All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.it.unimi.dsi.fastutil.chars.CharHeapSemiIndirectPriorityQueue Maven / Gradle / Ivy

The newest version!
/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Primitive-type-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/*		 
 * Copyright (C) 2003-2015 Paolo Boldi and Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */
package it.unimi.dsi.fastutil.chars;

import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.ints.IntArrays;
import it.unimi.dsi.fastutil.AbstractIndirectPriorityQueue;

/** A type-specific heap-based semi-indirect priority queue.
 *
 * 

Instances of this class use as reference list a reference array, which must be provided to each constructor. The priority queue is represented using a heap. The heap is enlarged as * needed, but it is never shrunk. Use the {@link #trim()} method to reduce its size, if necessary. * *

This implementation allows one to enqueue several time the same index, but you must be careful when calling {@link #changed()}. */ public class CharHeapSemiIndirectPriorityQueue extends AbstractIndirectPriorityQueue implements CharIndirectPriorityQueue { /** The reference array. */ protected final char refArray[]; /** The semi-indirect heap. */ protected int heap[] = IntArrays.EMPTY_ARRAY; /** The number of elements in this queue. */ protected int size; /** The type-specific comparator used in this queue. */ protected CharComparator c; /** Creates a new empty queue without elements with a given capacity and comparator. * * @param refArray the reference array. * @param capacity the initial capacity of this queue. * @param c the comparator used in this queue, or null for the natural order. */ public CharHeapSemiIndirectPriorityQueue( char[] refArray, int capacity, CharComparator c ) { if ( capacity > 0 ) this.heap = new int[ capacity ]; this.refArray = refArray; this.c = c; } /** Creates a new empty queue with given capacity and using the natural order. * * @param refArray the reference array. * @param capacity the initial capacity of this queue. */ public CharHeapSemiIndirectPriorityQueue( char[] refArray, int capacity ) { this( refArray, capacity, null ); } /** Creates a new empty queue with capacity equal to the length of the reference array and a given comparator. * * @param refArray the reference array. * @param c the comparator used in this queue, or null for the natural order. */ public CharHeapSemiIndirectPriorityQueue( char[] refArray, CharComparator c ) { this( refArray, refArray.length, c ); } /** Creates a new empty queue with capacity equal to the length of the reference array and using the natural order. * * @param refArray the reference array. */ public CharHeapSemiIndirectPriorityQueue( final char[] refArray ) { this( refArray, refArray.length, null ); } /** Wraps a given array in a queue using a given comparator. * *

The queue returned by this method will be backed by the given array. The first size element of the array will be rearranged so to form a heap (this is more efficient than * enqueing the elements of a one by one). * * @param refArray the reference array. * @param a an array of indices into refArray. * @param size the number of elements to be included in the queue. * @param c the comparator used in this queue, or null for the natural order. */ public CharHeapSemiIndirectPriorityQueue( final char[] refArray, final int[] a, int size, final CharComparator c ) { this( refArray, 0, c ); this.heap = a; this.size = size; CharSemiIndirectHeaps.makeHeap( refArray, a, size, c ); } /** Wraps a given array in a queue using a given comparator. * *

The queue returned by this method will be backed by the given array. The elements of the array will be rearranged so to form a heap (this is more efficient than enqueing the elements of * a one by one). * * @param refArray the reference array. * @param a an array of indices into refArray. * @param c the comparator used in this queue, or null for the natural order. */ public CharHeapSemiIndirectPriorityQueue( final char[] refArray, final int[] a, final CharComparator c ) { this( refArray, a, a.length, c ); } /** Wraps a given array in a queue using the natural order. * *

The queue returned by this method will be backed by the given array. The first size element of the array will be rearranged so to form a heap (this is more efficient than * enqueing the elements of a one by one). * * @param refArray the reference array. * @param a an array of indices into refArray. * @param size the number of elements to be included in the queue. */ public CharHeapSemiIndirectPriorityQueue( final char[] refArray, final int[] a, int size ) { this( refArray, a, size, null ); } /** Wraps a given array in a queue using the natural order. * *

The queue returned by this method will be backed by the given array. The elements of the array will be rearranged so to form a heap (this is more efficient than enqueing the elements of * a one by one). * * @param refArray the reference array. * @param a an array of indices into refArray. */ public CharHeapSemiIndirectPriorityQueue( final char[] refArray, final int[] a ) { this( refArray, a, a.length ); } /** Ensures that the given index is a valid reference. * * @param index an index in the reference array. * @throws IndexOutOfBoundsException if the given index is negative or larger than the reference array length. */ protected void ensureElement( final int index ) { if ( index < 0 ) throw new IndexOutOfBoundsException( "Index (" + index + ") is negative" ); if ( index >= refArray.length ) throw new IndexOutOfBoundsException( "Index (" + index + ") is larger than or equal to reference array size (" + refArray.length + ")" ); } public void enqueue( int x ) { ensureElement( x ); if ( size == heap.length ) heap = IntArrays.grow( heap, size + 1 ); heap[ size++ ] = x; CharSemiIndirectHeaps.upHeap( refArray, heap, size, size - 1, c ); } public int dequeue() { if ( size == 0 ) throw new NoSuchElementException(); final int result = heap[ 0 ]; heap[ 0 ] = heap[ --size ]; if ( size != 0 ) CharSemiIndirectHeaps.downHeap( refArray, heap, size, 0, c ); return result; } public int first() { if ( size == 0 ) throw new NoSuchElementException(); return heap[ 0 ]; } /** {@inheritDoc} * *

The caller must guarantee that when this method is called the index of the first element appears just once in the queue. Failure to do so will bring the queue in an * inconsistent state, and will cause unpredictable behaviour. */ public void changed() { CharSemiIndirectHeaps.downHeap( refArray, heap, size, 0, c ); } /** Rebuilds this heap in a bottom-up fashion. */ public void allChanged() { CharSemiIndirectHeaps.makeHeap( refArray, heap, size, c ); } public int size() { return size; } public void clear() { size = 0; } /** Trims the backing array so that it has exactly {@link #size()} elements. */ public void trim() { heap = IntArrays.trim( heap, size ); } public CharComparator comparator() { return c; } public int front( final int[] a ) { return c == null ? CharSemiIndirectHeaps.front( refArray, heap, size, a ) : CharSemiIndirectHeaps.front( refArray, heap, size, a, c ); } public String toString() { StringBuffer s = new StringBuffer(); s.append( "[" ); for ( int i = 0; i < size; i++ ) { if ( i != 0 ) s.append( ", " ); s.append( refArray[ heap[ i ] ] ); } s.append( "]" ); return s.toString(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy