All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.it.unimi.dsi.fastutil.BigArrays Maven / Gradle / Ivy

The newest version!
package it.unimi.dsi.fastutil;

/*		 
 * Copyright (C) 2010-2015 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 *
 * For the sorting code:
 *
 * Copyright (C) 1999 CERN - European Organization for Nuclear Research.
 *
 *   Permission to use, copy, modify, distribute and sell this software and
 *   its documentation for any purpose is hereby granted without fee,
 *   provided that the above copyright notice appear in all copies and that
 *   both that copyright notice and this permission notice appear in
 *   supporting documentation. CERN makes no representations about the
 *   suitability of this software for any purpose. It is provided "as is"
 *   without expressed or implied warranty. 
 */


import it.unimi.dsi.fastutil.ints.IntBigArrayBigList;
import it.unimi.dsi.fastutil.ints.IntBigArrays;
import it.unimi.dsi.fastutil.longs.LongComparator;

/** A class providing static methods and objects that do useful things with big arrays.
 * 
 * 

Introducing big arrays

* *

A big array is an array-of-arrays representation of an array. The length of a big array * is bounded by {@link Long#MAX_VALUE} rather than {@link Integer#MAX_VALUE}. The type of a big array * is that of an array-of-arrays, so a big array of integers is of type int[][]. * *

If a is a big array, a[0], a[1], … are called * the segments of the big array. All segments, except possibly for the last one, are of length * {@link #SEGMENT_SIZE}. Given an index i into a big array, there is an associated * {@linkplain #segment(long) segment} and an associated {@linkplain #displacement(long) displacement} * into that segment. Access to single members happens by means of accessors defined in the type-specific * versions (see, e.g., {@link IntBigArrays#get(int[][], long)} and {@link IntBigArrays#set(int[][], long, int)}), * but you can also use the methods {@link #segment(long)}/{@link #displacement(long)} to access entries manually. * *

Scanning big arrays

* *

You can scan a big array using the following idiomatic form: *

 *   for( int s = 0; s < a.length; s++ ) {
 *      final int[] t = a[ s ];
 *      final int l = t.length;
 *      for( int d = 0; d < l; d++ ) { do something with t[ d ] }
 *   }
 * 
* or using the (simpler and usually faster) reversed version: *
 *   for( int s = a.length; s-- != 0; ) {
 *      final int[] t = a[ s ];  
 *      for( int d = t.length; d-- != 0; ) { do something with t[ d ] }
 *   }
 * 
*

Inside the inner loop, the original index in a can be retrieved using {@link #index(int, int) index(segment, displacement)}. * Do not use an additional variable to keep track of the value of the original index, as * computing it on the fly is significantly faster. For instance, to inizialise the i-th element of a big array of * long integers to the value i you should use *

 *   for( int s = a.length; s-- != 0; ) {
 *      final long[] t = a[ s ];  
 *      for( int d = t.length; d-- != 0; ) t[ d ] = index( s, d );
 *   }
 * 
* *

Note that caching is essential in making these loops essentially as fast as those scanning standard arrays (as iterations * of the outer loop happen very rarely). Using loops of this kind is extremely faster than using a standard * loop and accessors. * *

In some situations, you might want to iterate over a part of a big array having an offset and a length. In this case, the * idiomatic loops are as follows: *

 *   for( int s = segment( offset ); s < segment( offset + length + SEGMENT_MASK ); s++ ) {
 *      final int[] t = a[ s ];
 *      final int l = (int)Math.min( t.length, offset + length - start( s ) );
 *      for( int d = (int)Math.max( 0, offset - start( s ) ); d < l; d++ ) { do something with t[ d ] }
 *   }
 * 
* or, in a reversed form, *
 *   for( int s = segment( offset + length + SEGMENT_MASK ); s-- != segment( offset ); ) {
 *      final int[] t = a[ s ];
 *      final int b = (int)Math.max( 0, offset - start( s ) );
 *      for( int d = (int)Math.min( t.length, offset + length - start( s ) ); d-- != b ; ) { do something with t[ d ] }
 *   }
 * 
* *

Literal big arrays

* *

A literal big array can be easily created by using the suitable type-specific wrap() method * (e.g., {@link IntBigArrays#wrap(int[])}) around a literal standard array. Alternatively, for very small * arrays you can just declare a literal array-of-array (e.g., new int[][] { { 1, 2 } }). Be warned, * however, that this can lead to creating illegal big arrays if for some reason (e.g., stress testing) {@link #SEGMENT_SIZE} * is set to a value smaller than the inner array length. * *

Big alternatives

* *

If you find the kind of “bare hands” approach to big arrays not enough object-oriented, please use * big lists based on big arrays (.e.g, {@link IntBigArrayBigList}). Big arrays follow the Java tradition of * considering arrays as a “legal alien”—something in-between an object and a primitive type. This * approach lacks the consistency of a full object-oriented approach, but provides some significant performance gains. * *

Additional methods

* *

In addition to commodity methods, this class contains {@link BigSwapper}-based implementations * of {@linkplain #quickSort(long, long, LongComparator, BigSwapper) quicksort} and of * a stable, in-place {@linkplain #mergeSort(long, long, LongComparator, BigSwapper) mergesort}. These * generic sorting methods can be used to sort any kind of list, but they find their natural * usage, for instance, in sorting big arrays in parallel. * * @see it.unimi.dsi.fastutil.Arrays */ public class BigArrays { /** The shift used to compute the segment associated with an index (equivalently, the logarithm of the segment size). */ public final static int SEGMENT_SHIFT = 27; /** The current size of a segment (227) is the largest size that makes * the physical memory allocation for a single segment strictly smaller * than 231 bytes. */ public final static int SEGMENT_SIZE = 1 << SEGMENT_SHIFT; /** The mask used to compute the displacement associated to an index. */ public final static int SEGMENT_MASK = SEGMENT_SIZE - 1; protected BigArrays() {} /** Computes the segment associated with a given index. * * @param index an index into a big array. * @return the associated segment. */ public static int segment( final long index ) { return (int)( index >>> SEGMENT_SHIFT ); } /** Computes the displacement associated with a given index. * * @param index an index into a big array. * @return the associated displacement (in the associated {@linkplain #segment(long) segment}). */ public static int displacement( final long index ) { return (int)( index & SEGMENT_MASK ); } /** Computes the starting index of a given segment. * * @param segment the segment of a big array. * @return the starting index of the segment. */ public static long start( final int segment ) { return (long)segment << SEGMENT_SHIFT; } /** Computes the index associated with given segment and displacement. * * @param segment the segment of a big array. * @param displacement the displacement into the segment. * @return the associated index: that is, {@link #segment(long) segment(index(segment, displacement)) == segment} and * {@link #displacement(long) displacement(index(segment, displacement)) == displacement}. */ public static long index( final int segment, final int displacement ) { return start( segment ) + displacement; } /** Ensures that a range given by its first (inclusive) and last (exclusive) elements fits a big array of given length. * *

This method may be used whenever a big array range check is needed. * * @param bigArrayLength a big-array length. * @param from a start index (inclusive). * @param to an end index (inclusive). * @throws IllegalArgumentException if from is greater than to. * @throws ArrayIndexOutOfBoundsException if from or to are greater than bigArrayLength or negative. */ public static void ensureFromTo( final long bigArrayLength, final long from, final long to ) { if ( from < 0 ) throw new ArrayIndexOutOfBoundsException( "Start index (" + from + ") is negative" ); if ( from > to ) throw new IllegalArgumentException( "Start index (" + from + ") is greater than end index (" + to + ")" ); if ( to > bigArrayLength ) throw new ArrayIndexOutOfBoundsException( "End index (" + to + ") is greater than big-array length (" + bigArrayLength + ")" ); } /** Ensures that a range given by an offset and a length fits a big array of given length. * *

This method may be used whenever a big array range check is needed. * * @param bigArrayLength a big-array length. * @param offset a start index for the fragment * @param length a length (the number of elements in the fragment). * @throws IllegalArgumentException if length is negative. * @throws ArrayIndexOutOfBoundsException if offset is negative or offset+length is greater than bigArrayLength. */ public static void ensureOffsetLength( final long bigArrayLength, final long offset, final long length ) { if ( offset < 0 ) throw new ArrayIndexOutOfBoundsException( "Offset (" + offset + ") is negative" ); if ( length < 0 ) throw new IllegalArgumentException( "Length (" + length + ") is negative" ); if ( offset + length > bigArrayLength ) throw new ArrayIndexOutOfBoundsException( "Last index (" + ( offset + length ) + ") is greater than big-array length (" + bigArrayLength + ")" ); } private static final int SMALL = 7; private static final int MEDIUM = 40; /** * Transforms two consecutive sorted ranges into a single sorted range. The initial ranges are * [first, middle) and [middle, last), and the resulting range is * [first, last). Elements in the first input range will precede equal elements in * the second. */ private static void inPlaceMerge( final long from, long mid, final long to, final LongComparator comp, final BigSwapper swapper ) { if ( from >= mid || mid >= to ) return; if ( to - from == 2 ) { if ( comp.compare( mid, from ) < 0 ) { swapper.swap( from, mid ); } return; } long firstCut; long secondCut; if ( mid - from > to - mid ) { firstCut = from + ( mid - from ) / 2; secondCut = lowerBound( mid, to, firstCut, comp ); } else { secondCut = mid + ( to - mid ) / 2; firstCut = upperBound( from, mid, secondCut, comp ); } long first2 = firstCut; long middle2 = mid; long last2 = secondCut; if ( middle2 != first2 && middle2 != last2 ) { long first1 = first2; long last1 = middle2; while ( first1 < --last1 ) swapper.swap( first1++, last1 ); first1 = middle2; last1 = last2; while ( first1 < --last1 ) swapper.swap( first1++, last1 ); first1 = first2; last1 = last2; while ( first1 < --last1 ) swapper.swap( first1++, last1 ); } mid = firstCut + ( secondCut - mid ); inPlaceMerge( from, firstCut, mid, comp, swapper ); inPlaceMerge( mid, secondCut, to, comp, swapper ); } /** * Performs a binary search on an already sorted range: finds the first position where an * element can be inserted without violating the ordering. Sorting is by a user-supplied * comparison function. * * @param mid Beginning of the range. * @param to One past the end of the range. * @param firstCut Element to be searched for. * @param comp Comparison function. * @return The largest index i such that, for every j in the range [first, i), * comp.apply(array[j], x) is true. */ private static long lowerBound( long mid, final long to, final long firstCut, final LongComparator comp ) { long len = to - mid; while ( len > 0 ) { long half = len / 2; long middle = mid + half; if ( comp.compare( middle, firstCut ) < 0 ) { mid = middle + 1; len -= half + 1; } else { len = half; } } return mid; } /** Returns the index of the median of three elements. */ private static long med3( final long a, final long b, final long c, final LongComparator comp ) { final int ab = comp.compare( a, b ); final int ac = comp.compare( a, c ); final int bc = comp.compare( b, c ); return ( ab < 0 ? ( bc < 0 ? b : ac < 0 ? c : a ) : ( bc > 0 ? b : ac > 0 ? c : a ) ); } /** Sorts the specified range of elements using the specified big swapper and according to the order induced by the specified * comparator using mergesort. * *

This sort is guaranteed to be stable: equal elements will not be reordered as a result * of the sort. The sorting algorithm is an in-place mergesort that is significantly slower than a * standard mergesort, as its running time is O(n (log n)2), but it does not allocate additional memory; as a result, it can be * used as a generic sorting algorithm. * * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the order of the generic data (arguments are positions). * @param swapper an object that knows how to swap the elements at any two positions. */ public static void mergeSort( final long from, final long to, final LongComparator comp, final BigSwapper swapper ) { final long length = to - from; // Insertion sort on smallest arrays if ( length < SMALL ) { for ( long i = from; i < to; i++ ) { for ( long j = i; j > from && ( comp.compare( j - 1, j ) > 0 ); j-- ) { swapper.swap( j, j - 1 ); } } return; } // Recursively sort halves long mid = ( from + to ) >>> 1; mergeSort( from, mid, comp, swapper ); mergeSort( mid, to, comp, swapper ); // If list is already sorted, nothing left to do. This is an // optimization that results in faster sorts for nearly ordered lists. if ( comp.compare( mid - 1, mid ) <= 0 ) return; // Merge sorted halves inPlaceMerge( from, mid, to, comp, swapper ); } /** Sorts the specified range of elements using the specified big swapper and according to the order induced by the specified * comparator using quicksort. * *

The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas * McIlroy, “Engineering a Sort Function”, Software: Practice and Experience, 23(11), pages * 1249−1265, 1993. * * @param from the index of the first element (inclusive) to be sorted. * @param to the index of the last element (exclusive) to be sorted. * @param comp the comparator to determine the order of the generic data. * @param swapper an object that knows how to swap the elements at any two positions. * */ public static void quickSort( final long from, final long to, final LongComparator comp, final BigSwapper swapper ) { final long len = to - from; // Insertion sort on smallest arrays if ( len < SMALL ) { for ( long i = from; i < to; i++ ) for ( long j = i; j > from && ( comp.compare( j - 1, j ) > 0 ); j-- ) { swapper.swap( j, j - 1 ); } return; } // Choose a partition element, v long m = from + len / 2; // Small arrays, middle element if ( len > SMALL ) { long l = from, n = to - 1; if ( len > MEDIUM ) { // Big arrays, pseudomedian of 9 long s = len / 8; l = med3( l, l + s, l + 2 * s, comp ); m = med3( m - s, m, m + s, comp ); n = med3( n - 2 * s, n - s, n, comp ); } m = med3( l, m, n, comp ); // Mid-size, med of 3 } // long v = x[m]; long a = from, b = a, c = to - 1, d = c; // Establish Invariant: v* (v)* v* while ( true ) { int comparison; while ( b <= c && ( ( comparison = comp.compare( b, m ) ) <= 0 ) ) { if ( comparison == 0 ) { if ( a == m ) m = b; // moving target; DELTA to JDK !!! else if ( b == m ) m = a; // moving target; DELTA to JDK !!! swapper.swap( a++, b ); } b++; } while ( c >= b && ( ( comparison = comp.compare( c, m ) ) >= 0 ) ) { if ( comparison == 0 ) { if ( c == m ) m = d; // moving target; DELTA to JDK !!! else if ( d == m ) m = c; // moving target; DELTA to JDK !!! swapper.swap( c, d-- ); } c--; } if ( b > c ) break; if ( b == m ) m = d; // moving target; DELTA to JDK !!! else if ( c == m ) m = c; // moving target; DELTA to JDK !!! swapper.swap( b++, c-- ); } // Swap partition elements back to middle long s; long n = from + len; s = Math.min( a - from, b - a ); vecSwap( swapper, from, b - s, s ); s = Math.min( d - c, n - d - 1 ); vecSwap( swapper, b, n - s, s ); // Recursively sort non-partition-elements if ( ( s = b - a ) > 1 ) quickSort( from, from + s, comp, swapper ); if ( ( s = d - c ) > 1 ) quickSort( n - s, n, comp, swapper ); } /** * Performs a binary search on an already-sorted range: finds the last position where an element * can be inserted without violating the ordering. Sorting is by a user-supplied comparison * function. * * @param from Beginning of the range. * @param mid One past the end of the range. * @param secondCut Element to be searched for. * @param comp Comparison function. * @return The largest index i such that, for every j in the range [first, i), * comp.apply(x, array[j]) is false. */ private static long upperBound( long from, final long mid, final long secondCut, final LongComparator comp ) { long len = mid - from; while ( len > 0 ) { long half = len / 2; long middle = from + half; if ( comp.compare( secondCut, middle ) < 0 ) { len = half; } else { from = middle + 1; len -= half + 1; } } return from; } /** * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)]. */ private static void vecSwap( final BigSwapper swapper, long from, long l, final long s ) { for ( int i = 0; i < s; i++, from++, l++ ) swapper.swap( from, l ); } public static void main( final String arg[] ) { int[][] a = IntBigArrays.newBigArray( 1L << Integer.parseInt( arg[ 0 ] ) ); long x, y, z, start; for( int k = 10; k-- != 0; ) { start = -System.currentTimeMillis(); x = 0; for( long i = IntBigArrays.length( a ); i-- != 0; ) x ^= i ^ IntBigArrays.get( a, i ); if ( x == 0 ) System.err.println(); System.out.println( "Single loop: " + ( start + System.currentTimeMillis() ) + "ms" ); start = -System.currentTimeMillis(); y = 0; for( int i = a.length; i-- != 0; ) { final int[] t = a[ i ]; for( int d = t.length; d-- != 0; ) y ^= t[ d ] ^ index( i, d ); } if ( y == 0 ) System.err.println(); if ( x != y ) throw new AssertionError(); System.out.println( "Double loop: " + ( start + System.currentTimeMillis() ) + "ms" ); z = 0; long j = IntBigArrays.length( a ); for( int i = a.length; i-- != 0; ) { final int[] t = a[ i ]; for( int d = t.length; d-- != 0; ) y ^= t[ d ] ^ --j; } if ( z == 0 ) System.err.println(); if ( x != z ) throw new AssertionError(); System.out.println( "Double loop (with additional index): " + ( start + System.currentTimeMillis() ) + "ms" ); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy