All Downloads are FREE. Search and download functionalities are using the official Maven repository.

drv.OpenCustomHashMap.drv Maven / Gradle / Ivy

The newest version!
/*		 
 * Copyright (C) 2002-2015 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */


package PACKAGE;

import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;

import java.util.Map;
import java.util.Arrays;
import java.util.NoSuchElementException;

import VALUE_PACKAGE.VALUE_COLLECTION;
import VALUE_PACKAGE.VALUE_ABSTRACT_COLLECTION;

#if #values(primitive) || #keys(primitive) && #valueclass(Object)
import VALUE_PACKAGE.VALUE_ITERATOR;
#endif

#ifdef Linked

import java.util.Comparator;

#if #key(reference)
import java.util.Collection;
import java.util.Iterator;
import java.util.Set;
import java.util.SortedMap;
import java.util.SortedSet;
#endif

#if #values(primitive)
import VALUE_PACKAGE.VALUE_LIST_ITERATOR;
#endif

#if #keys(primitive) && #valueclass(Reference)
import it.unimi.dsi.fastutil.objects.ObjectIterator;
#endif

import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;

#else

import it.unimi.dsi.fastutil.objects.AbstractObjectSet;

#if #keys(primitive) && ! #valueclass(Object)
import it.unimi.dsi.fastutil.objects.ObjectIterator;
#endif

#endif


#ifdef Linked
/**  A type-specific linked hash map with with a fast, small-footprint implementation.
 *
 * 

Instances of this class use a hash table to represent a map. The table is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth * of the load factor, it is halved in size. However, halving is * not performed when deleting entries from an iterator, as it would interfere * with the iteration process. * *

Note that {@link #clear()} does not modify the hash table size. * Rather, a family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * *

Iterators generated by this map will enumerate pairs in the same order in which they * have been added to the map (addition of pairs whose key is already present * in the set does not change the iteration order). Note that this order has nothing in common with the natural * order of the keys. The order is kept by means of a doubly linked list, represented * via an array of longs parallel to the table. * *

This class implements the interface of a sorted map, so to allow easy * access of the iteration order: for instance, you can get the first key * in iteration order with {@link #firstKey()} without having to create an * iterator; however, this class partially violates the {@link java.util.SortedMap} * contract because all submap methods throw an exception and {@link * #comparator()} returns always null. * *

Additional methods, such as getAndMoveToFirst(), make it easy * to use instances of this class as a cache (e.g., with LRU policy). * *

The iterators provided by the views of this class using are type-specific * {@linkplain java.util.ListIterator list iterators}, and can be started at any * element which is a key of the map, or * a {@link NoSuchElementException} exception will be thrown. * If, however, the provided element is not the first or last key in the * set, the first access to the list index will require linear time, as in the worst case * the entire key set must be scanned in iteration order to retrieve the positional * index of the starting key. If you use just the methods of a type-specific {@link it.unimi.dsi.fastutil.BidirectionalIterator}, * however, all operations will be performed in constant time. * * @see Hash * @see HashCommon */ public class OPEN_HASH_MAP KEY_VALUE_GENERIC extends ABSTRACT_SORTED_MAP KEY_VALUE_GENERIC implements java.io.Serializable, Cloneable, Hash { #else #ifdef Custom /** A type-specific hash map with a fast, small-footprint implementation whose {@linkplain it.unimi.dsi.fastutil.Hash.Strategy hashing strategy} * is specified at creation time. * *

Instances of this class use a hash table to represent a map. The table is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth * of the load factor, it is halved in size. However, halving is * not performed when deleting entries from an iterator, as it would interfere * with the iteration process. * *

Note that {@link #clear()} does not modify the hash table size. * Rather, a family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * * @see Hash * @see HashCommon */ public class OPEN_HASH_MAP KEY_VALUE_GENERIC extends ABSTRACT_MAP KEY_VALUE_GENERIC implements java.io.Serializable, Cloneable, Hash { #else /** A type-specific hash map with a fast, small-footprint implementation. * *

Instances of this class use a hash table to represent a map. The table is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth * of the load factor, it is halved in size. However, halving is * not performed when deleting entries from an iterator, as it would interfere * with the iteration process. * *

Note that {@link #clear()} does not modify the hash table size. * Rather, a family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * * @see Hash * @see HashCommon */ public class OPEN_HASH_MAP KEY_VALUE_GENERIC extends ABSTRACT_MAP KEY_VALUE_GENERIC implements java.io.Serializable, Cloneable, Hash { #endif #endif private static final long serialVersionUID = 0L; private static final boolean ASSERTS = ASSERTS_VALUE; /** The array of keys. */ protected transient KEY_GENERIC_TYPE[] key; /** The array of values. */ protected transient VALUE_GENERIC_TYPE[] value; /** The mask for wrapping a position counter. */ protected transient int mask; /** Whether this set contains the key zero. */ protected transient boolean containsNullKey; #ifdef Custom /** The hash strategy of this custom map. */ protected STRATEGY KEY_GENERIC strategy; #endif #ifdef Linked /** The index of the first entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */ protected transient int first = -1; /** The index of the last entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */ protected transient int last = -1; /** For each entry, the next and the previous entry in iteration order, * stored as ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL). * The first entry contains predecessor -1, and the last entry * contains successor -1. */ protected transient long[] link; #endif /** The current table size. */ protected transient int n; /** Threshold after which we rehash. It must be the table size times {@link #f}. */ protected transient int maxFill; /** Number of entries in the set (including the key zero, if present). */ protected int size; /** The acceptable load factor. */ protected final float f; #ifdef Linked /** Cached set of entries. */ protected transient volatile FastSortedEntrySet KEY_VALUE_GENERIC entries; /** Cached set of keys. */ protected transient volatile SORTED_SET KEY_GENERIC keys; #else /** Cached set of entries. */ protected transient volatile FastEntrySet KEY_VALUE_GENERIC entries; /** Cached set of keys. */ protected transient volatile SET KEY_GENERIC keys; #endif /** Cached collection of values. */ protected transient volatile VALUE_COLLECTION VALUE_GENERIC values; #ifdef Custom /** Creates a new hash map. * *

The actual table size will be the least power of two greater than expected/f. * * @param expected the expected number of elements in the hash set. * @param f the load factor. * @param strategy the strategy. */ SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED public OPEN_HASH_MAP( final int expected, final float f, final STRATEGY KEY_GENERIC strategy ) { this.strategy = strategy; #else /** Creates a new hash map. * *

The actual table size will be the least power of two greater than expected/f. * * @param expected the expected number of elements in the hash set. * @param f the load factor. */ SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED public OPEN_HASH_MAP( final int expected, final float f ) { #endif if ( f <= 0 || f > 1 ) throw new IllegalArgumentException( "Load factor must be greater than 0 and smaller than or equal to 1" ); if ( expected < 0 ) throw new IllegalArgumentException( "The expected number of elements must be nonnegative" ); this.f = f; n = arraySize( expected, f ); mask = n - 1; maxFill = maxFill( n, f ); key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ n + 1 ]; value = VALUE_GENERIC_ARRAY_CAST new VALUE_TYPE[ n + 1 ]; #ifdef Linked link = new long[ n + 1 ]; #endif } #ifdef Custom /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash map. * @param strategy the strategy. */ public OPEN_HASH_MAP( final int expected, final STRATEGY KEY_GENERIC strategy ) { this( expected, DEFAULT_LOAD_FACTOR, strategy ); } #else /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash map. */ public OPEN_HASH_MAP( final int expected ) { this( expected, DEFAULT_LOAD_FACTOR ); } #endif #ifdef Custom /** Creates a new hash map with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} entries * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * @param strategy the strategy. */ public OPEN_HASH_MAP( final STRATEGY KEY_GENERIC strategy ) { this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, strategy ); } #else /** Creates a new hash map with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} entries * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public OPEN_HASH_MAP() { this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR ); } #endif #ifdef Custom /** Creates a new hash map copying a given one. * * @param m a {@link Map} to be copied into the new hash map. * @param f the load factor. * @param strategy the strategy. */ public OPEN_HASH_MAP( final Map m, final float f, final STRATEGY KEY_GENERIC strategy ) { this( m.size(), f, strategy ); putAll( m ); } #else /** Creates a new hash map copying a given one. * * @param m a {@link Map} to be copied into the new hash map. * @param f the load factor. */ public OPEN_HASH_MAP( final Map m, final float f ) { this( m.size(), f ); putAll( m ); } #endif #ifdef Custom /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given one. * * @param m a {@link Map} to be copied into the new hash map. * @param strategy the strategy. */ public OPEN_HASH_MAP( final Map m, final STRATEGY KEY_GENERIC strategy ) { this( m, DEFAULT_LOAD_FACTOR, strategy ); } #else /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given one. * * @param m a {@link Map} to be copied into the new hash map. */ public OPEN_HASH_MAP( final Map m ) { this( m, DEFAULT_LOAD_FACTOR ); } #endif #ifdef Custom /** Creates a new hash map copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. * @param f the load factor. * @param strategy the strategy. */ public OPEN_HASH_MAP( final MAP KEY_VALUE_GENERIC m, final float f, final STRATEGY KEY_GENERIC strategy ) { this( m.size(), f, strategy ); putAll( m ); } #else /** Creates a new hash map copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. * @param f the load factor. */ public OPEN_HASH_MAP( final MAP KEY_VALUE_GENERIC m, final float f ) { this( m.size(), f ); putAll( m ); } #endif #ifdef Custom /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. * @param strategy the strategy. */ public OPEN_HASH_MAP( final MAP KEY_VALUE_GENERIC m, final STRATEGY KEY_GENERIC strategy ) { this( m, DEFAULT_LOAD_FACTOR, strategy ); } #else /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. */ public OPEN_HASH_MAP( final MAP KEY_VALUE_GENERIC m ) { this( m, DEFAULT_LOAD_FACTOR ); } #endif #ifdef Custom /** Creates a new hash map using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @param f the load factor. * @param strategy the strategy. * @throws IllegalArgumentException if k and v have different lengths. */ public OPEN_HASH_MAP( final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE[] v, final float f, final STRATEGY KEY_GENERIC strategy ) { this( k.length, f, strategy ); if ( k.length != v.length ) throw new IllegalArgumentException( "The key array and the value array have different lengths (" + k.length + " and " + v.length + ")" ); for( int i = 0; i < k.length; i++ ) this.put( k[ i ], v[ i ] ); } #else /** Creates a new hash map using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @param f the load factor. * @throws IllegalArgumentException if k and v have different lengths. */ public OPEN_HASH_MAP( final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE[] v, final float f ) { this( k.length, f ); if ( k.length != v.length ) throw new IllegalArgumentException( "The key array and the value array have different lengths (" + k.length + " and " + v.length + ")" ); for( int i = 0; i < k.length; i++ ) this.put( k[ i ], v[ i ] ); } #endif #ifdef Custom /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @param strategy the strategy. * @throws IllegalArgumentException if k and v have different lengths. */ public OPEN_HASH_MAP( final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE[] v, final STRATEGY KEY_GENERIC strategy ) { this( k, v, DEFAULT_LOAD_FACTOR, strategy ); } #else /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @throws IllegalArgumentException if k and v have different lengths. */ public OPEN_HASH_MAP( final KEY_GENERIC_TYPE[] k, final VALUE_GENERIC_TYPE[] v ) { this( k, v, DEFAULT_LOAD_FACTOR ); } #endif #ifdef Custom /** Returns the hashing strategy. * * @return the hashing strategy of this custom hash map. */ public STRATEGY KEY_GENERIC strategy() { return strategy; } #endif private int realSize() { return containsNullKey ? size - 1 : size; } private void ensureCapacity( final int capacity ) { final int needed = arraySize( capacity, f ); if ( needed > n ) rehash( needed ); } private void tryCapacity( final long capacity ) { final int needed = (int)Math.min( 1 << 30, Math.max( 2, HashCommon.nextPowerOfTwo( (long)Math.ceil( capacity / f ) ) ) ); if ( needed > n ) rehash( needed ); } private VALUE_GENERIC_TYPE removeEntry( final int pos ) { final VALUE_GENERIC_TYPE oldValue = value[ pos ]; #if #values(reference) value[ pos ] = VALUE_NULL; #endif size--; #ifdef Linked fixPointers( pos ); #endif shiftKeys( pos ); if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 ); return oldValue; } private VALUE_GENERIC_TYPE removeNullEntry() { containsNullKey = false; final VALUE_GENERIC_TYPE oldValue = value[ n ]; #if #values(reference) value[ n ] = VALUE_NULL; #endif size--; #ifdef Linked fixPointers( n ); #endif if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 ); return oldValue; } /** {@inheritDoc} */ public void putAll(Map m) { if ( f <= .5 ) ensureCapacity( m.size() ); // The resulting map will be sized for m.size() elements else tryCapacity( size() + m.size() ); // The resulting map will be tentatively sized for size() + m.size() elements super.putAll( m ); } private int insert(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) { int pos; if ( KEY_IS_NULL( k ) ) { if ( containsNullKey ) return n; containsNullKey = true; pos = n; } else { KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; // The starting point. if ( ! KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) { if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return pos; while( ! KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return pos; } key[ pos ] = k; } value[ pos ] = v; #ifdef Linked if ( size == 0 ) { first = last = pos; // Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 ); link[ pos ] = -1L; } else { SET_NEXT( link[ last ], pos ); SET_UPPER_LOWER( link[ pos ], last, -1 ); last = pos; } #endif if ( size++ >= maxFill ) rehash( arraySize( size + 1, f ) ); if ( ASSERTS ) checkTable(); return -1; } public VALUE_GENERIC_TYPE put(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v) { final int pos = insert( k, v ); if ( pos < 0 ) return defRetValue; final VALUE_GENERIC_TYPE oldValue = value[ pos ]; value[ pos ] = v; return oldValue; } #if #values(primitive) || #keys(primitive) public VALUE_GENERIC_CLASS put( final KEY_GENERIC_CLASS ok, final VALUE_GENERIC_CLASS ov ) { final VALUE_GENERIC_TYPE v = VALUE_CLASS2TYPE( ov ); final int pos = insert( KEY_CLASS2TYPE( ok ), v ); if ( pos < 0 ) return OBJECT_DEFAULT_RETURN_VALUE; final VALUE_GENERIC_TYPE oldValue = value[ pos ]; value[ pos ] = v; return VALUE2OBJ( oldValue ); } #endif #if #valueclass(Byte) || #valueclass(Short) || #valueclass(Char) || #valueclass(Integer) || #valueclass(Long) || #valueclass(Float) || #valueclass(Double) private VALUE_GENERIC_TYPE addToValue( final int pos, final VALUE_GENERIC_TYPE incr ) { final VALUE_GENERIC_TYPE oldValue = value[ pos ]; #if #valueclass(Byte) || #valueclass(Short) || #valueclass(Char) value[ pos ] = (VALUE_TYPE)(oldValue + incr); #else value[ pos ] = oldValue + incr; #endif return oldValue; } /** Adds an increment to value currently associated with a key. * *

Note that this method respects the {@linkplain #defaultReturnValue() default return value} semantics: when * called with a key that does not currently appears in the map, the key * will be associated with the default return value plus * the given increment. * * @param k the key. * @param incr the increment. * @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public VALUE_GENERIC_TYPE addTo(final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE incr) { int pos; if ( KEY_IS_NULL( k ) ) { if ( containsNullKey ) return addToValue( n, incr ); pos = n; containsNullKey = true; } else { KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; // The starting point. if ( ! KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) { if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return addToValue( pos, incr ); while( ! KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return addToValue( pos, incr ); } key[ pos ] = k; } #if #valueclass(Byte) || #valueclass(Short) || #valueclass(Char) value[ pos ] = (VALUE_TYPE)(defRetValue + incr); #else value[ pos ] = defRetValue + incr; #endif #ifdef Linked if ( size == 0 ) { first = last = pos; // Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 ); link[ pos ] = -1L; } else { SET_NEXT( link[ last ], pos ); SET_UPPER_LOWER( link[ pos ], last, -1 ); last = pos; } #endif if ( size++ >= maxFill ) rehash( arraySize( size + 1, f ) ); if ( ASSERTS ) checkTable(); return defRetValue; } #endif /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. */ protected final void shiftKeys( int pos ) { // Shift entries with the same hash. int last, slot; KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; for(;;) { pos = ( ( last = pos ) + 1 ) & mask; for(;;) { if ( KEY_IS_NULL( curr = key[ pos ] ) ) { key[ last ] = KEY_NULL; #if #values(reference) value[ last ] = null; #endif return; } slot = KEY2INTHASH( curr ) & mask; if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break; pos = ( pos + 1 ) & mask; } key[ last ] = curr; value[ last ] = value[ pos ]; #ifdef Linked fixPointers( pos, last ); #endif } } SUPPRESS_WARNINGS_CUSTOM_KEY_UNCHECKED public VALUE_GENERIC_TYPE REMOVE_VALUE( final KEY_TYPE k ) { if ( KEY_IS_NULL( k ) ) { if ( containsNullKey ) return removeNullEntry(); return defRetValue; } KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH_CAST( k ) & mask ] ) ) return defRetValue; if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return removeEntry( pos ); while( true ) { if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return defRetValue; if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return removeEntry( pos ); } } #if #keys(primitive) || #values(primitive) SUPPRESS_WARNINGS_KEY_UNCHECKED public VALUE_GENERIC_CLASS remove( final Object ok ) { final KEY_GENERIC_TYPE k = KEY_GENERIC_CAST KEY_OBJ2TYPE( ok ); if ( KEY_IS_NULL( k ) ) { if ( containsNullKey ) return VALUE2OBJ( removeNullEntry() ); return OBJECT_DEFAULT_RETURN_VALUE; } KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) return OBJECT_DEFAULT_RETURN_VALUE; if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return VALUE2OBJ( removeEntry( pos ) ); while( true ) { if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return OBJECT_DEFAULT_RETURN_VALUE; if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return VALUE2OBJ( removeEntry( pos ) ); } } #endif #ifdef Linked private VALUE_GENERIC_TYPE setValue( final int pos, final VALUE_GENERIC_TYPE v ) { final VALUE_GENERIC_TYPE oldValue = value[ pos ]; value[ pos ] = v; return oldValue; } /** Removes the mapping associated with the first key in iteration order. * @return the value previously associated with the first key in iteration order. * @throws NoSuchElementException is this map is empty. */ public VALUE_GENERIC_TYPE REMOVE_FIRST_VALUE() { if ( size == 0 ) throw new NoSuchElementException(); final int pos = first; // Abbreviated version of fixPointers(pos) first = GET_NEXT(link[ pos ]); if ( 0 <= first ) { // Special case of SET_PREV( link[ first ], -1 ) link[ first ] |= (-1 & 0xFFFFFFFFL) << 32; } size--; final VALUE_GENERIC_TYPE v = value[ pos ]; if ( pos == n ) { containsNullKey = false; #if #values(reference) value[ n ] = VALUE_NULL; #endif } else shiftKeys( pos ); if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 ); return v; } /** Removes the mapping associated with the last key in iteration order. * @return the value previously associated with the last key in iteration order. * @throws NoSuchElementException is this map is empty. */ public VALUE_GENERIC_TYPE REMOVE_LAST_VALUE() { if ( size == 0 ) throw new NoSuchElementException(); final int pos = last; // Abbreviated version of fixPointers(pos) last = GET_PREV(link[ pos ]); if ( 0 <= last ) { // Special case of SET_NEXT( link[ last ], -1 ) link[ last ] |= -1 & 0xFFFFFFFFL; } size--; final VALUE_GENERIC_TYPE v = value[ pos ]; if ( pos == n ) { containsNullKey = false; #if #values(reference) value[ n ] = VALUE_NULL; #endif } else shiftKeys( pos ); if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 ); return v; } private void moveIndexToFirst( final int i ) { if ( size == 1 || first == i ) return; if ( last == i ) { last = GET_PREV(link[ i ]); // Special case of SET_NEXT( link[ last ], -1 ); link[ last ] |= -1 & 0xFFFFFFFFL; } else { final long linki = link[ i ]; final int prev = GET_PREV(linki); final int next = GET_NEXT(linki); COPY_NEXT(link[ prev ], linki); COPY_PREV(link[ next ], linki); } SET_PREV( link[ first ], i ); SET_UPPER_LOWER( link[ i ], -1, first ); first = i; } private void moveIndexToLast( final int i ) { if ( size == 1 || last == i ) return; if ( first == i ) { first = GET_NEXT(link[ i ]); // Special case of SET_PREV( link[ first ], -1 ); link[ first ] |= (-1 & 0xFFFFFFFFL) << 32; } else { final long linki = link[ i ]; final int prev = GET_PREV(linki); final int next = GET_NEXT(linki); COPY_NEXT(link[ prev ], linki); COPY_PREV(link[ next ], linki); } SET_NEXT( link[ last ], i ); SET_UPPER_LOWER( link[ i ], last, -1 ); last = i; } /** Returns the value to which the given key is mapped; if the key is present, it is moved to the first position of the iteration order. * * @param k the key. * @return the corresponding value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public VALUE_GENERIC_TYPE getAndMoveToFirst( final KEY_GENERIC_TYPE k ) { if ( KEY_IS_NULL( k ) ) { if ( containsNullKey ) { moveIndexToFirst( n ); return value[ n ]; } return defRetValue; } KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) return defRetValue; if ( KEY_EQUALS_NOT_NULL( k, curr ) ) { moveIndexToFirst( pos ); return value[ pos ]; } // There's always an unused entry. while( true ) { if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return defRetValue; if ( KEY_EQUALS_NOT_NULL( k, curr ) ) { moveIndexToFirst( pos ); return value[ pos ]; } } } /** Returns the value to which the given key is mapped; if the key is present, it is moved to the last position of the iteration order. * * @param k the key. * @return the corresponding value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public VALUE_GENERIC_TYPE getAndMoveToLast( final KEY_GENERIC_TYPE k ) { if ( KEY_IS_NULL( k ) ) { if ( containsNullKey ) { moveIndexToLast( n ); return value[ n ]; } return defRetValue; } KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) return defRetValue; if ( KEY_EQUALS_NOT_NULL( k, curr ) ) { moveIndexToLast( pos ); return value[ pos ]; } // There's always an unused entry. while( true ) { if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return defRetValue; if ( KEY_EQUALS_NOT_NULL( k, curr ) ) { moveIndexToLast( pos ); return value[ pos ]; } } } /** Adds a pair to the map; if the key is already present, it is moved to the first position of the iteration order. * * @param k the key. * @param v the value. * @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public VALUE_GENERIC_TYPE putAndMoveToFirst( final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v ) { int pos; if ( KEY_IS_NULL( k ) ) { if ( containsNullKey ) { moveIndexToFirst( n ); return setValue( n, v ); } containsNullKey = true; pos = n; } else { KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; // The starting point. if ( ! KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) { if ( KEY_EQUALS_NOT_NULL( curr, k ) ) { moveIndexToFirst( pos ); return setValue( pos, v ); } while( ! KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) if ( KEY_EQUALS_NOT_NULL( curr, k ) ) { moveIndexToFirst( pos ); return setValue( pos, v ); } } key[ pos ] = k; } value[ pos ] = v; if ( size == 0 ) { first = last = pos; // Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 ); link[ pos ] = -1L; } else { SET_PREV( link[ first ], pos ); SET_UPPER_LOWER( link[ pos ], -1, first ); first = pos; } if ( size++ >= maxFill ) rehash( arraySize( size, f ) ); if ( ASSERTS ) checkTable(); return defRetValue; } /** Adds a pair to the map; if the key is already present, it is moved to the last position of the iteration order. * * @param k the key. * @param v the value. * @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public VALUE_GENERIC_TYPE putAndMoveToLast( final KEY_GENERIC_TYPE k, final VALUE_GENERIC_TYPE v ) { int pos; if ( KEY_IS_NULL( k ) ) { if ( containsNullKey ) { moveIndexToLast( n ); return setValue( n, v ); } containsNullKey = true; pos = n; } else { KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; // The starting point. if ( ! KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) { if ( KEY_EQUALS_NOT_NULL( curr, k ) ) { moveIndexToLast( pos ); return setValue( pos, v ); } while( ! KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) if ( KEY_EQUALS_NOT_NULL( curr, k ) ) { moveIndexToLast( pos ); return setValue( pos, v ); } } key[ pos ] = k; } value[ pos ] = v; if ( size == 0 ) { first = last = pos; // Special case of SET_UPPER_LOWER( link[ pos ], -1, -1 ); link[ pos ] = -1L; } else { SET_NEXT( link[ last ], pos ); SET_UPPER_LOWER( link[ pos ], last, -1 ); last = pos; } if ( size++ >= maxFill ) rehash( arraySize( size, f ) ); if ( ASSERTS ) checkTable(); return defRetValue; } #endif #if #keys(primitive) public VALUE_GENERIC_CLASS get( final KEY_CLASS ok ) { final KEY_GENERIC_TYPE k = KEY_CLASS2TYPE( ok ); if ( KEY_IS_NULL( k ) ) return containsNullKey ? VALUE2OBJ( value[ n ] ) : OBJECT_DEFAULT_RETURN_VALUE; KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) return OBJECT_DEFAULT_RETURN_VALUE; if ( KEY_EQUALS_NOT_NULL( k, curr ) ) return VALUE2OBJ( value[ pos ] ); // There's always an unused entry. while( true ) { if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return OBJECT_DEFAULT_RETURN_VALUE; if ( KEY_EQUALS_NOT_NULL( k, curr ) ) return VALUE2OBJ( value[ pos ] ); } } #endif SUPPRESS_WARNINGS_CUSTOM_KEY_UNCHECKED public VALUE_GENERIC_TYPE GET_VALUE( final KEY_TYPE k ) { if ( KEY_IS_NULL( k ) ) return containsNullKey ? value[ n ] : defRetValue; KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH_CAST( k ) & mask ] ) ) return defRetValue; if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return value[ pos ]; // There's always an unused entry. while( true ) { if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return defRetValue; if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return value[ pos ]; } } SUPPRESS_WARNINGS_CUSTOM_KEY_UNCHECKED public boolean containsKey( final KEY_TYPE k ) { if ( KEY_IS_NULL( k ) ) return containsNullKey; KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = this.key; int pos; // The starting point. if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH_CAST( k ) & mask ] ) ) return false; if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return true; // There's always an unused entry. while( true ) { if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return false; if ( KEY_EQUALS_NOT_NULL_CAST( k, curr ) ) return true; } } public boolean containsValue( final VALUE_TYPE v ) { final VALUE_GENERIC_TYPE value[] = this.value; final KEY_GENERIC_TYPE key[] = this.key; if ( containsNullKey && VALUE_EQUALS( value[ n ], v ) ) return true; for( int i = n; i-- != 0; ) if ( ! KEY_IS_NULL( key[ i ] ) && VALUE_EQUALS( value[ i ], v ) ) return true; return false; } /* Removes all elements from this map. * *

To increase object reuse, this method does not change the table size. * If you want to reduce the table size, you must use {@link #trim()}. * */ public void clear() { if ( size == 0 ) return; size = 0; containsNullKey = false; Arrays.fill( key, KEY_NULL ); #if #values(reference) Arrays.fill( value, null ); #endif #ifdef Linked first = last = -1; #endif } public int size() { return size; } public boolean isEmpty() { return size == 0; } /** A no-op for backward compatibility. * * @param growthFactor unused. * @deprecated Since fastutil 6.1.0, hash tables are doubled when they are too full. */ @Deprecated public void growthFactor( int growthFactor ) {} /** Gets the growth factor (2). * * @return the growth factor of this set, which is fixed (2). * @see #growthFactor(int) * @deprecated Since fastutil 6.1.0, hash tables are doubled when they are too full. */ @Deprecated public int growthFactor() { return 16; } /** The entry class for a hash map does not record key and value, but * rather the position in the hash table of the corresponding entry. This * is necessary so that calls to {@link java.util.Map.Entry#setValue(Object)} are reflected in * the map */ final class MapEntry implements MAP.Entry KEY_VALUE_GENERIC, Map.Entry { // The table index this entry refers to, or -1 if this entry has been deleted. int index; MapEntry( final int index ) { this.index = index; } MapEntry() {} public KEY_GENERIC_CLASS getKey() { return KEY2OBJ( key[ index ] ); } #if #keys(primitive) public KEY_TYPE ENTRY_GET_KEY() { return key[ index ]; } #endif public VALUE_GENERIC_CLASS getValue() { return VALUE2OBJ( value[ index ] ); } #if #values(primitive) public VALUE_GENERIC_TYPE ENTRY_GET_VALUE() { return value[ index ]; } #endif public VALUE_GENERIC_TYPE setValue( final VALUE_GENERIC_TYPE v ) { final VALUE_GENERIC_TYPE oldValue = value[ index ]; value[ index ] = v; return oldValue; } #if #values(primitive) public VALUE_GENERIC_CLASS setValue( final VALUE_GENERIC_CLASS v ) { return VALUE2OBJ( setValue( VALUE_CLASS2TYPE( v ) ) ); } #endif @SuppressWarnings("unchecked") public boolean equals( final Object o ) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return KEY_EQUALS( key[ index ], KEY_CLASS2TYPE( e.getKey() ) ) && VALUE_EQUALS( value[ index ], VALUE_CLASS2TYPE( e.getValue() ) ); } public int hashCode() { return KEY2JAVAHASH( key[ index ] ) ^ VALUE2JAVAHASH( value[ index ] ); } public String toString() { return key[ index ] + "=>" + value[ index ]; } } #ifdef Linked /** Modifies the {@link #link} vector so that the given entry is removed. * This method will complete in constant time. * * @param i the index of an entry. */ protected void fixPointers( final int i ) { if ( size == 0 ) { first = last = -1; return; } if ( first == i ) { first = GET_NEXT(link[ i ]); if (0 <= first) { // Special case of SET_PREV( link[ first ], -1 ) link[ first ] |= (-1 & 0xFFFFFFFFL) << 32; } return; } if ( last == i ) { last = GET_PREV(link[ i ]); if (0 <= last) { // Special case of SET_NEXT( link[ last ], -1 ) link[ last ] |= -1 & 0xFFFFFFFFL; } return; } final long linki = link[ i ]; final int prev = GET_PREV(linki); final int next = GET_NEXT(linki); COPY_NEXT(link[ prev ], linki); COPY_PREV(link[ next ], linki); } /** Modifies the {@link #link} vector for a shift from s to d. *

This method will complete in constant time. * * @param s the source position. * @param d the destination position. */ protected void fixPointers( int s, int d ) { if ( size == 1 ) { first = last = d; // Special case of SET_UPPER_LOWER( link[ d ], -1, -1 ) link[ d ] = -1L; return; } if ( first == s ) { first = d; SET_PREV( link[ GET_NEXT(link[ s ]) ], d ); link[ d ] = link[ s ]; return; } if ( last == s ) { last = d; SET_NEXT( link[ GET_PREV(link[ s ])], d ); link[ d ] = link[ s ]; return; } final long links = link[ s ]; final int prev = GET_PREV(links); final int next = GET_NEXT(links); SET_NEXT( link[ prev ], d ); SET_PREV( link[ next ], d ); link[ d ] = links; } /** Returns the first key of this map in iteration order. * * @return the first key in iteration order. */ public KEY_GENERIC_TYPE FIRST_KEY() { if ( size == 0 ) throw new NoSuchElementException(); return key[ first ]; } /** Returns the last key of this map in iteration order. * * @return the last key in iteration order. */ public KEY_GENERIC_TYPE LAST_KEY() { if ( size == 0 ) throw new NoSuchElementException(); return key[ last ]; } public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return null; } public SORTED_MAP KEY_VALUE_GENERIC tailMap( KEY_GENERIC_TYPE from ) { throw new UnsupportedOperationException(); } public SORTED_MAP KEY_VALUE_GENERIC headMap( KEY_GENERIC_TYPE to ) { throw new UnsupportedOperationException(); } public SORTED_MAP KEY_VALUE_GENERIC subMap( KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to ) { throw new UnsupportedOperationException(); } /** A list iterator over a linked map. * *

This class provides a list iterator over a linked hash map. The constructor runs in constant time. */ private class MapIterator { /** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or null if no previous entry exists). */ int prev = -1; /** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or null if no next entry exists). */ int next = -1; /** The last entry that was returned (or -1 if we did not iterate or used {@link java.util.Iterator#remove()}). */ int curr = -1; /** The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not meaningful when this iterator has been created using the nonempty constructor.*/ int index = -1; private MapIterator() { next = first; index = 0; } private MapIterator( final KEY_GENERIC_TYPE from ) { if ( KEY_IS_NULL( from ) ) { if ( OPEN_HASH_MAP.this.containsNullKey ) { next = GET_NEXT( link[ n ] ); prev = n; return; } else throw new NoSuchElementException( "The key " + from + " does not belong to this map." ); } if ( KEY_EQUALS( key[ last ], from ) ) { prev = last; index = size; return; } // The starting point. int pos = KEY2INTHASH( from ) & mask; // There's always an unused entry. while( ! KEY_IS_NULL( key[ pos ] ) ) { if ( KEY_EQUALS_NOT_NULL( key[ pos ], from ) ) { // Note: no valid index known. next = GET_NEXT( link[ pos ] ); prev = pos; return; } pos = ( pos + 1 ) & mask; } throw new NoSuchElementException( "The key " + from + " does not belong to this map." ); } public boolean hasNext() { return next != -1; } public boolean hasPrevious() { return prev != -1; } private final void ensureIndexKnown() { if ( index >= 0 ) return; if ( prev == -1 ) { index = 0; return; } if ( next == -1 ) { index = size; return; } int pos = first; index = 1; while( pos != prev ) { pos = GET_NEXT( link[ pos ] ); index++; } } public int nextIndex() { ensureIndexKnown(); return index; } public int previousIndex() { ensureIndexKnown(); return index - 1; } public int nextEntry() { if ( ! hasNext() ) throw new NoSuchElementException(); curr = next; next = GET_NEXT(link[ curr ]); prev = curr; if ( index >= 0 ) index++; return curr; } public int previousEntry() { if ( ! hasPrevious() ) throw new NoSuchElementException(); curr = prev; prev = GET_PREV(link[ curr ]); next = curr; if ( index >= 0 ) index--; return curr; } public void remove() { ensureIndexKnown(); if ( curr == -1 ) throw new IllegalStateException(); if ( curr == prev ) { /* If the last operation was a next(), we are removing an entry that preceeds the current index, and thus we must decrement it. */ index--; prev = GET_PREV(link[ curr ]); } else next = GET_NEXT(link[ curr ]); size--; /* Now we manually fix the pointers. Because of our knowledge of next and prev, this is going to be faster than calling fixPointers(). */ if ( prev == -1 ) first = next; else SET_NEXT( link[ prev ], next ); if ( next == -1 ) last = prev; else SET_PREV( link[ next ], prev ); int last, slot, pos = curr; curr = -1; if ( pos == n ) { OPEN_HASH_MAP.this.containsNullKey = false; #if #values(reference) value[ n ] = VALUE_NULL; #endif } else { KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = OPEN_HASH_MAP.this.key; // We have to horribly duplicate the shiftKeys() code because we need to update next/prev. for(;;) { pos = ( ( last = pos ) + 1 ) & mask; for(;;) { if ( KEY_IS_NULL( curr = key[ pos ] ) ) { key[ last ] = KEY_NULL; #if #values(reference) value[ last ] = null; #endif return; } slot = KEY2INTHASH( curr ) & mask; if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break; pos = ( pos + 1 ) & mask; } key[ last ] = curr; value[ last ] = value[ pos ]; if ( next == pos ) next = last; if ( prev == pos ) prev = last; fixPointers( pos, last ); } } } public int skip( final int n ) { int i = n; while( i-- != 0 && hasNext() ) nextEntry(); return n - i - 1; } public int back( final int n ) { int i = n; while( i-- != 0 && hasPrevious() ) previousEntry(); return n - i - 1; } } private class EntryIterator extends MapIterator implements ObjectListIterator { private MapEntry entry; public EntryIterator() {} public EntryIterator( KEY_GENERIC_TYPE from ) { super( from ); } public MapEntry next() { return entry = new MapEntry( nextEntry() ); } public MapEntry previous() { return entry = new MapEntry( previousEntry() ); } @Override public void remove() { super.remove(); entry.index = -1; // You cannot use a deleted entry. } public void set( MAP.Entry KEY_VALUE_GENERIC ok ) { throw new UnsupportedOperationException(); } public void add( MAP.Entry KEY_VALUE_GENERIC ok ) { throw new UnsupportedOperationException(); } } private class FastEntryIterator extends MapIterator implements ObjectListIterator { final MapEntry entry = new MapEntry(); public FastEntryIterator() {} public FastEntryIterator( KEY_GENERIC_TYPE from ) { super( from ); } public MapEntry next() { entry.index = nextEntry(); return entry; } public MapEntry previous() { entry.index = previousEntry(); return entry; } public void set( MAP.Entry KEY_VALUE_GENERIC ok ) { throw new UnsupportedOperationException(); } public void add( MAP.Entry KEY_VALUE_GENERIC ok ) { throw new UnsupportedOperationException(); } } #else /** An iterator over a hash map. */ private class MapIterator { /** The index of the last entry returned, if positive or zero; initially, {@link #n}. If negative, the last entry returned was that of the key of index {@code - pos - 1} from the {@link #wrapped} list. */ int pos = n; /** The index of the last entry that has been returned (more precisely, the value of {@link #pos} if {@link #pos} is positive, or {@link Integer#MIN_VALUE} if {@link #pos} is negative). It is -1 if either we did not return an entry yet, or the last returned entry has been removed. */ int last = -1; /** A downward counter measuring how many entries must still be returned. */ int c = size; /** A boolean telling us whether we should return the entry with the null key. */ boolean mustReturnNullKey = OPEN_HASH_MAP.this.containsNullKey; /** A lazily allocated list containing keys of entries that have wrapped around the table because of removals. */ ARRAY_LIST KEY_GENERIC wrapped; public boolean hasNext() { return c != 0; } public int nextEntry() { if ( ! hasNext() ) throw new NoSuchElementException(); c--; if ( mustReturnNullKey ) { mustReturnNullKey = false; return last = n; } final KEY_GENERIC_TYPE key[] = OPEN_HASH_MAP.this.key; for(;;) { if ( --pos < 0 ) { // We are just enumerating elements from the wrapped list. last = Integer.MIN_VALUE; final KEY_GENERIC_TYPE k = wrapped.GET_KEY( - pos - 1 ); int p = KEY2INTHASH( k ) & mask; while ( ! KEY_EQUALS_NOT_NULL( k, key[ p ] ) ) p = ( p + 1 ) & mask; return p; } if ( ! KEY_IS_NULL( key[ pos ] ) ) return last = pos; } } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. */ private final void shiftKeys( int pos ) { // Shift entries with the same hash. int last, slot; KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = OPEN_HASH_MAP.this.key; for(;;) { pos = ( ( last = pos ) + 1 ) & mask; for(;;) { if ( KEY_IS_NULL( curr = key[ pos ] ) ) { key[ last ] = KEY_NULL; #if #values(reference) value[ last ] = null; #endif return; } slot = KEY2INTHASH( curr ) & mask; if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break; pos = ( pos + 1 ) & mask; } if ( pos < last ) { // Wrapped entry. if ( wrapped == null ) wrapped = new ARRAY_LIST KEY_GENERIC( 2 ); wrapped.add( key[ pos ] ); } key[ last ] = curr; value[ last ] = value[ pos ]; } } public void remove() { if ( last == -1 ) throw new IllegalStateException(); if ( last == n ) { containsNullKey = false; #if #values(reference) value[ n ] = VALUE_NULL; #endif } else if ( pos >= 0 ) shiftKeys( last ); else { // We're removing wrapped entries. #if #keys(reference) OPEN_HASH_MAP.this.remove( wrapped.set( - pos - 1, null ) ); #else OPEN_HASH_MAP.this.remove( wrapped.GET_KEY( - pos - 1 ) ); #endif last = -1; // Note that we must not decrement size return; } size--; last = -1; // You can no longer remove this entry. if ( ASSERTS ) checkTable(); } public int skip( final int n ) { int i = n; while( i-- != 0 && hasNext() ) nextEntry(); return n - i - 1; } } private class EntryIterator extends MapIterator implements ObjectIterator { private MapEntry entry; public MAP.Entry KEY_VALUE_GENERIC next() { return entry = new MapEntry( nextEntry() ); } @Override public void remove() { super.remove(); entry.index = -1; // You cannot use a deleted entry. } } private class FastEntryIterator extends MapIterator implements ObjectIterator { private final MapEntry entry = new MapEntry(); public MapEntry next() { entry.index = nextEntry(); return entry; } } #endif #ifdef Linked private final class MapEntrySet extends AbstractObjectSortedSet implements FastSortedEntrySet KEY_VALUE_GENERIC { public ObjectBidirectionalIterator iterator() { return new EntryIterator(); } public Comparator comparator() { return null; } public ObjectSortedSet subSet( MAP.Entry KEY_VALUE_GENERIC fromElement, MAP.Entry KEY_VALUE_GENERIC toElement) { throw new UnsupportedOperationException(); } public ObjectSortedSet headSet( MAP.Entry KEY_VALUE_GENERIC toElement ) { throw new UnsupportedOperationException(); } public ObjectSortedSet tailSet( MAP.Entry KEY_VALUE_GENERIC fromElement ) { throw new UnsupportedOperationException(); } public MAP.Entry KEY_VALUE_GENERIC first() { if ( size == 0 ) throw new NoSuchElementException(); return new MapEntry( OPEN_HASH_MAP.this.first ); } public MAP.Entry KEY_VALUE_GENERIC last() { if ( size == 0 ) throw new NoSuchElementException(); return new MapEntry( OPEN_HASH_MAP.this.last ); } #else private final class MapEntrySet extends AbstractObjectSet implements FastEntrySet KEY_VALUE_GENERIC { public ObjectIterator iterator() { return new EntryIterator(); } public ObjectIterator fastIterator() { return new FastEntryIterator(); } #endif @SuppressWarnings("unchecked") public boolean contains( final Object o ) { if ( !( o instanceof Map.Entry ) ) return false; final Map.Entry e = (Map.Entry)o; final KEY_GENERIC_TYPE k = KEY_CLASS2TYPE( e.getKey() ); if ( KEY_IS_NULL( k ) ) return ( OPEN_HASH_MAP.this.containsNullKey && VALUE_EQUALS( value[ n ], VALUE_CLASS2TYPE( e.getValue() ) ) ); KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = OPEN_HASH_MAP.this.key; int pos; // The starting point. if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) return false; if ( KEY_EQUALS_NOT_NULL( k, curr ) ) return VALUE_EQUALS( value[ pos ], VALUE_CLASS2TYPE( e.getValue() ) ); // There's always an unused entry. while( true ) { if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return false; if ( KEY_EQUALS_NOT_NULL( k, curr ) ) return VALUE_EQUALS( value[ pos ], VALUE_CLASS2TYPE( e.getValue() ) ); } } @SuppressWarnings("unchecked") public boolean remove( final Object o ) { if ( !( o instanceof Map.Entry ) ) return false; final Map.Entry e = (Map.Entry)o; final KEY_GENERIC_TYPE k = KEY_CLASS2TYPE( e.getKey() ); final VALUE_GENERIC_TYPE v = VALUE_CLASS2TYPE( e.getValue() ); if ( KEY_IS_NULL( k ) ) { if ( containsNullKey && VALUE_EQUALS( value[ n ], v ) ) { removeNullEntry(); return true; } return false; } KEY_GENERIC_TYPE curr; final KEY_GENERIC_TYPE[] key = OPEN_HASH_MAP.this.key; int pos; // The starting point. if ( KEY_IS_NULL( curr = key[ pos = KEY2INTHASH( k ) & mask ] ) ) return false; if ( KEY_EQUALS_NOT_NULL( curr, k ) ) { if ( VALUE_EQUALS( value[ pos ], v ) ) { removeEntry( pos ); return true; } return false; } while( true ) { if ( KEY_IS_NULL( curr = key[ pos = ( pos + 1 ) & mask ] ) ) return false; if ( KEY_EQUALS_NOT_NULL( curr, k ) ) { if ( VALUE_EQUALS( value[ pos ], v ) ) { removeEntry( pos ); return true; } } } } public int size() { return size; } public void clear() { OPEN_HASH_MAP.this.clear(); } #ifdef Linked public ObjectBidirectionalIterator iterator( final MAP.Entry KEY_VALUE_GENERIC from ) { return new EntryIterator( KEY_CLASS2TYPE( from.getKey() ) ); } public ObjectBidirectionalIterator fastIterator() { return new FastEntryIterator(); } public ObjectBidirectionalIterator fastIterator( final MAP.Entry KEY_VALUE_GENERIC from ) { return new FastEntryIterator( KEY_CLASS2TYPE( from.getKey() ) ); } #endif } #ifdef Linked public FastSortedEntrySet KEY_VALUE_GENERIC ENTRYSET() { if ( entries == null ) entries = new MapEntrySet(); #else public FastEntrySet KEY_VALUE_GENERIC ENTRYSET() { if ( entries == null ) entries = new MapEntrySet(); #endif return entries; } /** An iterator on keys. * *

We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods * (and possibly their type-specific counterparts) so that they return keys * instead of entries. */ #ifdef Linked private final class KeyIterator extends MapIterator implements KEY_LIST_ITERATOR KEY_GENERIC { public KeyIterator( final KEY_GENERIC_TYPE k ) { super( k ); } public KEY_GENERIC_TYPE PREV_KEY() { return key[ previousEntry() ]; } public void set( KEY_GENERIC_TYPE k ) { throw new UnsupportedOperationException(); } public void add( KEY_GENERIC_TYPE k ) { throw new UnsupportedOperationException(); } #if ! #keys(reference) public KEY_GENERIC_CLASS previous() { return KEY2OBJ( key[ previousEntry() ] ); } public void set( KEY_CLASS ok ) { throw new UnsupportedOperationException(); } public void add( KEY_CLASS ok ) { throw new UnsupportedOperationException(); } #endif #else private final class KeyIterator extends MapIterator implements KEY_ITERATOR KEY_GENERIC { #endif public KeyIterator() { super(); } public KEY_GENERIC_TYPE NEXT_KEY() { return key[ nextEntry() ]; } #if ! #keys(reference) public KEY_GENERIC_CLASS next() { return KEY2OBJ( key[ nextEntry() ] ); } #endif } #ifdef Linked private final class KeySet extends ABSTRACT_SORTED_SET KEY_GENERIC { public KEY_LIST_ITERATOR KEY_GENERIC iterator( final KEY_GENERIC_TYPE from ) { return new KeyIterator( from ); } public KEY_LIST_ITERATOR KEY_GENERIC iterator() { return new KeyIterator(); } #else private final class KeySet extends ABSTRACT_SET KEY_GENERIC { public KEY_ITERATOR KEY_GENERIC iterator() { return new KeyIterator(); } #endif public int size() { return size; } public boolean contains( KEY_TYPE k ) { return containsKey( k ); } public boolean remove( KEY_TYPE k ) { final int oldSize = size; OPEN_HASH_MAP.this.remove( k ); return size != oldSize; } public void clear() { OPEN_HASH_MAP.this.clear(); } #ifdef Linked public KEY_GENERIC_TYPE FIRST() { if ( size == 0 ) throw new NoSuchElementException(); return key[ first ]; } public KEY_GENERIC_TYPE LAST() { if ( size == 0 ) throw new NoSuchElementException(); return key[ last ]; } public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return null; } final public SORTED_SET KEY_GENERIC tailSet( KEY_GENERIC_TYPE from ) { throw new UnsupportedOperationException(); } final public SORTED_SET KEY_GENERIC headSet( KEY_GENERIC_TYPE to ) { throw new UnsupportedOperationException(); } final public SORTED_SET KEY_GENERIC subSet( KEY_GENERIC_TYPE from, KEY_GENERIC_TYPE to ) { throw new UnsupportedOperationException(); } #endif } #ifdef Linked public SORTED_SET KEY_GENERIC keySet() { #else public SET KEY_GENERIC keySet() { #endif if ( keys == null ) keys = new KeySet(); return keys; } /** An iterator on values. * *

We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods * (and possibly their type-specific counterparts) so that they return values * instead of entries. */ #ifdef Linked private final class ValueIterator extends MapIterator implements VALUE_LIST_ITERATOR VALUE_GENERIC { public VALUE_GENERIC_TYPE PREV_VALUE() { return value[ previousEntry() ]; } #if ! #values(reference) public VALUE_GENERIC_CLASS previous() { return VALUE2OBJ( value[ previousEntry() ] ); } public void set( VALUE_CLASS ok ) { throw new UnsupportedOperationException(); } public void add( VALUE_CLASS ok ) { throw new UnsupportedOperationException(); } #endif public void set( VALUE_GENERIC_TYPE v ) { throw new UnsupportedOperationException(); } public void add( VALUE_GENERIC_TYPE v ) { throw new UnsupportedOperationException(); } #else private final class ValueIterator extends MapIterator implements VALUE_ITERATOR VALUE_GENERIC { #endif public ValueIterator() { super(); } public VALUE_GENERIC_TYPE NEXT_VALUE() { return value[ nextEntry() ]; } #if ! #values(reference) public VALUE_GENERIC_CLASS next() { return VALUE2OBJ( value[ nextEntry() ] ); } #endif } public VALUE_COLLECTION VALUE_GENERIC values() { if ( values == null ) values = new VALUE_ABSTRACT_COLLECTION VALUE_GENERIC() { public VALUE_ITERATOR VALUE_GENERIC iterator() { return new ValueIterator(); } public int size() { return size; } public boolean contains( VALUE_TYPE v ) { return containsValue( v ); } public void clear() { OPEN_HASH_MAP.this.clear(); } }; return values; } /** A no-op for backward compatibility. The kind of tables implemented by * this class never need rehashing. * *

If you need to reduce the table size to fit exactly * this set, use {@link #trim()}. * * @return true. * @see #trim() * @deprecated A no-op. */ @Deprecated public boolean rehash() { return true; } /** Rehashes the map, making the table as small as possible. * *

This method rehashes the table to the smallest size satisfying the * load factor. It can be used when the set will not be changed anymore, so * to optimize access speed and size. * *

If the table size is already the minimum possible, this method * does nothing. * * @return true if there was enough memory to trim the map. * @see #trim(int) */ public boolean trim() { final int l = arraySize( size, f ); if ( l >= n ) return true; try { rehash( l ); } catch(OutOfMemoryError cantDoIt) { return false; } return true; } /** Rehashes this map if the table is too large. * *

Let N be the smallest table size that can hold * max(n,{@link #size()}) entries, still satisfying the load factor. If the current * table size is smaller than or equal to N, this method does * nothing. Otherwise, it rehashes this map in a table of size * N. * *

This method is useful when reusing maps. {@linkplain #clear() Clearing a * map} leaves the table size untouched. If you are reusing a map * many times, you can call this method with a typical * size to avoid keeping around a very large table just * because of a few large transient maps. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the map. * @see #trim() */ public boolean trim( final int n ) { final int l = HashCommon.nextPowerOfTwo( (int)Math.ceil( n / f ) ); if ( this.n <= l ) return true; try { rehash( l ); } catch( OutOfMemoryError cantDoIt ) { return false; } return true; } /** Rehashes the map. * *

This method implements the basic rehashing strategy, and may be * overriden by subclasses implementing different rehashing strategies (e.g., * disk-based rehashing). However, you should not override this method * unless you understand the internal workings of this class. * * @param newN the new size */ SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED protected void rehash( final int newN ) { final KEY_GENERIC_TYPE key[] = this.key; final VALUE_GENERIC_TYPE value[] = this.value; final int mask = newN - 1; // Note that this is used by the hashing macro final KEY_GENERIC_TYPE newKey[] = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ newN + 1 ]; final VALUE_GENERIC_TYPE newValue[] = VALUE_GENERIC_ARRAY_CAST new VALUE_TYPE[ newN + 1 ]; #ifdef Linked int i = first, prev = -1, newPrev = -1, t, pos; final long link[] = this.link; final long newLink[] = new long[ newN + 1 ]; first = -1; for( int j = size; j-- != 0; ) { if ( KEY_IS_NULL( key[ i ] ) ) pos = newN; else { pos = KEY2INTHASH( key[ i ] ) & mask; while ( ! KEY_IS_NULL( newKey[ pos ] ) ) pos = ( pos + 1 ) & mask; newKey[ pos ] = key[ i ]; } newValue[ pos ] = value[ i ]; if ( prev != -1 ) { SET_NEXT( newLink[ newPrev ], pos ); SET_PREV( newLink[ pos ], newPrev ); newPrev = pos; } else { newPrev = first = pos; // Special case of SET(newLink[ pos ], -1, -1); newLink[ pos ] = -1L; } t = i; i = GET_NEXT(link[ i ]); prev = t; } this.link = newLink; this.last = newPrev; if ( newPrev != -1 ) // Special case of SET_NEXT( newLink[ newPrev ], -1 ); newLink[ newPrev ] |= -1 & 0xFFFFFFFFL; #else int i = n, pos; for( int j = realSize(); j-- != 0; ) { while( KEY_IS_NULL( key[ --i ] ) ); if ( ! KEY_IS_NULL( newKey[ pos = KEY2INTHASH( key[ i ] ) & mask ] ) ) while ( ! KEY_IS_NULL( newKey[ pos = ( pos + 1 ) & mask ] ) ); newKey[ pos ] = key[ i ]; newValue[ pos ] = value[ i ]; } newValue[ newN ] = value[ n ]; #endif n = newN; this.mask = mask; maxFill = maxFill( n, f ); this.key = newKey; this.value = newValue; } /** Returns a deep copy of this map. * *

This method performs a deep copy of this hash map; the data stored in the * map, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this map. */ SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED public OPEN_HASH_MAP KEY_VALUE_GENERIC clone() { OPEN_HASH_MAP KEY_VALUE_GENERIC c; try { c = (OPEN_HASH_MAP KEY_VALUE_GENERIC)super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.keys = null; c.values = null; c.entries = null; c.containsNullKey = containsNullKey; c.key = key.clone(); c.value = value.clone(); #ifdef Linked c.link = link.clone(); #endif #ifdef Custom c.strategy = strategy; #endif return c; } /** Returns a hash code for this map. * * This method overrides the generic method provided by the superclass. * Since equals() is not overriden, it is important * that the value returned by this method is the same value as * the one returned by the overriden method. * * @return a hash code for this map. */ public int hashCode() { int h = 0; for( int j = realSize(), i = 0, t = 0; j-- != 0; ) { while( KEY_IS_NULL( key[ i ] ) ) i++; #if #keys(reference) if ( this != key[ i ] ) #endif t = KEY2JAVAHASH_NOT_NULL( key[ i ] ); #if #values(reference) if ( this != value[ i ] ) #endif t ^= VALUE2JAVAHASH( value[ i ] ); h += t; i++; } // Zero / null keys have hash zero. if ( containsNullKey ) h += VALUE2JAVAHASH( value[ n ] ); return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final KEY_GENERIC_TYPE key[] = this.key; final VALUE_GENERIC_TYPE value[] = this.value; final MapIterator i = new MapIterator(); s.defaultWriteObject(); for( int j = size, e; j-- != 0; ) { e = i.nextEntry(); s.WRITE_KEY( key[ e ] ); s.WRITE_VALUE( value[ e ] ); } } SUPPRESS_WARNINGS_KEY_VALUE_UNCHECKED private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = arraySize( size, f ); maxFill = maxFill( n, f ); mask = n - 1; final KEY_GENERIC_TYPE key[] = this.key = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[ n + 1 ]; final VALUE_GENERIC_TYPE value[] = this.value = VALUE_GENERIC_ARRAY_CAST new VALUE_TYPE[ n + 1 ]; #ifdef Linked final long link[] = this.link = new long[ n + 1 ]; int prev = -1; first = last = -1; #endif KEY_GENERIC_TYPE k; VALUE_GENERIC_TYPE v; for( int i = size, pos; i-- != 0; ) { k = KEY_GENERIC_CAST s.READ_KEY(); v = VALUE_GENERIC_CAST s.READ_VALUE(); if ( KEY_IS_NULL( k ) ) { pos = n; containsNullKey = true; } else { pos = KEY2INTHASH( k ) & mask; while ( ! KEY_IS_NULL( key[ pos ] ) ) pos = ( pos + 1 ) & mask; key[ pos ] = k; } value[ pos ] = v; #ifdef Linked if ( first != -1 ) { SET_NEXT( link[ prev ], pos ); SET_PREV( link[ pos ], prev ); prev = pos; } else { prev = first = pos; // Special case of SET_PREV( newLink[ pos ], -1 ); link[ pos ] |= (-1L & 0xFFFFFFFFL) << 32; } #endif } #ifdef Linked last = prev; if ( prev != -1 ) // Special case of SET_NEXT( link[ prev ], -1 ); link[ prev ] |= -1 & 0xFFFFFFFFL; #endif if ( ASSERTS ) checkTable(); } #ifdef ASSERTS_CODE private void checkTable() { assert ( n & -n ) == n : "Table length is not a power of two: " + n; assert n == key.length - 1; int n = key.length - 1; while( n-- != 0 ) if ( ! KEY_IS_NULL( key[ n ] ) && ! containsKey( key[ n ] ) ) throw new AssertionError( "Hash table has key " + key[ n ] + " marked as occupied, but the key does not belong to the table" ); #if #keys(primitive) java.util.HashSet s = new java.util.HashSet (); #else java.util.HashSet s = new java.util.HashSet(); #endif for( int i = key.length; i-- != 0; ) if ( ! KEY_IS_NULL( key[ i ] ) && ! s.add( key[ i ] ) ) throw new AssertionError( "Key " + key[ i ] + " appears twice at position " + i ); #ifdef Linked KEY_BIDI_ITERATOR KEY_GENERIC i = keySet().iterator(); KEY_GENERIC_TYPE k; n = size(); while( n-- != 0 ) if ( ! containsKey( k = i.NEXT_KEY() ) ) throw new AssertionError( "Linked hash table forward enumerates key " + k + ", but the key does not belong to the table" ); if ( i.hasNext() ) throw new AssertionError( "Forward iterator not exhausted" ); n = size(); if ( n > 0 ) { i = keySet().iterator( LAST_KEY() ); while( n-- != 0 ) if ( ! containsKey( k = i.PREV_KEY() ) ) throw new AssertionError( "Linked hash table backward enumerates key " + k + ", but the key does not belong to the table" ); if ( i.hasPrevious() ) throw new AssertionError( "Previous iterator not exhausted" ); } #endif } #else private void checkTable() {} #endif #ifdef TEST private static long seed = System.currentTimeMillis(); private static java.util.Random r = new java.util.Random( seed ); private static KEY_TYPE genKey() { #if #keyclass(Byte) || #keyclass(Short) || #keyclass(Character) return (KEY_TYPE)(r.nextInt()); #elif #keys(primitive) return r.NEXT_KEY(); #elif !#keyclass(Reference) #ifdef Custom int i = r.nextInt( 3 ); byte a[] = new byte[ i ]; while( i-- != 0 ) a[ i ] = (byte)r.nextInt(); return a; #else return Integer.toBinaryString( r.nextInt() ); #endif #else return new java.io.Serializable() {}; #endif } private static VALUE_TYPE genValue() { #if #valueclass(Byte) || #valueclass(Short) || #valueclass(Character) return (VALUE_TYPE)(r.nextInt()); #elif #values(primitive) return r.NEXT_VALUE(); #elif !#valueclass(Reference) return Integer.toBinaryString( r.nextInt() ); #else return new java.io.Serializable() {}; #endif } private static final class ArrayComparator implements java.util.Comparator { public int compare( Object a, Object b ) { byte[] aa = (byte[])a; byte[] bb = (byte[])b; int length = Math.min( aa.length, bb.length ); for( int i = 0; i < length; i++ ) { if ( aa[ i ] < bb[ i ] ) return -1; if ( aa[ i ] > bb[ i ] ) return 1; } return aa.length == bb.length ? 0 : ( aa.length < bb.length ? -1 : 1 ); } } private static final class MockMap extends java.util.TreeMap { private java.util.List list = new java.util.ArrayList(); public MockMap( java.util.Comparator c ) { super( c ); } public Object put( Object k, Object v ) { if ( ! containsKey( k ) ) list.add( k ); return super.put( k, v ); } public void putAll( Map m ) { java.util.Iterator i = m.entrySet().iterator(); while( i.hasNext() ) { Map.Entry e = (Map.Entry)i.next(); put( e.getKey(), e.getValue() ); } } public Object remove( Object k ) { if ( containsKey( k ) ) { int i = list.size(); while( i-- != 0 ) if ( comparator().compare( list.get( i ), k ) == 0 ) { list.remove( i ); break; } } return super.remove( k ); } private void justRemove( Object k ) { super.remove( k ); } private java.util.Set justEntrySet() { return super.entrySet(); } private java.util.Set justKeySet() { return super.keySet(); } public java.util.Set keySet() { return new java.util.AbstractSet() { final java.util.Set keySet = justKeySet(); public boolean contains( Object k ) { return keySet.contains( k ); } public int size() { return keySet.size(); } public java.util.Iterator iterator() { return new java.util.Iterator() { final java.util.Iterator iterator = list.iterator(); Object curr; public Object next() { return curr = iterator.next(); } public boolean hasNext() { return iterator.hasNext(); } public void remove() { justRemove( curr ); iterator.remove(); } }; } }; } public java.util.Set entrySet() { return new java.util.AbstractSet() { final java.util.Set entrySet = justEntrySet(); public boolean contains( Object k ) { return entrySet.contains( k ); } public int size() { return entrySet.size(); } public java.util.Iterator iterator() { return new java.util.Iterator() { final java.util.Iterator iterator = list.iterator(); Object curr; public Object next() { curr = iterator.next(); #if #valueclass(Reference) #if #keyclass(Reference) return new ABSTRACT_MAP.BasicEntry( (Object)curr, (Object)get(curr) ) { #else return new ABSTRACT_MAP.BasicEntry( (KEY_CLASS)curr, (Object)get(curr) ) { #endif #else #if #keyclass(Reference) return new ABSTRACT_MAP.BasicEntry( (Object)curr, (VALUE_CLASS)get(curr) ) { #else return new ABSTRACT_MAP.BasicEntry( (KEY_CLASS)curr, (VALUE_CLASS)get(curr) ) { #endif #endif public VALUE_TYPE setValue( VALUE_TYPE v ) { return VALUE_OBJ2TYPE(put( getKey(), VALUE2OBJ(v) )); } }; } public boolean hasNext() { return iterator.hasNext(); } public void remove() { justRemove( ((Map.Entry)curr).getKey() ); iterator.remove(); } }; } }; } } private static java.text.NumberFormat format = new java.text.DecimalFormat( "#,###.00" ); private static java.text.FieldPosition fp = new java.text.FieldPosition( 0 ); private static String format( double d ) { StringBuffer s = new StringBuffer(); return format.format( d, s, fp ).toString(); } private static void speedTest( int n, float f, boolean comp ) { #ifndef Custom int i, j; OPEN_HASH_MAP m; #ifdef Linked java.util.LinkedHashMap t; #else java.util.HashMap t; #endif KEY_TYPE k[] = new KEY_TYPE[n]; KEY_TYPE nk[] = new KEY_TYPE[n]; VALUE_TYPE v[] = new VALUE_TYPE[n]; long ns; for( i = 0; i < n; i++ ) { k[i] = genKey(); nk[i] = genKey(); v[i] = genValue(); } double totPut = 0, totYes = 0, totNo = 0, totIter = 0, totRemYes = 0, totRemNo = 0, d; if ( comp ) { for( j = 0; j < 20; j++ ) { #ifdef Linked t = new java.util.LinkedHashMap( 16 ); #else t = new java.util.HashMap( 16 ); #endif /* We put pairs to t. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) t.put( KEY2OBJ( k[i] ), VALUE2OBJ( v[i] ) ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totPut += d; System.out.print("Put: " + format( d ) + "ns " ); /* We check for pairs in t. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) t.containsKey( KEY2OBJ( k[i] ) ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totYes += d; System.out.print("Yes: " + format( d ) + "ns " ); /* We check for pairs not in t. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) t.containsKey( KEY2OBJ( nk[i] ) ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totNo += d; System.out.print("No: " + format( d ) + "ns " ); /* We iterate on t. */ ns = System.nanoTime(); for( java.util.Iterator it = t.entrySet().iterator(); it.hasNext(); it.next() ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totIter += d; System.out.print("Iter: " + format( d ) + "ns " ); /* We delete pairs not in t. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) t.remove( KEY2OBJ( nk[i] ) ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totRemNo += d; System.out.print("RemNo: " + format( d ) + "ns " ); /* We delete pairs in t. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) t.remove( KEY2OBJ( k[i] ) ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totRemYes += d; System.out.print("RemYes: " + format( d ) + "ns " ); System.out.println(); } System.out.println(); System.out.println( "java.util Put: " + format( totPut/(j-3) ) + "ns Yes: " + format( totYes/(j-3) ) + "ns No: " + format( totNo/(j-3) ) + "ns Iter: " + format( totIter/(j-3) ) + "ns RemNo: " + format( totRemNo/(j-3) ) + "ns RemYes: " + format( totRemYes/(j-3) ) + "K/s" ); System.out.println(); totPut = totYes = totNo = totIter = totRemYes = totRemNo = 0; } for( j = 0; j < 20; j++ ) { m = new OPEN_HASH_MAP( 16, f ); /* We put pairs to m. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) m.put( k[i], v[i] ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totPut += d; System.out.print("Put: " + format( d ) + "ns " ); /* We check for pairs in m. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) m.containsKey( k[i] ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totYes += d; System.out.print("Yes: " + format( d ) + "ns " ); /* We check for pairs not in m. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) m.containsKey( nk[i] ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totNo += d; System.out.print("No: " + format( d ) + "ns " ); /* We iterate on m. */ ns = System.nanoTime(); for( java.util.Iterator it = m.entrySet().iterator(); it.hasNext(); it.next() ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totIter += d; System.out.print("Iter: " + format( d ) + "ns " ); /* We delete pairs not in m. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) m.remove( nk[i] ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totRemNo += d; System.out.print("RemNo: " + format( d ) + "ns " ); /* We delete pairs in m. */ ns = System.nanoTime(); for( i = 0; i < n; i++ ) m.remove( k[i] ); d = ( System.nanoTime() - ns ) / (double)n; if ( j > 2 ) totRemYes += d; System.out.print("RemYes: " + format( d ) + "ns " ); System.out.println(); } System.out.println(); System.out.println( "fastutil Put: " + format( totPut/(j-3) ) + "ns Yes: " + format( totYes/(j-3) ) + "ns No: " + format( totNo/(j-3) ) + "ns Iter: " + format( totIter/(j-3) ) + "ns RemNo: " + format( totRemNo/(j-3) ) + "ns RemYes: " + format( totRemYes/(j-3) ) + "ns" ); System.out.println(); #endif } private static boolean valEquals(Object o1, Object o2) { return o1 == null ? o2 == null : o1.equals(o2); } private static void fatal( String msg ) { System.out.println( msg ); System.exit( 1 ); } private static void ensure( boolean cond, String msg ) { if ( cond ) return; fatal( msg ); } protected static void test( int n, float f ) { #if !defined(Custom) || #keys(reference) #ifdef Custom OPEN_HASH_MAP m = new OPEN_HASH_MAP(Hash.DEFAULT_INITIAL_SIZE, f, it.unimi.dsi.fastutil.bytes.ByteArrays.HASH_STRATEGY); #else OPEN_HASH_MAP m = new OPEN_HASH_MAP(Hash.DEFAULT_INITIAL_SIZE, f); #endif #ifdef Linked #ifdef Custom Map t = new MockMap( new ArrayComparator() ); #else Map t = new java.util.LinkedHashMap(); #endif #else #ifdef Custom Map t = new java.util.TreeMap(new ArrayComparator()); #else Map t = new java.util.HashMap(); #endif #endif /* First of all, we fill t with random data. */ for(int i=0; i 0 ) { java.util.ListIterator i, j; Object J; j = new java.util.LinkedList( t.keySet() ).listIterator(); int e = r.nextInt( t.size() ); Object from; do from = j.next(); while( e-- != 0 ); i = (java.util.ListIterator)((SORTED_SET)m.keySet()).iterator( KEY_OBJ2TYPE( from ) ); for( int k = 0; k < 2*n; k++ ) { ensure( i.hasNext() == j.hasNext(), "Error (" + seed + "): divergence in hasNext() (iterator with starting point " + from + ")" ); ensure( i.hasPrevious() == j.hasPrevious(), "Error (" + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")" ); if ( r.nextFloat() < .8 && i.hasNext() ) { #ifdef Custom ensure( m.strategy().equals( i.next(), J = j.next() ), "Error (" + seed + "): divergence in next() (iterator with starting point " + from + ")" ); #else ensure( i.next().equals( J = j.next() ), "Error (" + seed + "): divergence in next() (iterator with starting point " + from + ")" ); #endif if ( r.nextFloat() < 0.5 ) { i.remove(); j.remove(); t.remove( J ); } } else if ( r.nextFloat() < .2 && i.hasPrevious() ) { #ifdef Custom ensure( m.strategy().equals( i.previous(), J = j.previous() ), "Error (" + seed + "): divergence in previous() (iterator with starting point " + from + ")" ); #else ensure( i.previous().equals( J = j.previous() ), "Error (" + seed + "): divergence in previous() (iterator with starting point " + from + ")" ); #endif if ( r.nextFloat() < 0.5 ) { i.remove(); j.remove(); t.remove( J ); } } ensure( i.nextIndex() == j.nextIndex(), "Error (" + seed + "): divergence in nextIndex() (iterator with starting point " + from + ")" ); ensure( i.previousIndex() == j.previousIndex(), "Error (" + seed + "): divergence in previousIndex() (iterator with starting point " + from + ")" ); } } /* Now we check that m actually holds that data. */ ensure( m.equals(t), "Error (" + seed + "): ! m.equals( t ) after iteration" ); ensure( t.equals(m), "Error (" + seed + "): ! t.equals( m ) after iteration" ); #endif /* Now we take out of m everything, and check that it is empty. */ for(java.util.Iterator i=t.keySet().iterator(); i.hasNext(); ) m.remove(i.next()); if (!m.isEmpty()) { System.out.println("Error (" + seed + "): m is not empty (as it should be)"); System.exit( 1 ); } #ifdef NumericEnhancements #if #valueclass(Byte) || #valueclass(Character) || #valueclass(Short) || #valueclass(Integer) || #valueclass(Long) /* Now we check that increment works properly, using random data */ { t.clear(); m.clear(); for( int k = 0; k < 2*n; k++ ) { KEY_TYPE T = genKey(); VALUE_TYPE U = genValue(); VALUE_TYPE rU = m.increment(T, U); VALUE_GENERIC_CLASS tU = (VALUE_GENERIC_CLASS) t.get(KEY2OBJ(T)); if (null == tU) { ensure(m.defaultReturnValue() == rU, "Error (" + seed + "): map increment does not return proper starting value." ); t.put( KEY2OBJ(T), VALUE2OBJ((VALUE_TYPE) (m.defaultReturnValue() + U)) ); } else { t.put( KEY2OBJ(T), VALUE2OBJ((VALUE_TYPE) (((VALUE_TYPE) tU) + U)) ); } } // Maps should contain identical values ensure( new java.util.HashMap(m).equals(new java.util.HashMap(t)), "Error(" + seed + "): incremented maps are not equal." ); } #endif #endif #if (#keyclass(Integer) || #keyclass(Long)) && (#valueclass(Integer) || #valueclass(Long)) m = new OPEN_HASH_MAP(n, f); t.clear(); int x; /* Now we torture-test the hash table. This part is implemented only for integers and longs. */ int p = m.key.length; for(int i=0; i2) f = Float.parseFloat(args[2]); if ( args.length > 3 ) r = new java.util.Random( seed = Long.parseLong( args[ 3 ] ) ); try { if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest( n, f, "speedComp".equals(args[0]) ); else if ( "test".equals( args[0] ) ) test(n, f); } catch( Throwable e ) { e.printStackTrace( System.err ); System.err.println( "seed: " + seed ); } } #endif }