drv.LinkedOpenHashSet.drv Maven / Gradle / Ivy
Show all versions of phoenix-server-hbase-2.6
/*
* Copyright (C) 2002-2015 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
#ifdef Linked
#if #keys(reference)
import java.util.Comparator;
#endif
/** A type-specific linked hash set with with a fast, small-footprint implementation.
*
* Instances of this class use a hash table to represent a set. The table is
* filled up to a specified load factor, and then doubled in size to
* accommodate new entries. If the table is emptied below one fourth
* of the load factor, it is halved in size. However, halving is
* not performed when deleting entries from an iterator, as it would interfere
* with the iteration process.
*
*
Note that {@link #clear()} does not modify the hash table size.
* Rather, a family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
*
Iterators generated by this set will enumerate elements in the same order in which they
* have been added to the set (addition of elements already present
* in the set does not change the iteration order). Note that this order has nothing in common with the natural
* order of the keys. The order is kept by means of a doubly linked list, represented
* via an array of longs parallel to the table.
*
*
This class implements the interface of a sorted set, so to allow easy
* access of the iteration order: for instance, you can get the first element
* in iteration order with {@link #first()} without having to create an
* iterator; however, this class partially violates the {@link java.util.SortedSet}
* contract because all subset methods throw an exception and {@link
* #comparator()} returns always null
.
*
*
Additional methods, such as addAndMoveToFirst()
, make it easy
* to use instances of this class as a cache (e.g., with LRU policy).
*
*
The iterators provided by this class are type-specific {@linkplain
* java.util.ListIterator list iterators}, and can be started at any
* element which is in the set (if the provided element
* is not in the set, a {@link NoSuchElementException} exception will be thrown).
* If, however, the provided element is not the first or last element in the
* set, the first access to the list index will require linear time, as in the worst case
* the entire set must be scanned in iteration order to retrieve the positional
* index of the starting element. If you use just the methods of a type-specific {@link it.unimi.dsi.fastutil.BidirectionalIterator},
* however, all operations will be performed in constant time.
*
* @see Hash
* @see HashCommon
*/
public class OPEN_HASH_SET KEY_GENERIC extends ABSTRACT_SORTED_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash {
#else
#ifdef Custom
/** A type-specific hash set with a fast, small-footprint implementation whose {@linkplain it.unimi.dsi.fastutil.Hash.Strategy hashing strategy}
* is specified at creation time.
*
*
Instances of this class use a hash table to represent a set. The table is
* filled up to a specified load factor, and then doubled in size to
* accommodate new entries. If the table is emptied below one fourth
* of the load factor, it is halved in size. However, halving is
* not performed when deleting entries from an iterator, as it would interfere
* with the iteration process.
*
*
Note that {@link #clear()} does not modify the hash table size.
* Rather, a family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
* @see Hash
* @see HashCommon
*/
public class OPEN_HASH_SET KEY_GENERIC extends ABSTRACT_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash {
#else
/** A type-specific hash set with with a fast, small-footprint implementation.
*
*
Instances of this class use a hash table to represent a set. The table is
* enlarged as needed by doubling its size when new entries are created, but it is never made
* smaller (even on a {@link #clear()}). A family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
* @see Hash
* @see HashCommon
*/
public class OPEN_HASH_SET KEY_GENERIC extends ABSTRACT_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash {
#endif
#endif
private static final long serialVersionUID = 0L;
private static final boolean ASSERTS = ASSERTS_VALUE;
/** The array of keys. */
protected transient KEY_GENERIC_TYPE[] key;
/** The mask for wrapping a position counter. */
protected transient int mask;
/** Whether this set contains the null key. */
protected transient boolean containsNull;
#ifdef Custom
/** The hash strategy of this custom set. */
protected STRATEGY KEY_GENERIC strategy;
#endif
#ifdef Linked
/** The index of the first entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */
protected transient int first = -1;
/** The index of the last entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */
protected transient int last = -1;
/** For each entry, the next and the previous entry in iteration order,
* stored as ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL)
.
* The first entry contains predecessor -1, and the last entry
* contains successor -1. */
protected transient long[] link;
#endif
/** The current table size. */
protected transient int n;
/** Threshold after which we rehash. It must be the table size times {@link #f}. */
protected transient int maxFill;
/** Number of entries in the set (including the null key, if present). */
protected int size;
/** The acceptable load factor. */
protected final float f;
#ifdef Custom
/** Creates a new hash set.
*
*
The actual table size will be the least power of two greater than expected
/f
.
*
* @param expected the expected number of elements in the hash set.
* @param f the load factor.
* @param strategy the strategy.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public OPEN_HASH_SET( final int expected, final float f, final STRATEGY KEY_GENERIC strategy ) {
this.strategy = strategy;
#else
/** Creates a new hash set.
*
*
The actual table size will be the least power of two greater than expected
/f
.
*
* @param expected the expected number of elements in the hash set.
* @param f the load factor.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public OPEN_HASH_SET( final int expected, final float f ) {
#endif
if ( f <= 0 || f > 1 ) throw new IllegalArgumentException( "Load factor must be greater than 0 and smaller than or equal to 1" );
if ( expected < 0 ) throw new IllegalArgumentException( "The expected number of elements must be nonnegative" );
this.f = f;
n = arraySize( expected, f );
mask = n - 1;
maxFill = maxFill( n, f );
key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ n + 1 ];
#ifdef Linked
link = new long[ n + 1 ];
#endif
}
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param expected the expected number of elements in the hash set.
* @param strategy the strategy.
*/
public OPEN_HASH_SET( final int expected, final STRATEGY KEY_GENERIC strategy ) {
this( expected, DEFAULT_LOAD_FACTOR, strategy );
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param expected the expected number of elements in the hash set.
*/
public OPEN_HASH_SET( final int expected ) {
this( expected, DEFAULT_LOAD_FACTOR );
}
#endif
#ifdef Custom
/** Creates a new hash set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements
* and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET( final STRATEGY KEY_GENERIC strategy ) {
this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, strategy );
}
#else
/** Creates a new hash set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements
* and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*/
public OPEN_HASH_SET() {
this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR );
}
#endif
#ifdef Custom
/** Creates a new hash set copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash set.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET( final Collection extends KEY_GENERIC_CLASS> c, final float f, final STRATEGY KEY_GENERIC strategy ) {
this( c.size(), f, strategy );
addAll( c );
}
#else
/** Creates a new hash set copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash set.
* @param f the load factor.
*/
public OPEN_HASH_SET( final Collection extends KEY_GENERIC_CLASS> c, final float f ) {
this( c.size(), f );
addAll( c );
}
#endif
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash set.
* @param strategy the strategy.
*/
public OPEN_HASH_SET( final Collection extends KEY_GENERIC_CLASS> c, final STRATEGY KEY_GENERIC strategy ) {
this( c, DEFAULT_LOAD_FACTOR, strategy );
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash set.
*/
public OPEN_HASH_SET( final Collection extends KEY_GENERIC_CLASS> c ) {
this( c, DEFAULT_LOAD_FACTOR );
}
#endif
#ifdef Custom
/** Creates a new hash set copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new hash set.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET( final COLLECTION KEY_EXTENDS_GENERIC c, final float f, STRATEGY KEY_GENERIC strategy ) {
this( c.size(), f, strategy );
addAll( c );
}
#else
/** Creates a new hash set copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new hash set.
* @param f the load factor.
*/
public OPEN_HASH_SET( final COLLECTION KEY_EXTENDS_GENERIC c, final float f ) {
this( c.size(), f );
addAll( c );
}
#endif
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new hash set.
* @param strategy the strategy.
*/
public OPEN_HASH_SET( final COLLECTION KEY_EXTENDS_GENERIC c, final STRATEGY KEY_GENERIC strategy ) {
this( c, DEFAULT_LOAD_FACTOR, strategy );
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new hash set.
*/
public OPEN_HASH_SET( final COLLECTION KEY_EXTENDS_GENERIC c ) {
this( c, DEFAULT_LOAD_FACTOR );
}
#endif
#ifdef Custom
/** Creates a new hash set using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the set.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET( final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final float f, final STRATEGY KEY_GENERIC strategy ) {
this( DEFAULT_INITIAL_SIZE, f, strategy );
while( i.hasNext() ) add( i.NEXT_KEY() );
}
#else
/** Creates a new hash set using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the set.
* @param f the load factor.
*/
public OPEN_HASH_SET( final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final float f ) {
this( DEFAULT_INITIAL_SIZE, f );
while( i.hasNext() ) add( i.NEXT_KEY() );
}
#endif
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the set.
* @param strategy the strategy.
*/
public OPEN_HASH_SET( final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final STRATEGY KEY_GENERIC strategy ) {
this( i, DEFAULT_LOAD_FACTOR, strategy );
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the set.
*/
public OPEN_HASH_SET( final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i ) {
this( i, DEFAULT_LOAD_FACTOR );
}
#endif
#if #keys(primitive)
#ifdef Custom
/** Creates a new hash set using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the set.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET( final Iterator> i, final float f, final STRATEGY KEY_GENERIC strategy ) {
this( ITERATORS.AS_KEY_ITERATOR( i ), f, strategy );
}
#else
/** Creates a new hash set using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the set.
* @param f the load factor.
*/
public OPEN_HASH_SET( final Iterator> i, final float f ) {
this( ITERATORS.AS_KEY_ITERATOR( i ), f );
}
#endif
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the set.
* @param strategy the strategy.
*/
public OPEN_HASH_SET( final Iterator> i, final STRATEGY KEY_GENERIC strategy ) {
this( ITERATORS.AS_KEY_ITERATOR( i ), strategy );
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the set.
*/
public OPEN_HASH_SET( final Iterator> i ) {
this( ITERATORS.AS_KEY_ITERATOR( i ) );
}
#endif
#endif
#ifdef Custom
/** Creates a new hash set and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the set.
* @param offset the first element to use.
* @param length the number of elements to use.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length, final float f, final STRATEGY KEY_GENERIC strategy ) {
this( length < 0 ? 0 : length, f, strategy );
ARRAYS.ensureOffsetLength( a, offset, length );
for( int i = 0; i < length; i++ ) add( a[ offset + i ] );
}
#else
/** Creates a new hash set and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the set.
* @param offset the first element to use.
* @param length the number of elements to use.
* @param f the load factor.
*/
public OPEN_HASH_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length, final float f ) {
this( length < 0 ? 0 : length, f );
ARRAYS.ensureOffsetLength( a, offset, length );
for( int i = 0; i < length; i++ ) add( a[ offset + i ] );
}
#endif
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the set.
* @param offset the first element to use.
* @param length the number of elements to use.
* @param strategy the strategy.
*/
public OPEN_HASH_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length, final STRATEGY KEY_GENERIC strategy ) {
this( a, offset, length, DEFAULT_LOAD_FACTOR, strategy );
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the set.
* @param offset the first element to use.
* @param length the number of elements to use.
*/
public OPEN_HASH_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length ) {
this( a, offset, length, DEFAULT_LOAD_FACTOR );
}
#endif
#ifdef Custom
/** Creates a new hash set copying the elements of an array.
*
* @param a an array to be copied into the new hash set.
* @param f the load factor.
* @param strategy the strategy.
*/
public OPEN_HASH_SET( final KEY_GENERIC_TYPE[] a, final float f, final STRATEGY KEY_GENERIC strategy ) {
this( a, 0, a.length, f, strategy );
}
#else
/** Creates a new hash set copying the elements of an array.
*
* @param a an array to be copied into the new hash set.
* @param f the load factor.
*/
public OPEN_HASH_SET( final KEY_GENERIC_TYPE[] a, final float f ) {
this( a, 0, a.length, f );
}
#endif
#ifdef Custom
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying the elements of an array.
*
* @param a an array to be copied into the new hash set.
* @param strategy the strategy.
*/
public OPEN_HASH_SET( final KEY_GENERIC_TYPE[] a, final STRATEGY KEY_GENERIC strategy ) {
this( a, DEFAULT_LOAD_FACTOR, strategy );
}
#else
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying the elements of an array.
*
* @param a an array to be copied into the new hash set.
*/
public OPEN_HASH_SET( final KEY_GENERIC_TYPE[] a ) {
this( a, DEFAULT_LOAD_FACTOR );
}
#endif
#ifdef Custom
/** Returns the hashing strategy.
*
* @return the hashing strategy of this custom hash set.
*/
public STRATEGY KEY_GENERIC strategy() {
return strategy;
}
#endif
private int realSize() {
return containsNull ? size - 1 : size;
}
private void ensureCapacity( final int capacity ) {
final int needed = arraySize( capacity, f );
if ( needed > n ) rehash( needed );
}
private void tryCapacity( final long capacity ) {
final int needed = (int)Math.min( 1 << 30, Math.max( 2, HashCommon.nextPowerOfTwo( (long)Math.ceil( capacity / f ) ) ) );
if ( needed > n ) rehash( needed );
}
#if #keys(primitive)
/** {@inheritDoc} */
public boolean addAll( COLLECTION c ) {
if ( f <= .5 ) ensureCapacity( c.size() ); // The resulting collection will be sized for c.size() elements
else tryCapacity( size() + c.size() ); // The resulting collection will be tentatively sized for size() + c.size() elements
return super.addAll( c );
}
#endif
/** {@inheritDoc} */
public boolean addAll( Collection extends KEY_GENERIC_CLASS> c ) {
// The resulting collection will be at least c.size() big
if ( f <= .5 ) ensureCapacity( c.size() ); // The resulting collection will be sized for c.size() elements
else tryCapacity( size() + c.size() ); // The resulting collection will be tentatively sized for size() + c.size() elements
return super.addAll( c );
}
public boolean add( final KEY_GENERIC_TYPE k ) {
int pos;
if ( KEY_IS_NULL( k ) ) {
if ( containsNull ) return false;
#ifdef Linked
pos = n;
#endif
containsNull = true;
}
else {
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
// The starting point.
if ( ! KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) {
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return false;
while( ! KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) )
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return false;
}
key[ pos ] = k;
}
#ifdef Linked
if ( size == 0 ) {
first = last = pos;
// Special case of SET_UPPER_LOWER(link[ pos ], -1, -1);
link[ pos ] = -1L;
}
else {
SET_NEXT( link[ last ], pos );
SET_UPPER_LOWER( link[ pos ], last, -1 );
last = pos;
}
#endif
if ( size++ >= maxFill ) rehash( arraySize( size + 1, f ) );
if ( ASSERTS ) checkTable();
return true;
}
/** Shifts left entries with the specified hash code, starting at the specified position,
* and empties the resulting free entry.
*
* @param pos a starting position.
*/
protected final void shiftKeys( int pos ) {
// Shift entries with the same hash.
int last, slot;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
for(;;) {
pos = ( ( last = pos ) + 1 ) & mask;
for(;;) {
if ( KEY_IS_NULL( curr = key[ pos ] ) ) {
key[ last ] = KEY_NULL;
return;
}
slot = KEY2INTHASH( curr ) & mask;
if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break;
pos = ( pos + 1 ) & mask;
}
key[ last ] = curr;
#ifdef Linked
fixPointers( pos, last );
#endif
}
}
private boolean removeEntry( final int pos ) {
size--;
#ifdef Linked
fixPointers( pos );
#endif
shiftKeys( pos );
if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 );
return true;
}
private boolean removeNullEntry() {
containsNull = false;
size--;
#ifdef Linked
fixPointers( n );
#endif
if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 );
return true;
}
SUPPRESS_WARNINGS_CUSTOM_KEY_UNCHECKED
public boolean remove( final KEY_TYPE k ) {
if ( KEY_IS_NULL( k ) ) {
if ( containsNull ) return removeNullEntry();
return false;
}
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH_CAST( k ) & mask ] ) ) return false;
if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return removeEntry( pos );
while( true ) {
if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return false;
if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return removeEntry( pos );
}
}
SUPPRESS_WARNINGS_CUSTOM_KEY_UNCHECKED
public boolean contains( final KEY_TYPE k ) {
if ( KEY_IS_NULL( k ) ) return containsNull;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH_CAST( k ) & mask ] ) ) return false;
if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return true;
while( true ) {
if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return false;
if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return true;
}
}
#if #keyclass(Object)
/** Returns the element of this set that is equal to the given key, or null
.
* @return the element of this set that is equal to the given key, or null
.
*/
SUPPRESS_WARNINGS_CUSTOM_KEY_UNCHECKED
public K get( final Object k ) {
if ( k == null ) return null; // This is correct independently of the value of containsNull
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = this.key;
int pos;
// The starting point.
if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH_CAST( k ) & mask ] ) ) return null;
if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return curr;
// There's always an unused entry.
while( true ) {
if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return null;
if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return curr;
}
}
#endif
#ifdef Linked
/** Removes the first key in iteration order.
* @return the first key.
* @throws NoSuchElementException is this set is empty.
*/
public KEY_GENERIC_TYPE REMOVE_FIRST_KEY() {
if ( size == 0 ) throw new NoSuchElementException();
final int pos = first;
// Abbreviated version of fixPointers(pos)
first = GET_NEXT(link[ pos ]);
if ( 0 <= first ) {
// Special case of SET_PREV( link[ first ], -1 )
link[ first ] |= (-1 & 0xFFFFFFFFL) << 32;
}
final KEY_GENERIC_TYPE k = key[ pos ];
size--;
if ( KEY_IS_NULL( k ) ) containsNull = false;
else shiftKeys( pos );
if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 );
return k;
}
/** Removes the the last key in iteration order.
* @return the last key.
* @throws NoSuchElementException is this set is empty.
*/
public KEY_GENERIC_TYPE REMOVE_LAST_KEY() {
if ( size == 0 ) throw new NoSuchElementException();
final int pos = last;
// Abbreviated version of fixPointers(pos)
last = GET_PREV(link[ pos ]);
if ( 0 <= last ) {
// Special case of SET_NEXT( link[ last ], -1 )
link[ last ] |= -1 & 0xFFFFFFFFL;
}
final KEY_GENERIC_TYPE k = key[ pos ];
size--;
if ( KEY_IS_NULL( k ) ) containsNull = false;
else shiftKeys( pos );
if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 );
return k;
}
private void moveIndexToFirst( final int i ) {
if ( size == 1 || first == i ) return;
if ( last == i ) {
last = GET_PREV(link[ i ]);
// Special case of SET_NEXT( link[ last ], -1 );
link[ last ] |= -1 & 0xFFFFFFFFL;
}
else {
final long linki = link[ i ];
final int prev = GET_PREV(linki);
final int next = GET_NEXT(linki);
COPY_NEXT(link[ prev ], linki);
COPY_PREV(link[ next ], linki);
}
SET_PREV( link[ first ], i );
SET_UPPER_LOWER( link[ i ], -1, first );
first = i;
}
private void moveIndexToLast( final int i ) {
if ( size == 1 || last == i ) return;
if ( first == i ) {
first = GET_NEXT(link[ i ]);
// Special case of SET_PREV( link[ first ], -1 );
link[ first ] |= (-1 & 0xFFFFFFFFL) << 32;
}
else {
final long linki = link[ i ];
final int prev = GET_PREV(linki);
final int next = GET_NEXT(linki);
COPY_NEXT(link[ prev ], linki);
COPY_PREV(link[ next ], linki);
}
SET_NEXT( link[ last ], i );
SET_UPPER_LOWER( link[ i ], last, -1 );
last = i;
}
/** Adds a key to the set; if the key is already present, it is moved to the first position of the iteration order.
*
* @param k the key.
* @return true if the key was not present.
*/
public boolean addAndMoveToFirst( final KEY_GENERIC_TYPE k ) {
int pos;
if ( KEY_IS_NULL( k ) ) {
if ( containsNull ) {
moveIndexToFirst( n );
return false;
}
containsNull = true;
pos = n;
}
else {
// The starting point.
final KEY_GENERIC_TYPE key[] = this.key;
pos = KEY2INTHASH( k ) & mask;
// There's always an unused entry. TODO
while( ! KEY_IS_NULL( key[ pos ] ) ) {
if ( KEY_EQUALS_NOT_NULL( k, key[ pos ] ) ) {
moveIndexToFirst( pos );
return false;
}
pos = ( pos + 1 ) & mask;
}
key[ pos ] = k;
}
if ( size == 0 ) {
first = last = pos;
// Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 );
link[ pos ] = -1L;
}
else {
SET_PREV( link[ first ], pos );
SET_UPPER_LOWER( link[ pos ], -1, first );
first = pos;
}
if ( size++ >= maxFill ) rehash( arraySize( size, f ) );
if ( ASSERTS ) checkTable();
return true;
}
/** Adds a key to the set; if the key is already present, it is moved to the last position of the iteration order.
*
* @param k the key.
* @return true if the key was not present.
*/
public boolean addAndMoveToLast( final KEY_GENERIC_TYPE k ) {
int pos;
if ( KEY_IS_NULL( k ) ) {
if ( containsNull ) {
moveIndexToLast( n );
return false;
}
containsNull = true;
pos = n;
}
else {
// The starting point.
final KEY_GENERIC_TYPE key[] = this.key;
pos = KEY2INTHASH( k ) & mask;
// There's always an unused entry.
while( ! KEY_IS_NULL( key[ pos ] ) ) {
if ( KEY_EQUALS_NOT_NULL( k, key[ pos ] ) ) {
moveIndexToLast( pos );
return false;
}
pos = ( pos + 1 ) & mask;
}
key[ pos ] = k;
}
if ( size == 0 ) {
first = last = pos;
// Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 );
link[ pos ] = -1L;
}
else {
SET_NEXT( link[ last ], pos );
SET_UPPER_LOWER( link[ pos ], last, -1 );
last = pos;
}
if ( size++ >= maxFill ) rehash( arraySize( size, f ) );
if ( ASSERTS ) checkTable();
return true;
}
#endif
/* Removes all elements from this set.
*
*
To increase object reuse, this method does not change the table size.
* If you want to reduce the table size, you must use {@link #trim()}.
*
*/
public void clear() {
if ( size == 0 ) return;
size = 0;
containsNull = false;
Arrays.fill( key, KEY_NULL );
#ifdef Linked
first = last = -1;
#endif
}
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
/** A no-op for backward compatibility.
*
* @param growthFactor unused.
* @deprecated Since fastutil
6.1.0, hash tables are doubled when they are too full.
*/
@Deprecated
public void growthFactor( int growthFactor ) {}
/** Gets the growth factor (2).
*
* @return the growth factor of this set, which is fixed (2).
* @see #growthFactor(int)
* @deprecated Since fastutil
6.1.0, hash tables are doubled when they are too full.
*/
@Deprecated
public int growthFactor() {
return 16;
}
#ifdef Linked
/** Modifies the {@link #link} vector so that the given entry is removed.
* This method will complete in constant time.
*
* @param i the index of an entry.
*/
protected void fixPointers( final int i ) {
if ( size == 0 ) {
first = last = -1;
return;
}
if ( first == i ) {
first = GET_NEXT(link[ i ]);
if (0 <= first) {
// Special case of SET_PREV( link[ first ], -1 )
link[ first ] |= (-1 & 0xFFFFFFFFL) << 32;
}
return;
}
if ( last == i ) {
last = GET_PREV(link[ i ]);
if (0 <= last) {
// Special case of SET_NEXT( link[ last ], -1 )
link[ last ] |= -1 & 0xFFFFFFFFL;
}
return;
}
final long linki = link[ i ];
final int prev = GET_PREV(linki);
final int next = GET_NEXT(linki);
COPY_NEXT(link[ prev ], linki);
COPY_PREV(link[ next ], linki);
}
/** Modifies the {@link #link} vector for a shift from s to d.
* This method will complete in constant time.
*
* @param s the source position.
* @param d the destination position.
*/
protected void fixPointers( int s, int d ) {
if ( size == 1 ) {
first = last = d;
// Special case of SET(link[ d ], -1, -1)
link[ d ] = -1L;
return;
}
if ( first == s ) {
first = d;
SET_PREV( link[ GET_NEXT(link[ s ]) ], d );
link[ d ] = link[ s ];
return;
}
if ( last == s ) {
last = d;
SET_NEXT( link[ GET_PREV(link[ s ])], d );
link[ d ] = link[ s ];
return;
}
final long links = link[ s ];
final int prev = GET_PREV(links);
final int next = GET_NEXT(links);
SET_NEXT( link[ prev ], d );
SET_PREV( link[ next ], d );
link[ d ] = links;
}
/** Returns the first element of this set in iteration order.
*
* @return the first element in iteration order.
*/
public KEY_GENERIC_TYPE FIRST() {
if ( size == 0 ) throw new NoSuchElementException();
return key[ first ];
}
/** Returns the last element of this set in iteration order.
*
* @return the last element in iteration order.
*/
public KEY_GENERIC_TYPE LAST() {
if ( size == 0 ) throw new NoSuchElementException();
return key[ last ];
}
public SORTED_SET KEY_GENERIC tailSet( KEY_GENERIC_TYPE from ) { throw new UnsupportedOperationException(); }
public SORTED_SET KEY_GENERIC headSet( KEY_GENERIC_TYPE to ) { throw new UnsupportedOperationException(); }
public SORTED_SET KEY_GENERIC subSet( KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to ) { throw new UnsupportedOperationException(); }
public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return null; }
/** A list iterator over a linked set.
*
*
This class provides a list iterator over a linked hash set. The constructor runs in constant time.
*/
private class SetIterator extends KEY_ABSTRACT_LIST_ITERATOR KEY_GENERIC {
/** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or null
if no previous entry exists). */
int prev = -1;
/** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or null
if no next entry exists). */
int next = -1;
/** The last entry that was returned (or -1 if we did not iterate or used {@link #remove()}). */
int curr = -1;
/** The current index (in the sense of a {@link java.util.ListIterator}). When -1, we do not know the current index.*/
int index = -1;
SetIterator() {
next = first;
index = 0;
}
SetIterator( KEY_GENERIC_TYPE from ) {
if ( KEY_IS_NULL( from ) ) {
if ( OPEN_HASH_SET.this.containsNull ) {
next = GET_NEXT( link[ n ] );
prev = n;
return;
}
else throw new NoSuchElementException( "The key " + from + " does not belong to this set." );
}
if ( KEY_EQUALS( key[ last ], from ) ) {
prev = last;
index = size;
return;
}
// The starting point.
final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key;
int pos = KEY2INTHASH( from ) & mask;
// There's always an unused entry.
while( ! KEY_IS_NULL( key[ pos ] ) ) {
if ( KEY_EQUALS_NOT_NULL( key[ pos ], from ) ) {
// Note: no valid index known.
next = GET_NEXT( link[ pos ] );
prev = pos;
return;
}
pos = ( pos + 1 ) & mask;
}
throw new NoSuchElementException( "The key " + from + " does not belong to this set." );
}
public boolean hasNext() { return next != -1; }
public boolean hasPrevious() { return prev != -1; }
public KEY_GENERIC_TYPE NEXT_KEY() {
if ( ! hasNext() ) throw new NoSuchElementException();
curr = next;
next = GET_NEXT(link[ curr ]);
prev = curr;
if ( index >= 0 ) index++;
if ( ASSERTS ) assert curr == n || ! KEY_IS_NULL( key[ curr ] ) : "Position " + curr + " is not used";
return key[ curr ];
}
public KEY_GENERIC_TYPE PREV_KEY() {
if ( ! hasPrevious() ) throw new NoSuchElementException();
curr = prev;
prev = GET_PREV(link[ curr ]);
next = curr;
if ( index >= 0 ) index--;
return key[ curr ];
}
private final void ensureIndexKnown() {
if ( index >= 0 ) return;
if ( prev == -1 ) {
index = 0;
return;
}
if ( next == -1 ) {
index = size;
return;
}
int pos = first;
index = 1;
while( pos != prev ) {
pos = GET_NEXT( link[ pos ] );
index++;
}
}
public int nextIndex() {
ensureIndexKnown();
return index;
}
public int previousIndex() {
ensureIndexKnown();
return index - 1;
}
public void remove() {
ensureIndexKnown();
if ( curr == -1 ) throw new IllegalStateException();
if ( curr == prev ) {
/* If the last operation was a next(), we are removing an entry that preceeds
the current index, and thus we must decrement it. */
index--;
prev = GET_PREV(link[ curr ]);
}
else
next = GET_NEXT(link[ curr ]);
size--;
/* Now we manually fix the pointers. Because of our knowledge of next
and prev, this is going to be faster than calling fixPointers(). */
if ( prev == -1 ) first = next;
else
SET_NEXT( link[ prev ], next );
if ( next == -1 ) last = prev;
else
SET_PREV( link[ next ], prev );
int last, slot, pos = curr;
curr = -1;
if ( pos == n ) OPEN_HASH_SET.this.containsNull = false;
else {
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = OPEN_HASH_SET.this.key;
// We have to horribly duplicate the shiftKeys() code because we need to update next/prev.
for(;;) {
pos = ( ( last = pos ) + 1 ) & mask;
for(;;) {
if ( KEY_IS_NULL( curr = key[ pos ] ) ) {
key[ last ] = KEY_NULL;
return;
}
slot = KEY2INTHASH( curr ) & mask;
if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break;
pos = ( pos + 1 ) & mask;
}
key[ last ] = curr;
if ( next == pos ) next = last;
if ( prev == pos ) prev = last;
fixPointers( pos, last );
}
}
}
}
/** Returns a type-specific list iterator on the elements in this set, starting from a given element of the set.
* Please see the class documentation for implementation details.
*
* @param from an element to start from.
* @return a type-specific list iterator starting at the given element.
* @throws IllegalArgumentException if from
does not belong to the set.
*/
public KEY_LIST_ITERATOR KEY_GENERIC iterator( KEY_GENERIC_TYPE from ) {
return new SetIterator( from );
}
public KEY_LIST_ITERATOR KEY_GENERIC iterator() {
return new SetIterator();
}
#else
/** An iterator over a hash set. */
private class SetIterator extends KEY_ABSTRACT_ITERATOR KEY_GENERIC {
/** The index of the last entry returned, if positive or zero; initially, {@link #n}. If negative, the last
element returned was that of index {@code - pos - 1} from the {@link #wrapped} list. */
int pos = n;
/** The index of the last entry that has been returned (more precisely, the value of {@link #pos} if {@link #pos} is positive,
or {@link Integer#MIN_VALUE} if {@link #pos} is negative). It is -1 if either
we did not return an entry yet, or the last returned entry has been removed. */
int last = -1;
/** A downward counter measuring how many entries must still be returned. */
int c = size;
/** A boolean telling us whether we should return the null key. */
boolean mustReturnNull = OPEN_HASH_SET.this.containsNull;
/** A lazily allocated list containing elements that have wrapped around the table because of removals. */
ARRAY_LIST KEY_GENERIC wrapped;
public boolean hasNext() {
return c != 0;
}
public KEY_GENERIC_TYPE NEXT_KEY() {
if ( ! hasNext() ) throw new NoSuchElementException();
c--;
if ( mustReturnNull ) {
mustReturnNull = false;
last = n;
return KEY_NULL;
}
final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key;
for(;;) {
if ( --pos < 0 ) {
// We are just enumerating elements from the wrapped list.
last = Integer.MIN_VALUE;
return wrapped.GET_KEY( - pos - 1 );
}
if ( ! KEY_IS_NULL( key[ pos ] ) ) return key[ last = pos ];
}
}
/** Shifts left entries with the specified hash code, starting at the specified position,
* and empties the resulting free entry.
*
* @param pos a starting position.
*/
private final void shiftKeys( int pos ) {
// Shift entries with the same hash.
int last, slot;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[] key = OPEN_HASH_SET.this.key;
for(;;) {
pos = ( ( last = pos ) + 1 ) & mask;
for(;;) {
if ( KEY_IS_NULL( curr = key[ pos ] ) ) {
key[ last ] = KEY_NULL;
return;
}
slot = KEY2INTHASH( curr ) & mask;
if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break;
pos = ( pos + 1 ) & mask;
}
if ( pos < last ) { // Wrapped entry.
if ( wrapped == null ) wrapped = new ARRAY_LIST KEY_GENERIC( 2 );
wrapped.add( key[ pos ] );
}
key[ last ] = curr;
}
}
public void remove() {
if ( last == -1 ) throw new IllegalStateException();
if ( last == n ) OPEN_HASH_SET.this.containsNull = false;
else if ( pos >= 0 ) shiftKeys( last );
else {
// We're removing wrapped entries.
#if #keys(reference)
OPEN_HASH_SET.this.remove( wrapped.set( - pos - 1, null ) );
#else
OPEN_HASH_SET.this.remove( wrapped.GET_KEY( - pos - 1 ) );
#endif
last = -1; // Note that we must not decrement size
return;
}
size--;
last = -1; // You can no longer remove this entry.
if ( ASSERTS ) checkTable();
}
}
public KEY_ITERATOR KEY_GENERIC iterator() {
return new SetIterator();
}
#endif
/** A no-op for backward compatibility. The kind of tables implemented by
* this class never need rehashing.
*
*
If you need to reduce the table size to fit exactly
* this set, use {@link #trim()}.
*
* @return true.
* @see #trim()
* @deprecated A no-op.
*/
@Deprecated
public boolean rehash() {
return true;
}
/** Rehashes this set, making the table as small as possible.
*
*
This method rehashes the table to the smallest size satisfying the
* load factor. It can be used when the set will not be changed anymore, so
* to optimize access speed and size.
*
*
If the table size is already the minimum possible, this method
* does nothing.
*
* @return true if there was enough memory to trim the set.
* @see #trim(int)
*/
public boolean trim() {
final int l = arraySize( size, f );
if ( l >= n ) return true;
try {
rehash( l );
}
catch(OutOfMemoryError cantDoIt) { return false; }
return true;
}
/** Rehashes this set if the table is too large.
*
*
Let N be the smallest table size that can hold
* max(n,{@link #size()})
entries, still satisfying the load factor. If the current
* table size is smaller than or equal to N, this method does
* nothing. Otherwise, it rehashes this set in a table of size
* N.
*
*
This method is useful when reusing sets. {@linkplain #clear() Clearing a
* set} leaves the table size untouched. If you are reusing a set
* many times, you can call this method with a typical
* size to avoid keeping around a very large table just
* because of a few large transient sets.
*
* @param n the threshold for the trimming.
* @return true if there was enough memory to trim the set.
* @see #trim()
*/
public boolean trim( final int n ) {
final int l = HashCommon.nextPowerOfTwo( (int)Math.ceil( n / f ) );
if ( this.n <= l ) return true;
try {
rehash( l );
}
catch( OutOfMemoryError cantDoIt ) { return false; }
return true;
}
/** Rehashes the set.
*
*
This method implements the basic rehashing strategy, and may be
* overriden by subclasses implementing different rehashing strategies (e.g.,
* disk-based rehashing). However, you should not override this method
* unless you understand the internal workings of this class.
*
* @param newN the new size
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
protected void rehash( final int newN ) {
final KEY_GENERIC_TYPE key[] = this.key;
final int mask = newN - 1; // Note that this is used by the hashing macro
final KEY_GENERIC_TYPE newKey[] = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ newN + 1 ];
#ifdef Linked
int i = first, prev = -1, newPrev = -1, t, pos;
final long link[] = this.link;
final long newLink[] = new long[ newN + 1 ];
first = -1;
for( int j = size; j-- != 0; ) {
if ( KEY_IS_NULL( key[ i ] ) ) pos = newN;
else {
pos = KEY2INTHASH( key[ i ] ) & mask;
while ( ! KEY_IS_NULL( newKey[ pos ] ) ) pos = ( pos + 1 ) & mask;
newKey[ pos ] = key[ i ];
}
if ( prev != -1 ) {
SET_NEXT( newLink[ newPrev ], pos );
SET_PREV( newLink[ pos ], newPrev );
newPrev = pos;
}
else {
newPrev = first = pos;
// Special case of SET(newLink[ pos ], -1, -1);
newLink[ pos ] = -1L;
}
t = i;
i = GET_NEXT(link[ i ]);
prev = t;
}
this.link = newLink;
this.last = newPrev;
if ( newPrev != -1 )
// Special case of SET_NEXT( newLink[ newPrev ], -1 );
newLink[ newPrev ] |= -1 & 0xFFFFFFFFL;
#else
int i = n, pos;
for( int j = realSize(); j-- != 0; ) {
while( KEY_IS_NULL( key[ --i ] ) );
if ( ! KEY_IS_NULL( newKey[ pos = KEY2INTHASH( key[ i ] ) & mask ] ) )
while ( ! KEY_IS_NULL( newKey[ pos = ( pos + 1 ) & mask ] ) );
newKey[ pos ] = key[ i ];
}
#endif
n = newN;
this.mask = mask;
maxFill = maxFill( n, f );
this.key = newKey;
}
/** Returns a deep copy of this set.
*
*
This method performs a deep copy of this hash set; the data stored in the
* set, however, is not cloned. Note that this makes a difference only for object keys.
*
* @return a deep copy of this set.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public OPEN_HASH_SET KEY_GENERIC clone() {
OPEN_HASH_SET KEY_GENERIC c;
try {
c = (OPEN_HASH_SET KEY_GENERIC)super.clone();
}
catch(CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.key = key.clone();
c.containsNull = containsNull;
#ifdef Linked
c.link = link.clone();
#endif
#ifdef Custom
c.strategy = strategy;
#endif
return c;
}
/** Returns a hash code for this set.
*
* This method overrides the generic method provided by the superclass.
* Since equals()
is not overriden, it is important
* that the value returned by this method is the same value as
* the one returned by the overriden method.
*
* @return a hash code for this set.
*/
public int hashCode() {
int h = 0;
for( int j = realSize(), i = 0; j-- != 0; ) {
while( KEY_IS_NULL( key[ i ] ) ) i++;
#if #keys(reference)
if ( this != key[ i ] )
#endif
h += KEY2JAVAHASH_NOT_NULL( key[ i ] );
i++;
}
// Zero / null have hash zero.
return h;
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
final KEY_ITERATOR KEY_GENERIC i = iterator();
s.defaultWriteObject();
for( int j = size; j-- != 0; ) s.WRITE_KEY( i.NEXT_KEY() );
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
n = arraySize( size, f );
maxFill = maxFill( n, f );
mask = n - 1;
final KEY_GENERIC_TYPE key[] = this.key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ n + 1 ];
#ifdef Linked
final long link[] = this.link = new long[ n + 1 ];
int prev = -1;
first = last = -1;
#endif
KEY_GENERIC_TYPE k;
for( int i = size, pos; i-- != 0; ) {
k = KEY_GENERIC_CAST s.READ_KEY();
if ( KEY_IS_NULL( k ) ) {
pos = n;
containsNull = true;
}
else {
if ( ! KEY_IS_NULL( key[ pos = KEY2INTHASH( k ) & mask ] ) )
while ( ! KEY_IS_NULL( key[ pos = ( pos + 1 ) & mask ] ) );
key[ pos ] = k;
}
#ifdef Linked
if ( first != -1 ) {
SET_NEXT( link[ prev ], pos );
SET_PREV( link[ pos ], prev );
prev = pos;
}
else {
prev = first = pos;
// Special case of SET_PREV( newLink[ pos ], -1 );
link[ pos ] |= (-1L & 0xFFFFFFFFL) << 32;
}
#endif
}
#ifdef Linked
last = prev;
if ( prev != -1 )
// Special case of SET_NEXT( link[ prev ], -1 );
link[ prev ] |= -1 & 0xFFFFFFFFL;
#endif
if ( ASSERTS ) checkTable();
}
#ifdef ASSERTS_CODE
private void checkTable() {
assert ( n & -n ) == n : "Table length is not a power of two: " + n;
assert n == key.length - 1;
int n = key.length - 1;
while( n-- != 0 )
if ( ! KEY_IS_NULL( key[ n ] ) && ! contains( key[ n ] ) )
throw new AssertionError( "Hash table has key " + key[ n ] + " marked as occupied, but the key does not belong to the table" );
#if #keys(primitive)
java.util.HashSet s = new java.util.HashSet ();
#else
java.util.HashSet