drv.OpenHashBigSet.drv Maven / Gradle / Ivy
Show all versions of phoenix-server-hbase-2.6
/*
* Copyright (C) 2002-2015 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
import it.unimi.dsi.fastutil.BigArrays;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.Size64;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.bigArraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
/** A type-specific hash big set with with a fast, small-footprint implementation.
*
* Instances of this class use a hash table to represent a big set: the number
* of elements in the set is limited only by the amount of core memory. The table
* (backed by a {@linkplain it.unimi.dsi.fastutil.BigArrays big array}) is
* filled up to a specified load factor, and then doubled in size to
* accommodate new entries. If the table is emptied below one fourth
* of the load factor, it is halved in size. However, halving is
* not performed when deleting entries from an iterator, as it would interfere
* with the iteration process.
*
*
Note that {@link #clear()} does not modify the hash table size.
* Rather, a family of {@linkplain #trim() trimming
* methods} lets you control the size of the table; this is particularly useful
* if you reuse instances of this class.
*
*
The methods of this class are about 30% slower than those of the corresponding non-big set.
*
* @see Hash
* @see HashCommon
*/
public class OPEN_HASH_BIG_SET KEY_GENERIC extends ABSTRACT_SET KEY_GENERIC implements java.io.Serializable, Cloneable, Hash, Size64 {
private static final long serialVersionUID = 0L;
private static final boolean ASSERTS = ASSERTS_VALUE;
/** The big array of keys. */
protected transient KEY_GENERIC_TYPE[][] key;
/** The mask for wrapping a position counter. */
protected transient long mask;
/** The mask for wrapping a segment counter. */
protected transient int segmentMask;
/** The mask for wrapping a base counter. */
protected transient int baseMask;
/** Whether this set contains the null key. */
protected transient boolean containsNull;
/** The current table size (always a power of 2). */
protected transient long n;
/** Threshold after which we rehash. It must be the table size times {@link #f}. */
protected transient long maxFill;
/** The acceptable load factor. */
protected final float f;
/** Number of entries in the set. */
protected long size;
/** Initialises the mask values. */
private void initMasks() {
mask = n - 1;
/* Note that either we have more than one segment, and in this case all segments
* are BigArrays.SEGMENT_SIZE long, or we have exactly one segment whose length
* is a power of two. */
segmentMask = key[ 0 ].length - 1;
baseMask = key.length - 1;
}
/** Creates a new hash big set.
*
*
The actual table size will be the least power of two greater than expected
/f
.
*
* @param expected the expected number of elements in the set.
* @param f the load factor.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public OPEN_HASH_BIG_SET( final long expected, final float f ) {
if ( f <= 0 || f > 1 ) throw new IllegalArgumentException( "Load factor must be greater than 0 and smaller than or equal to 1" );
if ( n < 0 ) throw new IllegalArgumentException( "The expected number of elements must be nonnegative" );
this.f = f;
n = bigArraySize( expected, f );
maxFill = maxFill( n, f );
key = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( n );
initMasks();
}
/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param expected the expected number of elements in the hash big set.
*/
public OPEN_HASH_BIG_SET( final long expected ) {
this( expected, DEFAULT_LOAD_FACTOR );
}
/** Creates a new hash big set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements
* and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*/
public OPEN_HASH_BIG_SET() {
this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR );
}
/** Creates a new hash big set copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash big set.
* @param f the load factor.
*/
public OPEN_HASH_BIG_SET( final Collection extends KEY_GENERIC_CLASS> c, final float f ) {
this( c.size(), f );
addAll( c );
}
/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash big set.
*/
public OPEN_HASH_BIG_SET( final Collection extends KEY_GENERIC_CLASS> c ) {
this( c, DEFAULT_LOAD_FACTOR );
}
/** Creates a new hash big set copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new hash big set.
* @param f the load factor.
*/
public OPEN_HASH_BIG_SET( final COLLECTION KEY_EXTENDS_GENERIC c, final float f ) {
this( c.size(), f );
addAll( c );
}
/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new hash big set.
*/
public OPEN_HASH_BIG_SET( final COLLECTION KEY_EXTENDS_GENERIC c ) {
this( c, DEFAULT_LOAD_FACTOR );
}
/** Creates a new hash big set using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the new hash big set.
* @param f the load factor.
*/
public OPEN_HASH_BIG_SET( final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i, final float f ) {
this( DEFAULT_INITIAL_SIZE, f );
while( i.hasNext() ) add( i.NEXT_KEY() );
}
/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the new hash big set.
*/
public OPEN_HASH_BIG_SET( final STD_KEY_ITERATOR KEY_EXTENDS_GENERIC i ) {
this( i, DEFAULT_LOAD_FACTOR );
}
#if #keys(primitive)
/** Creates a new hash big set using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the new hash big set.
* @param f the load factor.
*/
public OPEN_HASH_BIG_SET( final Iterator> i, final float f ) {
this( ITERATORS.AS_KEY_ITERATOR( i ), f );
}
/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the new hash big set.
*/
public OPEN_HASH_BIG_SET( final Iterator> i ) {
this( ITERATORS.AS_KEY_ITERATOR( i ) );
}
#endif
/** Creates a new hash big set and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the new hash big set.
* @param offset the first element to use.
* @param length the number of elements to use.
* @param f the load factor.
*/
public OPEN_HASH_BIG_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length, final float f ) {
this( length < 0 ? 0 : length, f );
ARRAYS.ensureOffsetLength( a, offset, length );
for( int i = 0; i < length; i++ ) add( a[ offset + i ] );
}
/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the new hash big set.
* @param offset the first element to use.
* @param length the number of elements to use.
*/
public OPEN_HASH_BIG_SET( final KEY_GENERIC_TYPE[] a, final int offset, final int length ) {
this( a, offset, length, DEFAULT_LOAD_FACTOR );
}
/** Creates a new hash big set copying the elements of an array.
*
* @param a an array to be copied into the new hash big set.
* @param f the load factor.
*/
public OPEN_HASH_BIG_SET( final KEY_GENERIC_TYPE[] a, final float f ) {
this( a, 0, a.length, f );
}
/** Creates a new hash big set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor
* copying the elements of an array.
*
* @param a an array to be copied into the new hash big set.
*/
public OPEN_HASH_BIG_SET( final KEY_GENERIC_TYPE[] a ) {
this( a, DEFAULT_LOAD_FACTOR );
}
private long realSize() {
return containsNull ? size - 1 : size;
}
private void ensureCapacity( final long capacity ) {
final long needed = bigArraySize( capacity, f );
if ( needed > n ) rehash( needed );
}
#if #keys(primitive)
/** {@inheritDoc} */
public boolean addAll( COLLECTION c ) {
final long size = c instanceof Size64 ? ((Size64)c).size64() : c.size();
if ( f <= .5 ) ensureCapacity( size ); // The resulting collection will be size for c.size() elements
else ensureCapacity( size64() + size ); // The resulting collection will be sized for size() + c.size() elements
return super.addAll( c );
}
#endif
/** {@inheritDoc} */
public boolean addAll( Collection extends KEY_GENERIC_CLASS> c ) {
final long size = c instanceof Size64 ? ((Size64)c).size64() : c.size();
// The resulting collection will be at least c.size() big
if ( f <= .5 ) ensureCapacity( size ); // The resulting collection will be sized for c.size() elements
else ensureCapacity( size64() + size ); // The resulting collection will be sized for size() + c.size() elements
return super.addAll( c );
}
public boolean add( final KEY_GENERIC_TYPE k ) {
int displ, base;
if ( KEY_IS_NULL( k ) ) {
if ( containsNull ) return false;
containsNull = true;
}
else {
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[][] key = this.key;
final long h = KEY2LONGHASH( k );
// The starting point.
if ( ! KEY_IS_NULL( curr = key[ base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT ) ][ displ = (int)( h & segmentMask ) ] ) ) {
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return false;
while( ! KEY_IS_NULL( curr = key[ base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask ][ displ ] ) )
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return false;
}
key[ base ][ displ ] = k;
}
if ( size++ >= maxFill ) rehash( 2 * n );
if ( ASSERTS ) checkTable();
return true;
}
/** Shifts left entries with the specified hash code, starting at the specified position,
* and empties the resulting free entry.
*
* @param pos a starting position.
*/
protected final void shiftKeys( long pos ) {
// Shift entries with the same hash.
long last, slot;
final KEY_GENERIC_TYPE[][] key = this.key;
for(;;) {
pos = ( ( last = pos ) + 1 ) & mask;
for(;;) {
if ( KEY_IS_NULL( BIG_ARRAYS.get( key, pos ) ) ) {
BIG_ARRAYS.set( key, last, KEY_NULL );
return;
}
slot = KEY2LONGHASH( BIG_ARRAYS.get( key, pos ) ) & mask;
if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break;
pos = ( pos + 1 ) & mask;
}
BIG_ARRAYS.set( key, last, BIG_ARRAYS.get( key, pos ) );
}
}
private boolean removeEntry( final int base, final int displ ) {
shiftKeys( base * (long)BigArrays.SEGMENT_SIZE + displ );
if ( --size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 );
return true;
}
private boolean removeNullEntry() {
containsNull = false;
if ( --size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 );
return true;
}
public boolean remove( final KEY_TYPE k ) {
if ( KEY_IS_NULL( k ) ) {
if ( containsNull ) return removeNullEntry();
return false;
}
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[][] key = this.key;
final long h = KEY2LONGHASH( k );
int displ, base;
// The starting point.
if ( KEY_IS_NULL( curr = key[ base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT ) ][ displ = (int)( h & segmentMask ) ] ) ) return false;
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return removeEntry( base, displ );
while( true ) {
if ( KEY_IS_NULL( curr = key[ base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask ][ displ ] ) ) return false;
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return removeEntry( base, displ );
}
}
public boolean contains( final KEY_TYPE k ) {
if ( KEY_IS_NULL( k ) ) return containsNull;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[][] key = this.key;
final long h = KEY2LONGHASH( k );
int displ, base;
// The starting point.
if ( KEY_IS_NULL( curr = key[ base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT ) ][ displ = (int)( h & segmentMask ) ] ) ) return false;
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return true;
while( true ) {
if ( KEY_IS_NULL( curr = key[ base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask ][ displ ] ) ) return false;
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return true;
}
}
#if #keyclass(Object)
/** Returns the element of this set that is equal to the given key, or null
.
* @return the element of this set that is equal to the given key, or null
.
*/
public K get( final KEY_TYPE k ) {
if ( k == null ) return null; // This is correct independently of the value of containsNull
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[][] key = this.key;
final long h = KEY2LONGHASH( k );
int displ, base;
// The starting point.
if ( KEY_IS_NULL( curr = key[ base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT ) ][ displ = (int)( h & segmentMask ) ] ) ) return null;
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return curr;
while( true ) {
if ( KEY_IS_NULL( curr = key[ base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask ][ displ ] ) ) return null;
if ( KEY_EQUALS_NOT_NULL( curr, k ) ) return curr;
}
}
#endif
/* Removes all elements from this set.
*
*
To increase object reuse, this method does not change the table size.
* If you want to reduce the table size, you must use {@link #trim(long)}.
*
*/
public void clear() {
if ( size == 0 ) return;
size = 0;
containsNull = false;
BIG_ARRAYS.fill( key, KEY_NULL );
}
/** An iterator over a hash big set. */
private class SetIterator extends KEY_ABSTRACT_ITERATOR KEY_GENERIC {
/** The base of the last entry returned, if positive or zero; initially, the number of components
of the key array. If negative, the last element returned was
that of index {@code - base - 1} from the {@link #wrapped} list. */
int base = key.length;
/** The displacement of the last entry returned; initially, zero. */
int displ;
/** The index of the last entry that has been returned (or {@link Long#MIN_VALUE} if {@link #base} is negative).
It is -1 if either we did not return an entry yet, or the last returned entry has been removed. */
long last = -1;
/** A downward counter measuring how many entries must still be returned. */
long c = size;
/** A boolean telling us whether we should return the null key. */
boolean mustReturnNull = OPEN_HASH_BIG_SET.this.containsNull;
/** A lazily allocated list containing elements that have wrapped around the table because of removals. */
ARRAY_LIST KEY_GENERIC wrapped;
public boolean hasNext() {
return c != 0;
}
public KEY_GENERIC_TYPE NEXT_KEY() {
if ( ! hasNext() ) throw new NoSuchElementException();
c--;
if ( mustReturnNull ) {
mustReturnNull = false;
last = n;
return KEY_NULL;
}
final KEY_GENERIC_TYPE[][] key = OPEN_HASH_BIG_SET.this.key;
for(;;) {
if ( displ == 0 && base <= 0 ) {
// We are just enumerating elements from the wrapped list.
last = Long.MIN_VALUE;
return wrapped.GET_KEY( - ( --base ) - 1 );
}
if ( displ-- == 0 ) displ = key[ --base ].length - 1;
final KEY_GENERIC_TYPE k = key[ base ][ displ ];
if ( ! KEY_IS_NULL( k ) ) {
last = base * (long)BigArrays.SEGMENT_SIZE + displ;
return k;
}
}
}
/** Shifts left entries with the specified hash code, starting at the specified position,
* and empties the resulting free entry.
*
* @param pos a starting position.
*/
private final void shiftKeys( long pos ) {
// Shift entries with the same hash.
long last, slot;
KEY_GENERIC_TYPE curr;
final KEY_GENERIC_TYPE[][] key = OPEN_HASH_BIG_SET.this.key;
for(;;) {
pos = ( ( last = pos ) + 1 ) & mask;
for(;;) {
if( KEY_IS_NULL( curr = BIG_ARRAYS.get( key, pos ) ) ) {
BIG_ARRAYS.set( key, last, KEY_NULL );
return;
}
slot = KEY2LONGHASH( curr ) & mask;
if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break;
pos = ( pos + 1 ) & mask;
}
if ( pos < last ) { // Wrapped entry.
if ( wrapped == null ) wrapped = new ARRAY_LIST KEY_GENERIC();
wrapped.add( BIG_ARRAYS.get( key, pos ) );
}
BIG_ARRAYS.set( key, last, curr );
}
}
public void remove() {
if ( last == -1 ) throw new IllegalStateException();
if ( last == n ) OPEN_HASH_BIG_SET.this.containsNull = false;
else if ( base >= 0 ) shiftKeys( last );
else {
// We're removing wrapped entries.
#if #keys(reference)
OPEN_HASH_BIG_SET.this.remove( wrapped.set( - base - 1, null ) );
#else
OPEN_HASH_BIG_SET.this.remove( wrapped.GET_KEY( - base - 1 ) );
#endif
last = -1; // Note that we must not decrement size
return;
}
size--;
last = -1; // You can no longer remove this entry.
if ( ASSERTS ) checkTable();
}
}
public KEY_ITERATOR KEY_GENERIC iterator() {
return new SetIterator();
}
/** A no-op for backward compatibility. The kind of tables implemented by
* this class never need rehashing.
*
*
If you need to reduce the table size to fit exactly
* this set, use {@link #trim()}.
*
* @return true.
* @see #trim()
* @deprecated A no-op.
*/
@Deprecated
public boolean rehash() {
return true;
}
/** Rehashes this set, making the table as small as possible.
*
*
This method rehashes the table to the smallest size satisfying the
* load factor. It can be used when the set will not be changed anymore, so
* to optimize access speed and size.
*
*
If the table size is already the minimum possible, this method
* does nothing.
*
* @return true if there was enough memory to trim the set.
* @see #trim(long)
*/
public boolean trim() {
final long l = bigArraySize( size, f );
if ( l >= n ) return true;
try {
rehash( l );
}
catch(OutOfMemoryError cantDoIt) { return false; }
return true;
}
/** Rehashes this set if the table is too large.
*
*
Let N be the smallest table size that can hold
* max(n,{@link #size64()})
entries, still satisfying the load factor. If the current
* table size is smaller than or equal to N, this method does
* nothing. Otherwise, it rehashes this set in a table of size
* N.
*
*
This method is useful when reusing sets. {@linkplain #clear() Clearing a
* set} leaves the table size untouched. If you are reusing a set
* many times, you can call this method with a typical
* size to avoid keeping around a very large table just
* because of a few large transient sets.
*
* @param n the threshold for the trimming.
* @return true if there was enough memory to trim the set.
* @see #trim()
*/
public boolean trim( final long n ) {
final long l = bigArraySize( n, f );
if ( this.n <= l ) return true;
try {
rehash( l );
}
catch( OutOfMemoryError cantDoIt ) { return false; }
return true;
}
/** Resizes the set.
*
*
This method implements the basic rehashing strategy, and may be
* overriden by subclasses implementing different rehashing strategies (e.g.,
* disk-based rehashing). However, you should not override this method
* unless you understand the internal workings of this class.
*
* @param newN the new size
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
protected void rehash( final long newN ) {
final KEY_GENERIC_TYPE key[][] = this.key;
final KEY_GENERIC_TYPE newKey[][] = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( newN );
final long mask = newN - 1; // Note that this is used by the hashing macro
final int newSegmentMask = newKey[ 0 ].length - 1;
final int newBaseMask = newKey.length - 1;
int base = 0, displ = 0, b, d;
long h;
KEY_GENERIC_TYPE k;
for( long i = realSize(); i-- != 0; ) {
while( KEY_IS_NULL( key[ base ][ displ ] ) ) base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) );
k = key[ base ][ displ ];
h = KEY2LONGHASH( k );
// The starting point.
if ( ! KEY_IS_NULL( newKey[ b = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT ) ][ d = (int)( h & newSegmentMask ) ] ) )
while( ! KEY_IS_NULL( newKey[ b = ( b + ( ( d = ( d + 1 ) & newSegmentMask ) == 0 ? 1 : 0 ) ) & newBaseMask ][ d ] ) );
newKey[ b ][ d ] = k;
base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) );
}
this.n = newN;
this.key = newKey;
initMasks();
maxFill = maxFill( n, f );
}
@Deprecated
public int size() {
return (int)Math.min( Integer.MAX_VALUE, size );
}
public long size64() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
/** Returns a deep copy of this big set.
*
*
This method performs a deep copy of this big hash set; the data stored in the
* set, however, is not cloned. Note that this makes a difference only for object keys.
*
* @return a deep copy of this big set.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public OPEN_HASH_BIG_SET KEY_GENERIC clone() {
OPEN_HASH_BIG_SET KEY_GENERIC c;
try {
c = (OPEN_HASH_BIG_SET KEY_GENERIC)super.clone();
}
catch(CloneNotSupportedException cantHappen) {
throw new InternalError();
}
c.key = BIG_ARRAYS.copy( key );
c.containsNull = containsNull;
return c;
}
/** Returns a hash code for this set.
*
* This method overrides the generic method provided by the superclass.
* Since equals()
is not overriden, it is important
* that the value returned by this method is the same value as
* the one returned by the overriden method.
*
* @return a hash code for this set.
*/
public int hashCode() {
final KEY_GENERIC_TYPE key[][] = this.key;
int h = 0, base = 0, displ = 0;
for( long j = realSize(); j-- != 0; ) {
while( KEY_IS_NULL( key[ base ][ displ ] ) ) base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) );
#if #keys(reference)
if ( this != key[ base ][ displ ] )
#endif
h += KEY2JAVAHASH_NOT_NULL( key[ base ][ displ ] );
base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) );
}
return h;
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
final KEY_ITERATOR KEY_GENERIC i = iterator();
s.defaultWriteObject();
for( long j = size; j-- != 0; ) s.WRITE_KEY( i.NEXT_KEY() );
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
n = bigArraySize( size, f );
maxFill = maxFill( n, f );
final KEY_GENERIC_TYPE[][] key = this.key = KEY_GENERIC_BIG_ARRAY_CAST BIG_ARRAYS.newBigArray( n );
initMasks();
long h;
KEY_GENERIC_TYPE k;
int base, displ;
for( long i = size; i-- != 0; ) {
k = KEY_GENERIC_CAST s.READ_KEY();
if ( KEY_IS_NULL( k ) ) containsNull = true;
else {
h = KEY2LONGHASH( k );
if ( ! KEY_IS_NULL( key[ base = (int)( ( h & mask ) >>> BigArrays.SEGMENT_SHIFT ) ][ displ = (int)( h & segmentMask ) ] ) )
while( ! KEY_IS_NULL( key[ base = ( base + ( ( displ = ( displ + 1 ) & segmentMask ) == 0 ? 1 : 0 ) ) & baseMask ][ displ ] ) );
key[ base ][ displ ] = k;
}
}
if ( ASSERTS ) checkTable();
}
#ifdef ASSERTS_CODE
private void checkTable() {
assert ( n & -n ) == n : "Table length is not a power of two: " + n;
assert n == BIG_ARRAYS.length( key );
long n = this.n;
while( n-- != 0 )
if ( ! KEY_IS_NULL( BIG_ARRAYS.get( key, n ) ) && ! contains( BIG_ARRAYS.get( key, n ) ) )
throw new AssertionError( "Hash table has key " + BIG_ARRAYS.get( key, n ) + " marked as occupied, but the key does not belong to the table" );
#if #keys(primitive)
java.util.HashSet s = new java.util.HashSet ();
#else
java.util.HashSet