All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.LinkedOpenHashSet.drv Maven / Gradle / Ivy

The newest version!
/*		 
 * Copyright (C) 2002-2015 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */


package PACKAGE;

import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;

import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;

#ifdef Linked

#if #keys(reference)
import java.util.Comparator;
#endif

/**  A type-specific linked hash set with with a fast, small-footprint implementation.
 *
 * 

Instances of this class use a hash table to represent a set. The table is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth * of the load factor, it is halved in size. However, halving is * not performed when deleting entries from an iterator, as it would interfere * with the iteration process. * *

Note that {@link #clear()} does not modify the hash table size. * Rather, a family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * *

Iterators generated by this set will enumerate elements in the same order in which they * have been added to the set (addition of elements already present * in the set does not change the iteration order). Note that this order has nothing in common with the natural * order of the keys. The order is kept by means of a doubly linked list, represented * via an array of longs parallel to the table. * *

This class implements the interface of a sorted set, so to allow easy * access of the iteration order: for instance, you can get the first element * in iteration order with {@link #first()} without having to create an * iterator; however, this class partially violates the {@link java.util.SortedSet} * contract because all subset methods throw an exception and {@link * #comparator()} returns always null. * *

Additional methods, such as addAndMoveToFirst(), make it easy * to use instances of this class as a cache (e.g., with LRU policy). * *

The iterators provided by this class are type-specific {@linkplain * java.util.ListIterator list iterators}, and can be started at any * element which is in the set (if the provided element * is not in the set, a {@link NoSuchElementException} exception will be thrown). * If, however, the provided element is not the first or last element in the * set, the first access to the list index will require linear time, as in the worst case * the entire set must be scanned in iteration order to retrieve the positional * index of the starting element. If you use just the methods of a type-specific {@link it.unimi.dsi.fastutil.BidirectionalIterator}, * however, all operations will be performed in constant time. * * @see Hash * @see HashCommon */ public class OPEN_HASH_SET KEY_GENERIC extends ABSTRACT_SORTED_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash { #else #ifdef Custom /** A type-specific hash set with a fast, small-footprint implementation whose {@linkplain it.unimi.dsi.fastutil.Hash.Strategy hashing strategy} * is specified at creation time. * *

Instances of this class use a hash table to represent a set. The table is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth * of the load factor, it is halved in size. However, halving is * not performed when deleting entries from an iterator, as it would interfere * with the iteration process. * *

Note that {@link #clear()} does not modify the hash table size. * Rather, a family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * * @see Hash * @see HashCommon */ public class OPEN_HASH_SET KEY_GENERIC extends ABSTRACT_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash { #else /** A type-specific hash set with with a fast, small-footprint implementation. * *

Instances of this class use a hash table to represent a set. The table is * enlarged as needed by doubling its size when new entries are created, but it is never made * smaller (even on a {@link #clear()}). A family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * * @see Hash * @see HashCommon */ public class OPEN_HASH_SET KEY_GENERIC extends ABSTRACT_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash { #endif #endif private static final long serialVersionUID = 0L; private static final boolean ASSERTS = ASSERTS_VALUE; /** The array of keys. */ protected transient KEY_GENERIC_TYPE[] key; /** The mask for wrapping a position counter. */ protected transient int mask; /** Whether this set contains the null key. */ protected transient boolean containsNull; #ifdef Custom /** The hash strategy of this custom set. */ protected STRATEGY KEY_GENERIC strategy; #endif #ifdef Linked /** The index of the first entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */ protected transient int first = -1; /** The index of the last entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */ protected transient int last = -1; /** For each entry, the next and the previous entry in iteration order, * stored as ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL). * The first entry contains predecessor -1, and the last entry * contains successor -1. */ protected transient long[] link; #endif /** The current table size. */ protected transient int n; /** Threshold after which we rehash. It must be the table size times {@link #f}. */ protected transient int maxFill; /** Number of entries in the set (including the null key, if present). */ protected int size; /** The acceptable load factor. */ protected final float f; #ifdef Custom /** Creates a new hash set. * *

The actual table size will be the least power of two greater than expected/f. * * @param expected the expected number of elements in the hash set. * @param f the load factor. * @param strategy the strategy. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public OPEN_HASH_SET( final int expected, final float f, final STRATEGY KEY_GENERIC strategy ) { this.strategy = strategy; #else /** Creates a new hash set. * *

The actual table size will be the least power of two greater than expected/f. * * @param expected the expected number of elements in the hash set. * @param f the load factor. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public OPEN_HASH_SET( final int expected, final float f ) { #endif if ( f <= 0 || f > 1 ) throw new IllegalArgumentException( "Load factor must be greater than 0 and smaller than or equal to 1" ); if ( expected < 0 ) throw new IllegalArgumentException( "The expected number of elements must be nonnegative" ); this.f = f; n = arraySize( expected, f ); mask = n - 1; maxFill = maxFill( n, f ); key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ n + 1 ]; #ifdef Linked link = new long[ n + 1 ]; #endif } #ifdef Custom /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash set. * @param strategy the strategy. */ public OPEN_HASH_SET( final int expected, final STRATEGY KEY_GENERIC strategy ) { this( expected, DEFAULT_LOAD_FACTOR, strategy ); } #else /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash set. */ public OPEN_HASH_SET( final int expected ) { this( expected, DEFAULT_LOAD_FACTOR ); } #endif #ifdef Custom /** Creates a new hash set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * @param strategy the strategy. */ public OPEN_HASH_SET( final STRATEGY KEY_GENERIC strategy ) { this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, strategy ); } #else /** Creates a new hash set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public OPEN_HASH_SET() { this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR ); } #endif #ifdef Custom /** Creates a new hash set copying a given collection. * * @param c a {@link Collection} to be copied into the new hash set. * @param f the load factor. * @param strategy the strategy. */ public OPEN_HASH_SET( final Collection c, final float f, final STRATEGY KEY_GENERIC strategy ) { this( c.size(), f, strategy ); addAll( c ); } #else /** Creates a new hash set copying a given collection. * * @param c a {@link Collection} to be copied into the new hash set. * @param f the load factor. */ public OPEN_HASH_SET( final Collection c, final float f ) { this( c.size(), f ); addAll( c ); } #endif #ifdef Custom /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given collection. * * @param c a {@link Collection} to be copied into the new hash set. * @param strategy the strategy. */ public OPEN_HASH_SET( final Collection c, final STRATEGY KEY_GENERIC strategy ) { this( c, DEFAULT_LOAD_FACTOR, strategy ); } #else /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given collection. * * @param c a {@link Collection} to be copied into the new hash set. */ public OPEN_HASH_SET( final Collection c ) { this( c, DEFAULT_LOAD_FACTOR ); } #endif #ifdef Custom /** Creates a new hash set copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash set. * @param f the load factor. * @param strategy the strategy. */ public OPEN_HASH_SET( final COLLECTION KEY_EXTENDS_GENERIC c, final float f, STRATEGY KEY_GENERIC strategy ) { this( c.size(), f, strategy ); addAll( c ); } #else /** Creates a new hash set copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash set. * @param f the load factor. */ public OPEN_HASH_SET( final COLLECTION KEY_EXTENDS_GENERIC c, final float f ) { this( c.size(), f ); addAll( c ); } #endif #ifdef Custom /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash set. * @param strategy the strategy. */ public OPEN_HASH_SET( final COLLECTION KEY_EXTENDS_GENERIC c, final STRATEGY KEY_GENERIC strategy ) { this( c, DEFAULT_LOAD_FACTOR, strategy ); } #else /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash set. */ public OPEN_HASH_SET( final COLLECTION KEY_EXTENDS_GENERIC c ) { this( c, DEFAULT_LOAD_FACTOR ); } #endif #ifdef Custom /** Creates a new hash set using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. * @param f the load factor. * @param strategy the strategy. */ public OPEN_HASH_SET( final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final float f, final STRATEGY KEY_GENERIC strategy ) { this( DEFAULT_INITIAL_SIZE, f, strategy ); while( i.hasNext() ) add( i.NEXT_KEY() ); } #else /** Creates a new hash set using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. * @param f the load factor. */ public OPEN_HASH_SET( final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final float f ) { this( DEFAULT_INITIAL_SIZE, f ); while( i.hasNext() ) add( i.NEXT_KEY() ); } #endif #ifdef Custom /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. * @param strategy the strategy. */ public OPEN_HASH_SET( final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final STRATEGY KEY_GENERIC strategy ) { this( i, DEFAULT_LOAD_FACTOR, strategy ); } #else /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. */ public OPEN_HASH_SET( final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i ) { this( i, DEFAULT_LOAD_FACTOR ); } #endif #if #keys(primitive) #ifdef Custom /** Creates a new hash set using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. * @param f the load factor. * @param strategy the strategy. */ public OPEN_HASH_SET( final Iterator i, final float f, final STRATEGY KEY_GENERIC strategy ) { this( ITERATORS.AS_KEY_ITERATOR( i ), f, strategy ); } #else /** Creates a new hash set using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. * @param f the load factor. */ public OPEN_HASH_SET( final Iterator i, final float f ) { this( ITERATORS.AS_KEY_ITERATOR( i ), f ); } #endif #ifdef Custom /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. * @param strategy the strategy. */ public OPEN_HASH_SET( final Iterator i, final STRATEGY KEY_GENERIC strategy ) { this( ITERATORS.AS_KEY_ITERATOR( i ), strategy ); } #else /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. */ public OPEN_HASH_SET( final Iterator i ) { this( ITERATORS.AS_KEY_ITERATOR( i ) ); } #endif #endif #ifdef Custom /** Creates a new hash set and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. * @param f the load factor. * @param strategy the strategy. */ public OPEN_HASH_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length, final float f, final STRATEGY KEY_GENERIC strategy ) { this( length < 0 ? 0 : length, f, strategy ); ARRAYS.ensureOffsetLength( a, offset, length ); for( int i = 0; i < length; i++ ) add( a[ offset + i ] ); } #else /** Creates a new hash set and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. * @param f the load factor. */ public OPEN_HASH_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length, final float f ) { this( length < 0 ? 0 : length, f ); ARRAYS.ensureOffsetLength( a, offset, length ); for( int i = 0; i < length; i++ ) add( a[ offset + i ] ); } #endif #ifdef Custom /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. * @param strategy the strategy. */ public OPEN_HASH_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length, final STRATEGY KEY_GENERIC strategy ) { this( a, offset, length, DEFAULT_LOAD_FACTOR, strategy ); } #else /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. */ public OPEN_HASH_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length ) { this( a, offset, length, DEFAULT_LOAD_FACTOR ); } #endif #ifdef Custom /** Creates a new hash set copying the elements of an array. * * @param a an array to be copied into the new hash set. * @param f the load factor. * @param strategy the strategy. */ public OPEN_HASH_SET( final KEY_GENERIC_TYPE[] a, final float f, final STRATEGY KEY_GENERIC strategy ) { this( a, 0, a.length, f, strategy ); } #else /** Creates a new hash set copying the elements of an array. * * @param a an array to be copied into the new hash set. * @param f the load factor. */ public OPEN_HASH_SET( final KEY_GENERIC_TYPE[] a, final float f ) { this( a, 0, a.length, f ); } #endif #ifdef Custom /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying the elements of an array. * * @param a an array to be copied into the new hash set. * @param strategy the strategy. */ public OPEN_HASH_SET( final KEY_GENERIC_TYPE[] a, final STRATEGY KEY_GENERIC strategy ) { this( a, DEFAULT_LOAD_FACTOR, strategy ); } #else /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying the elements of an array. * * @param a an array to be copied into the new hash set. */ public OPEN_HASH_SET( final KEY_GENERIC_TYPE[] a ) { this( a, DEFAULT_LOAD_FACTOR ); } #endif #ifdef Custom /** Returns the hashing strategy. * * @return the hashing strategy of this custom hash set. */ public STRATEGY KEY_GENERIC strategy() { return strategy; } #endif private int realSize() { return containsNull ? size - 1 : size; } private void ensureCapacity( final int capacity ) { final int needed = arraySize( capacity, f ); if ( needed > n ) rehash( needed ); } private void tryCapacity( final long capacity ) { final int needed = (int)Math.min( 1 << 30, Math.max( 2, HashCommon.nextPowerOfTwo( (long)Math.ceil( capacity / f ) ) ) ); if ( needed > n ) rehash( needed ); } #if #keys(primitive) /** {@inheritDoc} */ public boolean addAll( COLLECTION c ) { if ( f <= .5 ) ensureCapacity( c.size() ); // The resulting collection will be sized for c.size() elements else tryCapacity( size() + c.size() ); // The resulting collection will be tentatively sized for size() + c.size() elements return super.addAll( c ); } #endif /** {@inheritDoc} */ public boolean addAll( Collection c ) { // The resulting collection will be at least c.size() big if ( f <= .5 ) ensureCapacity( c.size() ); // The resulting collection will be sized for c.size() elements else tryCapacity( size() + c.size() ); // The resulting collection will be tentatively sized for size() + c.size() elements return super.addAll( c ); } public boolean add( final KEY_GENERIC_TYPE k ) { int pos; if ( KEY_IS_NULL( k ) ) { if ( containsNull ) return false; #ifdef Linked pos = n; #endif containsNull = true; } else { KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; // The starting point. if ( ! KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) { if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return false; while( ! KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return false; } key[ pos ] = k; } #ifdef Linked if ( size == 0 ) { first = last = pos; // Special case of SET_UPPER_LOWER(link[ pos ], -1, -1); link[ pos ] = -1L; } else { SET_NEXT( link[ last ], pos ); SET_UPPER_LOWER( link[ pos ], last, -1 ); last = pos; } #endif if ( size++ >= maxFill ) rehash( arraySize( size + 1, f ) ); if ( ASSERTS ) checkTable(); return true; } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. */ protected final void shiftKeys( int pos ) { // Shift entries with the same hash. int last, slot; KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; for(;;) { pos = ( ( last = pos ) + 1 ) & mask; for(;;) { if ( KEY_IS_NULL( curr = key[ pos ] ) ) { key[ last ] = KEY_NULL; return; } slot = KEY2INTHASH( curr ) & mask; if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break; pos = ( pos + 1 ) & mask; } key[ last ] = curr; #ifdef Linked fixPointers( pos, last ); #endif } } private boolean removeEntry( final int pos ) { size--; #ifdef Linked fixPointers( pos ); #endif shiftKeys( pos ); if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 ); return true; } private boolean removeNullEntry() { containsNull = false; size--; #ifdef Linked fixPointers( n ); #endif if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 ); return true; } SUPPRESS_WARNINGS_CUSTOM_KEY_UNCHECKED public boolean remove( final KEY_TYPE k ) { if ( KEY_IS_NULL( k ) ) { if ( containsNull ) return removeNullEntry(); return false; } KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH_CAST( k ) & mask ] ) ) return false; if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return removeEntry( pos ); while( true ) { if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return false; if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return removeEntry( pos ); } } SUPPRESS_WARNINGS_CUSTOM_KEY_UNCHECKED public boolean contains( final KEY_TYPE k ) { if ( KEY_IS_NULL( k ) ) return containsNull; KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH_CAST( k ) & mask ] ) ) return false; if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return true; while( true ) { if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return false; if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return true; } } #if #keyclass(Object) /** Returns the element of this set that is equal to the given key, or null. * @return the element of this set that is equal to the given key, or null. */ SUPPRESS_WARNINGS_CUSTOM_KEY_UNCHECKED public K get( final Object k ) { if ( k == null ) return null; // This is correct independently of the value of containsNull KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH_CAST( k ) & mask ] ) ) return null; if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return curr; // There's always an unused entry. while( true ) { if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return null; if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return curr; } } #endif #ifdef Linked /** Removes the first key in iteration order. * @return the first key. * @throws NoSuchElementException is this set is empty. */ public KEY_GENERIC_TYPE REMOVE_FIRST_KEY() { if ( size == 0 ) throw new NoSuchElementException(); final int pos = first; // Abbreviated version of fixPointers(pos) first = GET_NEXT(link[ pos ]); if ( 0 <= first ) { // Special case of SET_PREV( link[ first ], -1 ) link[ first ] |= (-1 & 0xFFFFFFFFL) << 32; } final KEY_GENERIC_TYPE k = key[ pos ]; size--; if ( KEY_IS_NULL( k ) ) containsNull = false; else shiftKeys( pos ); if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 ); return k; } /** Removes the the last key in iteration order. * @return the last key. * @throws NoSuchElementException is this set is empty. */ public KEY_GENERIC_TYPE REMOVE_LAST_KEY() { if ( size == 0 ) throw new NoSuchElementException(); final int pos = last; // Abbreviated version of fixPointers(pos) last = GET_PREV(link[ pos ]); if ( 0 <= last ) { // Special case of SET_NEXT( link[ last ], -1 ) link[ last ] |= -1 & 0xFFFFFFFFL; } final KEY_GENERIC_TYPE k = key[ pos ]; size--; if ( KEY_IS_NULL( k ) ) containsNull = false; else shiftKeys( pos ); if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 ); return k; } private void moveIndexToFirst( final int i ) { if ( size == 1 || first == i ) return; if ( last == i ) { last = GET_PREV(link[ i ]); // Special case of SET_NEXT( link[ last ], -1 ); link[ last ] |= -1 & 0xFFFFFFFFL; } else { final long linki = link[ i ]; final int prev = GET_PREV(linki); final int next = GET_NEXT(linki); COPY_NEXT(link[ prev ], linki); COPY_PREV(link[ next ], linki); } SET_PREV( link[ first ], i ); SET_UPPER_LOWER( link[ i ], -1, first ); first = i; } private void moveIndexToLast( final int i ) { if ( size == 1 || last == i ) return; if ( first == i ) { first = GET_NEXT(link[ i ]); // Special case of SET_PREV( link[ first ], -1 ); link[ first ] |= (-1 & 0xFFFFFFFFL) << 32; } else { final long linki = link[ i ]; final int prev = GET_PREV(linki); final int next = GET_NEXT(linki); COPY_NEXT(link[ prev ], linki); COPY_PREV(link[ next ], linki); } SET_NEXT( link[ last ], i ); SET_UPPER_LOWER( link[ i ], last, -1 ); last = i; } /** Adds a key to the set; if the key is already present, it is moved to the first position of the iteration order. * * @param k the key. * @return true if the key was not present. */ public boolean addAndMoveToFirst( final KEY_GENERIC_TYPE k ) { int pos; if ( KEY_IS_NULL( k ) ) { if ( containsNull ) { moveIndexToFirst( n ); return false; } containsNull = true; pos = n; } else { // The starting point. final KEY_GENERIC_TYPE key[] = this.key; pos = KEY2INTHASH( k ) & mask; // There's always an unused entry. TODO while( ! KEY_IS_NULL( key[ pos ] ) ) { if ( KEY_EQUALS_NOT_NULL( k, key[ pos ] ) ) { moveIndexToFirst( pos ); return false; } pos = ( pos + 1 ) & mask; } key[ pos ] = k; } if ( size == 0 ) { first = last = pos; // Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 ); link[ pos ] = -1L; } else { SET_PREV( link[ first ], pos ); SET_UPPER_LOWER( link[ pos ], -1, first ); first = pos; } if ( size++ >= maxFill ) rehash( arraySize( size, f ) ); if ( ASSERTS ) checkTable(); return true; } /** Adds a key to the set; if the key is already present, it is moved to the last position of the iteration order. * * @param k the key. * @return true if the key was not present. */ public boolean addAndMoveToLast( final KEY_GENERIC_TYPE k ) { int pos; if ( KEY_IS_NULL( k ) ) { if ( containsNull ) { moveIndexToLast( n ); return false; } containsNull = true; pos = n; } else { // The starting point. final KEY_GENERIC_TYPE key[] = this.key; pos = KEY2INTHASH( k ) & mask; // There's always an unused entry. while( ! KEY_IS_NULL( key[ pos ] ) ) { if ( KEY_EQUALS_NOT_NULL( k, key[ pos ] ) ) { moveIndexToLast( pos ); return false; } pos = ( pos + 1 ) & mask; } key[ pos ] = k; } if ( size == 0 ) { first = last = pos; // Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 ); link[ pos ] = -1L; } else { SET_NEXT( link[ last ], pos ); SET_UPPER_LOWER( link[ pos ], last, -1 ); last = pos; } if ( size++ >= maxFill ) rehash( arraySize( size, f ) ); if ( ASSERTS ) checkTable(); return true; } #endif /* Removes all elements from this set. * *

To increase object reuse, this method does not change the table size. * If you want to reduce the table size, you must use {@link #trim()}. * */ public void clear() { if ( size == 0 ) return; size = 0; containsNull = false; Arrays.fill( key, KEY_NULL ); #ifdef Linked first = last = -1; #endif } public int size() { return size; } public boolean isEmpty() { return size == 0; } /** A no-op for backward compatibility. * * @param growthFactor unused. * @deprecated Since fastutil 6.1.0, hash tables are doubled when they are too full. */ @Deprecated public void growthFactor( int growthFactor ) {} /** Gets the growth factor (2). * * @return the growth factor of this set, which is fixed (2). * @see #growthFactor(int) * @deprecated Since fastutil 6.1.0, hash tables are doubled when they are too full. */ @Deprecated public int growthFactor() { return 16; } #ifdef Linked /** Modifies the {@link #link} vector so that the given entry is removed. * This method will complete in constant time. * * @param i the index of an entry. */ protected void fixPointers( final int i ) { if ( size == 0 ) { first = last = -1; return; } if ( first == i ) { first = GET_NEXT(link[ i ]); if (0 <= first) { // Special case of SET_PREV( link[ first ], -1 ) link[ first ] |= (-1 & 0xFFFFFFFFL) << 32; } return; } if ( last == i ) { last = GET_PREV(link[ i ]); if (0 <= last) { // Special case of SET_NEXT( link[ last ], -1 ) link[ last ] |= -1 & 0xFFFFFFFFL; } return; } final long linki = link[ i ]; final int prev = GET_PREV(linki); final int next = GET_NEXT(linki); COPY_NEXT(link[ prev ], linki); COPY_PREV(link[ next ], linki); } /** Modifies the {@link #link} vector for a shift from s to d. * This method will complete in constant time. * * @param s the source position. * @param d the destination position. */ protected void fixPointers( int s, int d ) { if ( size == 1 ) { first = last = d; // Special case of SET(link[ d ], -1, -1) link[ d ] = -1L; return; } if ( first == s ) { first = d; SET_PREV( link[ GET_NEXT(link[ s ]) ], d ); link[ d ] = link[ s ]; return; } if ( last == s ) { last = d; SET_NEXT( link[ GET_PREV(link[ s ])], d ); link[ d ] = link[ s ]; return; } final long links = link[ s ]; final int prev = GET_PREV(links); final int next = GET_NEXT(links); SET_NEXT( link[ prev ], d ); SET_PREV( link[ next ], d ); link[ d ] = links; } /** Returns the first element of this set in iteration order. * * @return the first element in iteration order. */ public KEY_GENERIC_TYPE FIRST() { if ( size == 0 ) throw new NoSuchElementException(); return key[ first ]; } /** Returns the last element of this set in iteration order. * * @return the last element in iteration order. */ public KEY_GENERIC_TYPE LAST() { if ( size == 0 ) throw new NoSuchElementException(); return key[ last ]; } public SORTED_SET KEY_GENERIC tailSet( KEY_GENERIC_TYPE from ) { throw new UnsupportedOperationException(); } public SORTED_SET KEY_GENERIC headSet( KEY_GENERIC_TYPE to ) { throw new UnsupportedOperationException(); } public SORTED_SET KEY_GENERIC subSet( KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to ) { throw new UnsupportedOperationException(); } public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return null; } /** A list iterator over a linked set. * *

This class provides a list iterator over a linked hash set. The constructor runs in constant time. */ private class SetIterator extends KEY_ABSTRACT_LIST_ITERATOR KEY_GENERIC { /** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or null if no previous entry exists). */ int prev = -1; /** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or null if no next entry exists). */ int next = -1; /** The last entry that was returned (or -1 if we did not iterate or used {@link #remove()}). */ int curr = -1; /** The current index (in the sense of a {@link java.util.ListIterator}). When -1, we do not know the current index.*/ int index = -1; SetIterator() { next = first; index = 0; } SetIterator( KEY_GENERIC_TYPE from ) { if ( KEY_IS_NULL( from ) ) { if ( OPEN_HASH_SET.this.containsNull ) { next = GET_NEXT( link[ n ] ); prev = n; return; } else throw new NoSuchElementException( "The key " + from + " does not belong to this set." ); } if ( KEY_EQUALS( key[ last ], from ) ) { prev = last; index = size; return; } // The starting point. final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key; int pos = KEY2INTHASH( from ) & mask; // There's always an unused entry. while( ! KEY_IS_NULL( key[ pos ] ) ) { if ( KEY_EQUALS_NOT_NULL( key[ pos ], from ) ) { // Note: no valid index known. next = GET_NEXT( link[ pos ] ); prev = pos; return; } pos = ( pos + 1 ) & mask; } throw new NoSuchElementException( "The key " + from + " does not belong to this set." ); } public boolean hasNext() { return next != -1; } public boolean hasPrevious() { return prev != -1; } public KEY_GENERIC_TYPE NEXT_KEY() { if ( ! hasNext() ) throw new NoSuchElementException(); curr = next; next = GET_NEXT(link[ curr ]); prev = curr; if ( index >= 0 ) index++; if ( ASSERTS ) assert curr == n || ! KEY_IS_NULL( key[ curr ] ) : "Position " + curr + " is not used"; return key[ curr ]; } public KEY_GENERIC_TYPE PREV_KEY() { if ( ! hasPrevious() ) throw new NoSuchElementException(); curr = prev; prev = GET_PREV(link[ curr ]); next = curr; if ( index >= 0 ) index--; return key[ curr ]; } private final void ensureIndexKnown() { if ( index >= 0 ) return; if ( prev == -1 ) { index = 0; return; } if ( next == -1 ) { index = size; return; } int pos = first; index = 1; while( pos != prev ) { pos = GET_NEXT( link[ pos ] ); index++; } } public int nextIndex() { ensureIndexKnown(); return index; } public int previousIndex() { ensureIndexKnown(); return index - 1; } public void remove() { ensureIndexKnown(); if ( curr == -1 ) throw new IllegalStateException(); if ( curr == prev ) { /* If the last operation was a next(), we are removing an entry that preceeds the current index, and thus we must decrement it. */ index--; prev = GET_PREV(link[ curr ]); } else next = GET_NEXT(link[ curr ]); size--; /* Now we manually fix the pointers. Because of our knowledge of next and prev, this is going to be faster than calling fixPointers(). */ if ( prev == -1 ) first = next; else SET_NEXT( link[ prev ], next ); if ( next == -1 ) last = prev; else SET_PREV( link[ next ], prev ); int last, slot, pos = curr; curr = -1; if ( pos == n ) OPEN_HASH_SET.this.containsNull = false; else { KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = OPEN_HASH_SET.this.key; // We have to horribly duplicate the shiftKeys() code because we need to update next/prev. for(;;) { pos = ( ( last = pos ) + 1 ) & mask; for(;;) { if ( KEY_IS_NULL( curr = key[ pos ] ) ) { key[ last ] = KEY_NULL; return; } slot = KEY2INTHASH( curr ) & mask; if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break; pos = ( pos + 1 ) & mask; } key[ last ] = curr; if ( next == pos ) next = last; if ( prev == pos ) prev = last; fixPointers( pos, last ); } } } } /** Returns a type-specific list iterator on the elements in this set, starting from a given element of the set. * Please see the class documentation for implementation details. * * @param from an element to start from. * @return a type-specific list iterator starting at the given element. * @throws IllegalArgumentException if from does not belong to the set. */ public KEY_LIST_ITERATOR KEY_GENERIC iterator( KEY_GENERIC_TYPE from ) { return new SetIterator( from ); } public KEY_LIST_ITERATOR KEY_GENERIC iterator() { return new SetIterator(); } #else /** An iterator over a hash set. */ private class SetIterator extends KEY_ABSTRACT_ITERATOR KEY_GENERIC { /** The index of the last entry returned, if positive or zero; initially, {@link #n}. If negative, the last element returned was that of index {@code - pos - 1} from the {@link #wrapped} list. */ int pos = n; /** The index of the last entry that has been returned (more precisely, the value of {@link #pos} if {@link #pos} is positive, or {@link Integer#MIN_VALUE} if {@link #pos} is negative). It is -1 if either we did not return an entry yet, or the last returned entry has been removed. */ int last = -1; /** A downward counter measuring how many entries must still be returned. */ int c = size; /** A boolean telling us whether we should return the null key. */ boolean mustReturnNull = OPEN_HASH_SET.this.containsNull; /** A lazily allocated list containing elements that have wrapped around the table because of removals. */ ARRAY_LIST KEY_GENERIC wrapped; public boolean hasNext() { return c != 0; } public KEY_GENERIC_TYPE NEXT_KEY() { if ( ! hasNext() ) throw new NoSuchElementException(); c--; if ( mustReturnNull ) { mustReturnNull = false; last = n; return KEY_NULL; } final KEY_GENERIC_TYPE key[] = OPEN_HASH_SET.this.key; for(;;) { if ( --pos < 0 ) { // We are just enumerating elements from the wrapped list. last = Integer.MIN_VALUE; return wrapped.GET_KEY( - pos - 1 ); } if ( ! KEY_IS_NULL( key[ pos ] ) ) return key[ last = pos ]; } } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. */ private final void shiftKeys( int pos ) { // Shift entries with the same hash. int last, slot; KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = OPEN_HASH_SET.this.key; for(;;) { pos = ( ( last = pos ) + 1 ) & mask; for(;;) { if ( KEY_IS_NULL( curr = key[ pos ] ) ) { key[ last ] = KEY_NULL; return; } slot = KEY2INTHASH( curr ) & mask; if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break; pos = ( pos + 1 ) & mask; } if ( pos < last ) { // Wrapped entry. if ( wrapped == null ) wrapped = new ARRAY_LIST KEY_GENERIC( 2 ); wrapped.add( key[ pos ] ); } key[ last ] = curr; } } public void remove() { if ( last == -1 ) throw new IllegalStateException(); if ( last == n ) OPEN_HASH_SET.this.containsNull = false; else if ( pos >= 0 ) shiftKeys( last ); else { // We're removing wrapped entries. #if #keys(reference) OPEN_HASH_SET.this.remove( wrapped.set( - pos - 1, null ) ); #else OPEN_HASH_SET.this.remove( wrapped.GET_KEY( - pos - 1 ) ); #endif last = -1; // Note that we must not decrement size return; } size--; last = -1; // You can no longer remove this entry. if ( ASSERTS ) checkTable(); } } public KEY_ITERATOR KEY_GENERIC iterator() { return new SetIterator(); } #endif /** A no-op for backward compatibility. The kind of tables implemented by * this class never need rehashing. * *

If you need to reduce the table size to fit exactly * this set, use {@link #trim()}. * * @return true. * @see #trim() * @deprecated A no-op. */ @Deprecated public boolean rehash() { return true; } /** Rehashes this set, making the table as small as possible. * *

This method rehashes the table to the smallest size satisfying the * load factor. It can be used when the set will not be changed anymore, so * to optimize access speed and size. * *

If the table size is already the minimum possible, this method * does nothing. * * @return true if there was enough memory to trim the set. * @see #trim(int) */ public boolean trim() { final int l = arraySize( size, f ); if ( l >= n ) return true; try { rehash( l ); } catch(OutOfMemoryError cantDoIt) { return false; } return true; } /** Rehashes this set if the table is too large. * *

Let N be the smallest table size that can hold * max(n,{@link #size()}) entries, still satisfying the load factor. If the current * table size is smaller than or equal to N, this method does * nothing. Otherwise, it rehashes this set in a table of size * N. * *

This method is useful when reusing sets. {@linkplain #clear() Clearing a * set} leaves the table size untouched. If you are reusing a set * many times, you can call this method with a typical * size to avoid keeping around a very large table just * because of a few large transient sets. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the set. * @see #trim() */ public boolean trim( final int n ) { final int l = HashCommon.nextPowerOfTwo( (int)Math.ceil( n / f ) ); if ( this.n <= l ) return true; try { rehash( l ); } catch( OutOfMemoryError cantDoIt ) { return false; } return true; } /** Rehashes the set. * *

This method implements the basic rehashing strategy, and may be * overriden by subclasses implementing different rehashing strategies (e.g., * disk-based rehashing). However, you should not override this method * unless you understand the internal workings of this class. * * @param newN the new size */ SUPPRESS_WARNINGS_KEY_UNCHECKED protected void rehash( final int newN ) { final KEY_GENERIC_TYPE key[] = this.key; final int mask = newN - 1; // Note that this is used by the hashing macro final KEY_GENERIC_TYPE newKey[] = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ newN + 1 ]; #ifdef Linked int i = first, prev = -1, newPrev = -1, t, pos; final long link[] = this.link; final long newLink[] = new long[ newN + 1 ]; first = -1; for( int j = size; j-- != 0; ) { if ( KEY_IS_NULL( key[ i ] ) ) pos = newN; else { pos = KEY2INTHASH( key[ i ] ) & mask; while ( ! KEY_IS_NULL( newKey[ pos ] ) ) pos = ( pos + 1 ) & mask; newKey[ pos ] = key[ i ]; } if ( prev != -1 ) { SET_NEXT( newLink[ newPrev ], pos ); SET_PREV( newLink[ pos ], newPrev ); newPrev = pos; } else { newPrev = first = pos; // Special case of SET(newLink[ pos ], -1, -1); newLink[ pos ] = -1L; } t = i; i = GET_NEXT(link[ i ]); prev = t; } this.link = newLink; this.last = newPrev; if ( newPrev != -1 ) // Special case of SET_NEXT( newLink[ newPrev ], -1 ); newLink[ newPrev ] |= -1 & 0xFFFFFFFFL; #else int i = n, pos; for( int j = realSize(); j-- != 0; ) { while( KEY_IS_NULL( key[ --i ] ) ); if ( ! KEY_IS_NULL( newKey[ pos = KEY2INTHASH( key[ i ] ) & mask ] ) ) while ( ! KEY_IS_NULL( newKey[ pos = ( pos + 1 ) & mask ] ) ); newKey[ pos ] = key[ i ]; } #endif n = newN; this.mask = mask; maxFill = maxFill( n, f ); this.key = newKey; } /** Returns a deep copy of this set. * *

This method performs a deep copy of this hash set; the data stored in the * set, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this set. */ SUPPRESS_WARNINGS_KEY_UNCHECKED public OPEN_HASH_SET KEY_GENERIC clone() { OPEN_HASH_SET KEY_GENERIC c; try { c = (OPEN_HASH_SET KEY_GENERIC)super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.key = key.clone(); c.containsNull = containsNull; #ifdef Linked c.link = link.clone(); #endif #ifdef Custom c.strategy = strategy; #endif return c; } /** Returns a hash code for this set. * * This method overrides the generic method provided by the superclass. * Since equals() is not overriden, it is important * that the value returned by this method is the same value as * the one returned by the overriden method. * * @return a hash code for this set. */ public int hashCode() { int h = 0; for( int j = realSize(), i = 0; j-- != 0; ) { while( KEY_IS_NULL( key[ i ] ) ) i++; #if #keys(reference) if ( this != key[ i ] ) #endif h += KEY2JAVAHASH_NOT_NULL( key[ i ] ); i++; } // Zero / null have hash zero. return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final KEY_ITERATOR KEY_GENERIC i = iterator(); s.defaultWriteObject(); for( int j = size; j-- != 0; ) s.WRITE_KEY( i.NEXT_KEY() ); } SUPPRESS_WARNINGS_KEY_UNCHECKED private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = arraySize( size, f ); maxFill = maxFill( n, f ); mask = n - 1; final KEY_GENERIC_TYPE key[] = this.key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ n + 1 ]; #ifdef Linked final long link[] = this.link = new long[ n + 1 ]; int prev = -1; first = last = -1; #endif KEY_GENERIC_TYPE k; for( int i = size, pos; i-- != 0; ) { k = KEY_GENERIC_CAST s.READ_KEY(); if ( KEY_IS_NULL( k ) ) { pos = n; containsNull = true; } else { if ( ! KEY_IS_NULL( key[ pos = KEY2INTHASH( k ) & mask ] ) ) while ( ! KEY_IS_NULL( key[ pos = ( pos + 1 ) & mask ] ) ); key[ pos ] = k; } #ifdef Linked if ( first != -1 ) { SET_NEXT( link[ prev ], pos ); SET_PREV( link[ pos ], prev ); prev = pos; } else { prev = first = pos; // Special case of SET_PREV( newLink[ pos ], -1 ); link[ pos ] |= (-1L & 0xFFFFFFFFL) << 32; } #endif } #ifdef Linked last = prev; if ( prev != -1 ) // Special case of SET_NEXT( link[ prev ], -1 ); link[ prev ] |= -1 & 0xFFFFFFFFL; #endif if ( ASSERTS ) checkTable(); } #ifdef ASSERTS_CODE private void checkTable() { assert ( n & -n ) == n : "Table length is not a power of two: " + n; assert n == key.length - 1; int n = key.length - 1; while( n-- != 0 ) if ( ! KEY_IS_NULL( key[ n ] ) && ! contains( key[ n ] ) ) throw new AssertionError( "Hash table has key " + key[ n ] + " marked as occupied, but the key does not belong to the table" ); #if #keys(primitive) java.util.HashSet s = new java.util.HashSet (); #else java.util.HashSet s = new java.util.HashSet(); #endif for( int i = key.length - 1; i-- != 0; ) if ( ! KEY_IS_NULL( key[ i ] ) && ! s.add( key[ i ] ) ) throw new AssertionError( "Key " + key[ i ] + " appears twice at position " + i ); #ifdef Linked KEY_LIST_ITERATOR KEY_GENERIC i = iterator(); KEY_GENERIC_TYPE k; n = size(); while( n-- != 0 ) if ( ! contains( k = i.NEXT_KEY() ) ) throw new AssertionError( "Linked hash table forward enumerates key " + k + ", but the key does not belong to the table" ); if ( i.hasNext() ) throw new AssertionError( "Forward iterator not exhausted" ); n = size(); if ( n > 0 ) { i = iterator( LAST() ); while( n-- != 0 ) if ( ! contains( k = i.PREV_KEY() ) ) throw new AssertionError( "Linked hash table backward enumerates key " + k + ", but the key does not belong to the table" ); if ( i.hasPrevious() ) throw new AssertionError( "Previous iterator not exhausted" ); } #endif } #else private void checkTable() {} #endif #ifdef TEST private static long seed = System.currentTimeMillis(); private static java.util.Random r = new java.util.Random( seed ); private static KEY_TYPE genKey() { #if #keyclass(Byte) || #keyclass(Short) || #keyclass(Character) return (KEY_TYPE)(r.nextInt()); #elif #keys(primitive) return r.NEXT_KEY(); #elif #keyclass(Object) #ifdef Custom int i = r.nextInt( 3 ); byte a[] = new byte[ i ]; while( i-- != 0 ) a[ i ] = (byte)r.nextInt(); return a; #else return Integer.toBinaryString( r.nextInt() ); #endif #else return new java.io.Serializable() {}; #endif } private static final class ArrayComparator implements java.util.Comparator { public int compare( Object a, Object b ) { byte[] aa = (byte[])a; byte[] bb = (byte[])b; int length = Math.min( aa.length, bb.length ); for( int i = 0; i < length; i++ ) { if ( aa[ i ] < bb[ i ] ) return -1; if ( aa[ i ] > bb[ i ] ) return 1; } return aa.length == bb.length ? 0 : ( aa.length < bb.length ? -1 : 1 ); } } private static final class MockSet extends java.util.TreeSet { private java.util.List list = new java.util.ArrayList(); public MockSet( java.util.Comparator c ) { super( c ); } public boolean add( Object k ) { if ( ! contains( k ) ) list.add( k ); return super.add( k ); } public boolean addAll( Collection c ) { java.util.Iterator i = c.iterator(); boolean result = false; while( i.hasNext() ) result |= add( i.next() ); return result; } public boolean removeAll( Collection c ) { java.util.Iterator i = c.iterator(); boolean result = false; while( i.hasNext() ) result |= remove( i.next() ); return result; } public boolean remove( Object k ) { if ( contains( k ) ) { int i = list.size(); while( i-- != 0 ) if ( comparator().compare( list.get( i ), k ) == 0 ) { list.remove( i ); break; } } return super.remove( k ); } private void justRemove( Object k ) { super.remove( k ); } public java.util.Iterator iterator() { return new java.util.Iterator() { final java.util.Iterator iterator = list.iterator(); Object curr; public Object next() { return curr = iterator.next(); } public boolean hasNext() { return iterator.hasNext(); } public void remove() { justRemove( curr ); iterator.remove(); } }; } } private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" ); private static java.text.FieldPosition fp = new java.text.FieldPosition( 0 ); private static String format( double d ) { StringBuffer s = new StringBuffer(); return format.format( d, s, fp ).toString(); } private static void speedTest( int n, float f, boolean comp ) { #ifndef Custom int i, j; OPEN_HASH_SET m; #ifdef Linked java.util.LinkedHashSet t; #else java.util.HashSet t; #endif KEY_TYPE k[] = new KEY_TYPE[n]; KEY_TYPE nk[] = new KEY_TYPE[n]; long ns; for( i = 0; i < n; i++ ) { k[i] = genKey(); nk[i] = genKey(); } double totAdd = 0, totYes = 0, totNo = 0, totIter = 0, totRemYes = 0, totRemNo = 0, d; if ( comp ) { for( j = 0; j < 20; j++ ) { #ifdef Linked t = new java.util.LinkedHashSet( 16 ); #else t = new java.util.HashSet( 16 ); #endif /* We add pairs to t. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) t.add( KEY2OBJ( k[i] ) ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totAdd += d; System.out.print("Add: " + format( d ) + "ns " ); /* We check for pairs in t. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) t.contains( KEY2OBJ( k[i] ) ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totYes += d; System.out.print("Yes: " + format( d ) + "ns " ); /* We check for pairs not in t. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) t.contains( KEY2OBJ( nk[i] ) ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totNo += d; System.out.print("No: " + format( d ) + "ns " ); /* We iterate on t. */ ns = System.nanoTime(); for( java.util.Iterator it = t.iterator(); it.hasNext(); it.next() ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totIter += d; System.out.print("Iter: " + format( d ) + "ns " ); // Too expensive in the linked case #ifndef Linked /* We delete pairs not in t. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) t.remove( KEY2OBJ( nk[i] ) ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totRemNo += d; System.out.print("RemNo: " + format( d ) + "ns " ); /* We delete pairs in t. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) t.remove( KEY2OBJ( k[i] ) ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totRemYes += d; System.out.print("RemYes: " + format( d ) + "ns " ); #endif System.out.println(); } System.out.println(); System.out.println( "java.util Add: " + format( totAdd/(j-3) ) + "ns Yes: " + format( totYes/(j-3) ) + "ns No: " + format( totNo/(j-3) ) + "ns Iter: " + format( totIter/(j-3) ) + "ns RemNo: " + format( totRemNo/(j-3) ) + "ns RemYes: " + format( totRemYes/(j-3) ) + "ns" ); System.out.println(); totAdd = totYes = totNo = totIter = totRemYes = totRemNo = 0; } for( j = 0; j < 20; j++ ) { m = new OPEN_HASH_SET( 16, f ); /* We add pairs to m. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) m.add( k[i] ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totAdd += d; System.out.print("Add: " + format( d ) + "ns " ); /* We check for pairs in m. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) m.contains( k[i] ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totYes += d; System.out.print("Yes: " + format( d ) + "ns " ); /* We check for pairs not in m. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) m.contains( nk[i] ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totNo += d; System.out.print("No: " + format( d ) + "ns " ); /* We iterate on m. */ ns = System.nanoTime(); for( KEY_ITERATOR it = (KEY_ITERATOR)m.iterator(); it.hasNext(); it.NEXT_KEY() ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totIter += d; System.out.print("Iter: " + format( d ) + "ns " ); // Too expensive in the linked case #ifndef Linked /* We delete pairs not in m. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) m.remove( nk[i] ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totRemNo += d; System.out.print("RemNo: " + format( d ) + "ns " ); /* We delete pairs in m. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) m.remove( k[i] ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totRemYes += d; System.out.print("RemYes: " + format( d ) + "ns " ); #endif System.out.println(); } System.out.println(); System.out.println( "fastutil Add: " + format( totAdd/(j-3) ) + "ns Yes: " + format( totYes/(j-3) ) + "ns No: " + format( totNo/(j-3) ) + "ns Iter: " + format( totIter/(j-3) ) + "ns RemNo: " + format( totRemNo/(j-3) ) + "ns RemYes: " + format( totRemYes/(j-3) ) + "ns" ); System.out.println(); #endif } private static void fatal( String msg ) { System.out.println( msg ); System.exit( 1 ); } private static void ensure( boolean cond, String msg ) { if ( cond ) return; fatal( msg ); } private static void printProbes( OPEN_HASH_SET m ) { long totProbes = 0; double totSquareProbes = 0; int maxProbes = 0; final double f = (double)m.size / m.n; for( int i = 0, c = 0; i < m.n; i++ ) { if ( ! KEY_IS_NULL( m.key[ i ] ) ) c++; else { if ( c != 0 ) { final long p = ( c + 1 ) * ( c + 2 ) / 2; totProbes += p; totSquareProbes += (double)p * p; } maxProbes = Math.max( c, maxProbes ); c = 0; totProbes++; totSquareProbes++; } } final double expected = (double)totProbes / m.n; System.err.println( "Expected probes: " + ( 3 * Math.sqrt( 3 ) * ( f / ( ( 1 - f ) * ( 1 - f ) ) ) + 4 / ( 9 * f ) - 1 ) + "; actual: " + expected + "; stddev: " + Math.sqrt( totSquareProbes / m.n - expected * expected ) + "; max probes: " + maxProbes ); } private static void test( int n, float f ) { #if !defined(Custom) || #keys(reference) int c; #ifdef Custom OPEN_HASH_SET m = new OPEN_HASH_SET(Hash.DEFAULT_INITIAL_SIZE, f, it.unimi.dsi.fastutil.bytes.ByteArrays.HASH_STRATEGY); #else OPEN_HASH_SET m = new OPEN_HASH_SET(Hash.DEFAULT_INITIAL_SIZE, f); #endif #ifdef Linked #ifdef Custom java.util.Set t = new MockSet(new ArrayComparator()); #else java.util.Set t = new java.util.LinkedHashSet(); #endif #else #ifdef Custom java.util.Set t = new java.util.TreeSet(new ArrayComparator()); #else java.util.Set t = new java.util.HashSet(); #endif #endif /* First of all, we fill t with random data. */ for(int i=0; i 0 ) { java.util.ListIterator i, j; Object J; j = new java.util.LinkedList( t ).listIterator(); int e = r.nextInt( t.size() ); Object from; do from = j.next(); while( e-- != 0 ); i = (java.util.ListIterator)m.iterator( KEY_OBJ2TYPE( from ) ); for( int k = 0; k < 2*n; k++ ) { ensure( i.hasNext() == j.hasNext(), "Error (" + seed + "): divergence in hasNext() (iterator with starting point " + from + ")" ); ensure( i.hasPrevious() == j.hasPrevious(), "Error (" + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")" ); if ( r.nextFloat() < .8 && i.hasNext() ) { #ifdef Custom ensure( m.strategy().equals( i.next(), J = j.next() ), "Error (" + seed + "): divergence in next() (iterator with starting point " + from + ")" ); #else ensure( i.next().equals( J = j.next() ), "Error (" + seed + "): divergence in next() (iterator with starting point " + from + ")" ); #endif if ( r.nextFloat() < 0.5 ) { i.remove(); j.remove(); t.remove( J ); } } else if ( r.nextFloat() < .2 && i.hasPrevious() ) { #ifdef Custom ensure( m.strategy().equals( i.previous(), J = j.previous() ), "Error (" + seed + "): divergence in previous() (iterator with starting point " + from + ")" ); #else ensure( i.previous().equals( J = j.previous() ), "Error (" + seed + "): divergence in previous() (iterator with starting point " + from + ")" ); #endif if ( r.nextFloat() < 0.5 ) { i.remove(); j.remove(); t.remove( J ); } } ensure( i.nextIndex() == j.nextIndex(), "Error (" + seed + "): divergence in nextIndex() (iterator with starting point " + from + ")" ); ensure( i.previousIndex() == j.previousIndex(), "Error (" + seed + "): divergence in previousIndex() (iterator with starting point " + from + ")" ); } } /* Now we check that m actually holds that data. */ ensure( m.equals(t), "Error (" + seed + "): ! m.equals( t ) after iteration" ); ensure( t.equals(m), "Error (" + seed + "): ! t.equals( m ) after iteration" ); #endif /* Now we take out of m everything, and check that it is empty. */ for(java.util.Iterator i=m.iterator(); i.hasNext(); ) { i.next(); i.remove();} if (!m.isEmpty()) { System.out.println("Error (" + seed + "): m is not empty (as it should be)"); System.exit( 1 ); } #if #keyclass(Integer) || #keyclass(Long) m = new OPEN_HASH_SET(n, f); t.clear(); int x; /* Now we torture-test the hash table. This part is implemented only for integers and longs. */ int p = m.key.length - 1; for(int i=0; i2) f = Float.parseFloat(args[2]); if ( args.length > 3 ) r = new java.util.Random( seed = Long.parseLong( args[ 3 ] ) ); try { if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, f, "speedComp".equals(args[0]) ); else if ( "test".equals( args[0] ) ) test(n, f); } catch( Throwable e ) { e.printStackTrace( System.err ); System.err.println( "seed: " + seed ); } } #endif }