = child; } secondary[i] = dep; inSec[secondary[i]] = i; } /** Swim and heapify the primary heap. * @param i The index to be moved. */ private void swimPrimary( int i ) { int dep = primary[i]; int parent; while ( i != 0 && ( parent = ( i - 1 ) / 2 ) >= 0 ) { if ( primaryComp.compare( refArray[primary[parent]], refArray[dep] ) <= 0 ) break; primary[i] = primary[parent]; i = parent; } primary[i] = dep; heapifyPrimary( i ); } /** Swim and heapify the secondary heap. * @param i The index to be moved. */ private void swimSecondary( int i ) { int dep = secondary[i]; int parent; while ( i != 0 && ( parent = ( i - 1 ) / 2 ) >= 0 ) { if ( secondaryComp.compare( refArray[secondary[parent]], refArray[dep] ) <= 0 ) break; secondary[i] = secondary[parent]; inSec[secondary[i]] = i; i = parent; } secondary[i] = dep; inSec[secondary[i]] = i; heapifySecondary( i ); } /** Returns the minimum element with respect to the primary comparator. @return the minimum element. */ public int top() { if ( n == 0 ) throw new NoSuchElementException(); return primary[0]; } /** Returns the minimum element with respect to the secondary comparator. @return the minimum element. */ public int secTop() { if ( n == 0 ) throw new NoSuchElementException(); return secondary[0]; } /** Removes the minimum element with respect to the primary comparator. * @return the removed element. */ public void remove() { if ( n == 0 ) throw new NoSuchElementException(); int result = primary[0]; // Copy a leaf primary[0] = primary[n-1]; n--; heapifyPrimary( 0 ); return; } public void clear() { while( size() != 0 ) remove(); } /** Signals that the minimum element with respect to the comparator has changed. */ public void change() { heapifyPrimary( 0 ); } /** Returns the number of elements in the queue. * @return the size of the queue */ public int size() { return n; } public String toString() { String s = "["; for ( int i = 0; i < n; i++ ) s += refArray[primary[i]]+", "; return s+ "]"; } } private static long seed = System.currentTimeMillis(); private static java.util.Random r = new java.util.Random( seed ); private static KEY_TYPE genKey() { #if #keyclass(Byte) || #keyclass(Short) || #keyclass(Character) return (KEY_TYPE)(r.nextInt()); #elif #keys(primitive) return r.NEXT_KEY(); #elif #keyclass(Object) return Integer.toBinaryString( r.nextInt() ); #else return new java.io.Serializable() {}; #endif } private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" ); private static java.text.FieldPosition p = new java.text.FieldPosition( 0 ); private static String format( double d ) { StringBuffer s = new StringBuffer(); return format.format( d, s, p ).toString(); } private static void speedTest( int n, boolean comp ) { System.out.println( "There are presently no speed tests for this class." ); } private static void fatal( String msg ) { System.out.println( msg ); System.exit( 1 ); } private static void ensure( boolean cond, String msg ) { if ( cond ) return; fatal( msg ); } private static boolean heapEqual( int[] a, int[] b, int sizea, int sizeb ) { if ( sizea != sizeb ) return false; while( sizea-- != 0 ) if ( a[sizea] != b[sizea] ) return false; return true; } protected static void test( int n ) { long ms; Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds, mThrowsNoElement, tThrowsNoElement; int rm = 0, rt = 0; KEY_TYPE[] refArray = new KEY_TYPE[ n ]; for( int i = 0; i < n; i++ ) refArray[ i ] = genKey(); HEAP_SEMI_INDIRECT_PRIORITY_QUEUE m = new HEAP_SEMI_INDIRECT_PRIORITY_QUEUE( refArray, COMPARATORS.NATURAL_COMPARATOR ); TestQueue t = new TestQueue( refArray, COMPARATORS.NATURAL_COMPARATOR, COMPARATORS.OPPOSITE_COMPARATOR ); /* We add pairs to t. */ for( int i = 0; i < n / 2; i++ ) { t.add( i ); m.enqueue( i ); } ensure( heapEqual( m.heap, t.primary, m.size(), t.size() ), "Error (" + seed + "): m and t differ after creation (" + m + ", " + t + ")" ); /* Now we add and remove random data in m and t, checking that the result is the same. */ for(int i=0; i<2*n; i++ ) { if ( r.nextDouble() < 0.01 ) { t.clear(); m.clear(); for( int j = 0; j < n / 2; j++ ) { t.add( j ); m.enqueue( j ); } } int T = r.nextInt( 2 * n ); mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null; try { m.enqueue( T ); } catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; } catch ( IllegalArgumentException e ) { mThrowsIllegal = e; } try { t.add( T ); } catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; } catch ( IllegalArgumentException e ) { tThrowsIllegal = e; } ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + seed + "): enqueue() divergence in IndexOutOfBoundsException for " + T + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" ); ensure( ( mThrowsIllegal == null ) == ( tThrowsIllegal == null ), "Error (" + seed + "): enqueue() divergence in IllegalArgumentException for " + T + " (" + mThrowsIllegal + ", " + tThrowsIllegal + ")" ); ensure( heapEqual( m.heap, t.primary, m.size(), t.size() ), "Error (" + seed + "): m and t differ after enqueue (" + m + ", " + t + ")" ); if ( m.size() != 0 ) { ensure( m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after enqueue (" + m.first() + ", " + t.top() + ")"); } mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null; try { rm = m.dequeue(); } catch ( IndexOutOfBoundsException e ) { mThrowsOutOfBounds = e; } catch ( IllegalArgumentException e ) { mThrowsIllegal = e; } catch ( NoSuchElementException e ) { mThrowsNoElement = e; } try { rt = t.top(); t.remove(); } catch ( IndexOutOfBoundsException e ) { tThrowsOutOfBounds = e; } catch ( IllegalArgumentException e ) { tThrowsIllegal = e; } catch ( NoSuchElementException e ) { tThrowsNoElement = e; } ensure( ( mThrowsOutOfBounds == null ) == ( tThrowsOutOfBounds == null ), "Error (" + seed + "): dequeue() divergence in IndexOutOfBoundsException (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")" ); ensure( ( mThrowsIllegal == null ) == ( tThrowsIllegal == null ), "Error (" + seed + "): dequeue() divergence in IllegalArgumentException (" + mThrowsIllegal + ", " + tThrowsIllegal + ")" ); ensure( ( mThrowsNoElement == null ) == ( tThrowsNoElement == null ), "Error (" + seed + "): dequeue() divergence in NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")" ); if ( mThrowsOutOfBounds == null ) ensure( rt == rm , "Error (" + seed + "): divergence in dequeue() between t and m (" + rt + ", " + rm + ")" ); ensure( heapEqual( m.heap, t.primary, m.size(), t.size() ), "Error (" + seed + "): m and t differ after dequeue (" + m + ", " + t + ")"); if ( m.size() != 0 ) { ensure( m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after dequeue (" + m.first() + ", " + t.top() + ")"); } if ( m.size() != 0 && ( ( new it.unimi.dsi.fastutil.ints.IntOpenHashSet( m.heap, 0, m.size ) ).size() == m.size() ) ) { refArray[ m.first() ] = genKey(); m.changed(); t.change(); ensure( heapEqual( m.heap, t.primary, m.size(), t.size() ), "Error (" + seed + "): m and t differ after change (" + m + ", " + t + ")"); if ( m.size() != 0 ) { ensure( m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after change (" + m.first() + ", " + t.top() + ")"); } } } /* Now we check that m actually holds the same data. */ m.clear(); ensure( m.isEmpty(), "Error (" + seed + "): m is not empty after clear()" ); System.out.println("Test OK"); } public static void main( String args[] ) { int n = Integer.parseInt(args[1]); if ( args.length > 2 ) r = new java.util.Random( seed = Long.parseLong( args[ 2 ] ) ); try { if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, "speedComp".equals(args[0]) ); else if ( "test".equals( args[0] ) ) test(n); } catch( Throwable e ) { e.printStackTrace( System.err ); System.err.println( "seed: " + seed ); } } #endif }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy