src.it.unimi.dsi.fastutil.floats.Float2IntRBTreeMap Maven / Gradle / Ivy
Show all versions of phoenix-server-hbase-2.6
/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Primitive-type-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/* Primitive-type-only definitions (values) */
/*
* Copyright (C) 2002-2015 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package it.unimi.dsi.fastutil.floats;
import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;
import it.unimi.dsi.fastutil.ints.IntCollection;
import it.unimi.dsi.fastutil.ints.AbstractIntCollection;
import it.unimi.dsi.fastutil.ints.IntIterator;
import java.util.Comparator;
import java.util.Iterator;
import java.util.Map;
import java.util.SortedMap;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.ints.IntListIterator;
/** A type-specific red-black tree map with a fast, small-footprint implementation.
*
* The iterators provided by the views of this class are type-specific {@linkplain it.unimi.dsi.fastutil.BidirectionalIterator bidirectional iterators}. Moreover, the iterator returned by
* iterator()
can be safely cast to a type-specific {@linkplain java.util.ListIterator list iterator}. */
public class Float2IntRBTreeMap extends AbstractFloat2IntSortedMap implements java.io.Serializable, Cloneable {
/** A reference to the root entry. */
protected transient Entry tree;
/** Number of entries in this map. */
protected int count;
/** The first key in this map. */
protected transient Entry firstEntry;
/** The last key in this map. */
protected transient Entry lastEntry;
/** Cached set of entries. */
protected transient volatile ObjectSortedSet entries;
/** Cached set of keys. */
protected transient volatile FloatSortedSet keys;
/** Cached collection of values. */
protected transient volatile IntCollection values;
/** The value of this variable remembers, after a put()
or a remove()
, whether the domain of the map has been modified. */
protected transient boolean modified;
/** This map's comparator, as provided in the constructor. */
protected Comparator super Float> storedComparator;
/** This map's actual comparator; it may differ from {@link #storedComparator} because it is always a type-specific comparator, so it could be derived from the former by wrapping. */
protected transient FloatComparator actualComparator;
private static final long serialVersionUID = -7046029254386353129L;
private static final boolean ASSERTS = false;
{
allocatePaths();
}
/** Creates a new empty tree map. */
public Float2IntRBTreeMap() {
tree = null;
count = 0;
}
/** Generates the comparator that will be actually used.
*
* When a specific {@link Comparator} is specified and stored in {@link #storedComparator}, we must check whether it is type-specific. If it is so, we can used directly, and we store it in
* {@link #actualComparator}. Otherwise, we generate on-the-fly an anonymous class that wraps the non-specific {@link Comparator} and makes it into a type-specific one. */
private void setActualComparator() {
/*
* If the provided comparator is already type-specific, we use it. Otherwise, we use a wrapper anonymous class to fake that it is type-specific. */
if ( storedComparator == null || storedComparator instanceof FloatComparator ) actualComparator = (FloatComparator)storedComparator;
else actualComparator = new FloatComparator() {
public int compare( float k1, float k2 ) {
return storedComparator.compare( ( Float.valueOf( k1 ) ), ( Float.valueOf( k2 ) ) );
}
public int compare( Float ok1, Float ok2 ) {
return storedComparator.compare( ok1, ok2 );
}
};
}
/** Creates a new empty tree map with the given comparator.
*
* @param c a (possibly type-specific) comparator. */
public Float2IntRBTreeMap( final Comparator super Float> c ) {
this();
storedComparator = c;
setActualComparator();
}
/** Creates a new tree map copying a given map.
*
* @param m a {@link Map} to be copied into the new tree map. */
public Float2IntRBTreeMap( final Map extends Float, ? extends Integer> m ) {
this();
putAll( m );
}
/** Creates a new tree map copying a given sorted map (and its {@link Comparator}).
*
* @param m a {@link SortedMap} to be copied into the new tree map. */
public Float2IntRBTreeMap( final SortedMap m ) {
this( m.comparator() );
putAll( m );
}
/** Creates a new tree map copying a given map.
*
* @param m a type-specific map to be copied into the new tree map. */
public Float2IntRBTreeMap( final Float2IntMap m ) {
this();
putAll( m );
}
/** Creates a new tree map copying a given sorted map (and its {@link Comparator}).
*
* @param m a type-specific sorted map to be copied into the new tree map. */
public Float2IntRBTreeMap( final Float2IntSortedMap m ) {
this( m.comparator() );
putAll( m );
}
/** Creates a new tree map using the elements of two parallel arrays and the given comparator.
*
* @param k the array of keys of the new tree map.
* @param v the array of corresponding values in the new tree map.
* @param c a (possibly type-specific) comparator.
* @throws IllegalArgumentException if k
and v
have different lengths. */
public Float2IntRBTreeMap( final float[] k, final int v[], final Comparator super Float> c ) {
this( c );
if ( k.length != v.length ) throw new IllegalArgumentException( "The key array and the value array have different lengths (" + k.length + " and " + v.length + ")" );
for ( int i = 0; i < k.length; i++ )
this.put( k[ i ], v[ i ] );
}
/** Creates a new tree map using the elements of two parallel arrays.
*
* @param k the array of keys of the new tree map.
* @param v the array of corresponding values in the new tree map.
* @throws IllegalArgumentException if k
and v
have different lengths. */
public Float2IntRBTreeMap( final float[] k, final int v[] ) {
this( k, v, null );
}
/* The following methods implements some basic building blocks used by all accessors. They are (and should be maintained) identical to those used in RBTreeSet.drv.
*
* The put()/remove() code is derived from Ben Pfaff's GNU libavl (http://www.msu.edu/~pfaffben/avl/). If you want to understand what's going on, you should have a look at the literate code
* contained therein first. */
/** Compares two keys in the right way.
*
* This method uses the {@link #actualComparator} if it is non-null
. Otherwise, it resorts to primitive type comparisons or to {@link Comparable#compareTo(Object) compareTo()}.
*
* @param k1 the first key.
* @param k2 the second key.
* @return a number smaller than, equal to or greater than 0, as usual (i.e., when k1 < k2, k1 = k2 or k1 > k2, respectively). */
final int compare( final float k1, final float k2 ) {
return actualComparator == null ? ( Float.compare( ( k1 ), ( k2 ) ) ) : actualComparator.compare( k1, k2 );
}
/** Returns the entry corresponding to the given key, if it is in the tree; null
, otherwise.
*
* @param k the key to search for.
* @return the corresponding entry, or null
if no entry with the given key exists. */
final Entry findKey( final float k ) {
Entry e = tree;
int cmp;
while ( e != null && ( cmp = compare( k, e.key ) ) != 0 )
e = cmp < 0 ? e.left() : e.right();
return e;
}
/** Locates a key.
*
* @param k a key.
* @return the last entry on a search for the given key; this will be the given key, if it present; otherwise, it will be either the smallest greater key or the greatest smaller key. */
final Entry locateKey( final float k ) {
Entry e = tree, last = tree;
int cmp = 0;
while ( e != null && ( cmp = compare( k, e.key ) ) != 0 ) {
last = e;
e = cmp < 0 ? e.left() : e.right();
}
return cmp == 0 ? e : last;
}
/** This vector remembers the path and the direction followed during the current insertion. It suffices for about 232 entries. */
private transient boolean dirPath[];
private transient Entry nodePath[];
private void allocatePaths() {
dirPath = new boolean[ 64 ];
nodePath = new Entry[ 64 ];
}
/*
* After execution of this method, modified is true iff a new entry has been inserted. */
public int put( final float k, final int v ) {
modified = false;
int maxDepth = 0;
if ( tree == null ) { // The case of the empty tree is treated separately.
count++;
tree = lastEntry = firstEntry = new Entry( k, v );
}
else {
Entry p = tree, e;
int cmp, i = 0;
while ( true ) {
if ( ( cmp = compare( k, p.key ) ) == 0 ) {
final int oldValue = p.value;
p.value = v;
// We clean up the node path, or we could have stale references later.
while ( i-- != 0 )
nodePath[ i ] = null;
return oldValue;
}
nodePath[ i ] = p;
if ( dirPath[ i++ ] = cmp > 0 ) {
if ( p.succ() ) {
count++;
e = new Entry( k, v );
if ( p.right == null ) lastEntry = e;
e.left = p;
e.right = p.right;
p.right( e );
break;
}
p = p.right;
}
else {
if ( p.pred() ) {
count++;
e = new Entry( k, v );
if ( p.left == null ) firstEntry = e;
e.right = p;
e.left = p.left;
p.left( e );
break;
}
p = p.left;
}
}
modified = true;
maxDepth = i--;
while ( i > 0 && !nodePath[ i ].black() ) {
if ( !dirPath[ i - 1 ] ) {
Entry y = nodePath[ i - 1 ].right;
if ( !nodePath[ i - 1 ].succ() && !y.black() ) {
nodePath[ i ].black( true );
y.black( true );
nodePath[ i - 1 ].black( false );
i -= 2;
}
else {
Entry x;
if ( !dirPath[ i ] ) y = nodePath[ i ];
else {
x = nodePath[ i ];
y = x.right;
x.right = y.left;
y.left = x;
nodePath[ i - 1 ].left = y;
if ( y.pred() ) {
y.pred( false );
x.succ( y );
}
}
x = nodePath[ i - 1 ];
x.black( false );
y.black( true );
x.left = y.right;
y.right = x;
if ( i < 2 ) tree = y;
else {
if ( dirPath[ i - 2 ] ) nodePath[ i - 2 ].right = y;
else nodePath[ i - 2 ].left = y;
}
if ( y.succ() ) {
y.succ( false );
x.pred( y );
}
break;
}
}
else {
Entry y = nodePath[ i - 1 ].left;
if ( !nodePath[ i - 1 ].pred() && !y.black() ) {
nodePath[ i ].black( true );
y.black( true );
nodePath[ i - 1 ].black( false );
i -= 2;
}
else {
Entry x;
if ( dirPath[ i ] ) y = nodePath[ i ];
else {
x = nodePath[ i ];
y = x.left;
x.left = y.right;
y.right = x;
nodePath[ i - 1 ].right = y;
if ( y.succ() ) {
y.succ( false );
x.pred( y );
}
}
x = nodePath[ i - 1 ];
x.black( false );
y.black( true );
x.right = y.left;
y.left = x;
if ( i < 2 ) tree = y;
else {
if ( dirPath[ i - 2 ] ) nodePath[ i - 2 ].right = y;
else nodePath[ i - 2 ].left = y;
}
if ( y.pred() ) {
y.pred( false );
x.succ( y );
}
break;
}
}
}
}
tree.black( true );
// We clean up the node path, or we could have stale references later.
while ( maxDepth-- != 0 )
nodePath[ maxDepth ] = null;
if ( ASSERTS ) {
checkNodePath();
checkTree( tree, 0, -1 );
}
return defRetValue;
}
/*
* After execution of this method, {@link #modified} is true iff an entry has been deleted. */
public int remove( final float k ) {
modified = false;
if ( tree == null ) return defRetValue;
Entry p = tree;
int cmp;
int i = 0;
final float kk = k;
while ( true ) {
if ( ( cmp = compare( kk, p.key ) ) == 0 ) break;
dirPath[ i ] = cmp > 0;
nodePath[ i ] = p;
if ( dirPath[ i++ ] ) {
if ( ( p = p.right() ) == null ) {
// We clean up the node path, or we could have stale references later.
while ( i-- != 0 )
nodePath[ i ] = null;
return defRetValue;
}
}
else {
if ( ( p = p.left() ) == null ) {
// We clean up the node path, or we could have stale references later.
while ( i-- != 0 )
nodePath[ i ] = null;
return defRetValue;
}
}
}
if ( p.left == null ) firstEntry = p.next();
if ( p.right == null ) lastEntry = p.prev();
if ( p.succ() ) {
if ( p.pred() ) {
if ( i == 0 ) tree = p.left;
else {
if ( dirPath[ i - 1 ] ) nodePath[ i - 1 ].succ( p.right );
else nodePath[ i - 1 ].pred( p.left );
}
}
else {
p.prev().right = p.right;
if ( i == 0 ) tree = p.left;
else {
if ( dirPath[ i - 1 ] ) nodePath[ i - 1 ].right = p.left;
else nodePath[ i - 1 ].left = p.left;
}
}
}
else {
boolean color;
Entry r = p.right;
if ( r.pred() ) {
r.left = p.left;
r.pred( p.pred() );
if ( !r.pred() ) r.prev().right = r;
if ( i == 0 ) tree = r;
else {
if ( dirPath[ i - 1 ] ) nodePath[ i - 1 ].right = r;
else nodePath[ i - 1 ].left = r;
}
color = r.black();
r.black( p.black() );
p.black( color );
dirPath[ i ] = true;
nodePath[ i++ ] = r;
}
else {
Entry s;
int j = i++;
while ( true ) {
dirPath[ i ] = false;
nodePath[ i++ ] = r;
s = r.left;
if ( s.pred() ) break;
r = s;
}
dirPath[ j ] = true;
nodePath[ j ] = s;
if ( s.succ() ) r.pred( s );
else r.left = s.right;
s.left = p.left;
if ( !p.pred() ) {
p.prev().right = s;
s.pred( false );
}
s.right( p.right );
color = s.black();
s.black( p.black() );
p.black( color );
if ( j == 0 ) tree = s;
else {
if ( dirPath[ j - 1 ] ) nodePath[ j - 1 ].right = s;
else nodePath[ j - 1 ].left = s;
}
}
}
int maxDepth = i;
if ( p.black() ) {
for ( ; i > 0; i-- ) {
if ( dirPath[ i - 1 ] && !nodePath[ i - 1 ].succ() ||
!dirPath[ i - 1 ] && !nodePath[ i - 1 ].pred() ) {
Entry x = dirPath[ i - 1 ] ? nodePath[ i - 1 ].right : nodePath[ i - 1 ].left;
if ( !x.black() ) {
x.black( true );
break;
}
}
if ( !dirPath[ i - 1 ] ) {
Entry w = nodePath[ i - 1 ].right;
if ( !w.black() ) {
w.black( true );
nodePath[ i - 1 ].black( false );
nodePath[ i - 1 ].right = w.left;
w.left = nodePath[ i - 1 ];
if ( i < 2 ) tree = w;
else {
if ( dirPath[ i - 2 ] ) nodePath[ i - 2 ].right = w;
else nodePath[ i - 2 ].left = w;
}
nodePath[ i ] = nodePath[ i - 1 ];
dirPath[ i ] = false;
nodePath[ i - 1 ] = w;
if ( maxDepth == i++ ) maxDepth++;
w = nodePath[ i - 1 ].right;
}
if ( ( w.pred() || w.left.black() ) &&
( w.succ() || w.right.black() ) ) {
w.black( false );
}
else {
if ( w.succ() || w.right.black() ) {
Entry y = w.left;
y.black( true );
w.black( false );
w.left = y.right;
y.right = w;
w = nodePath[ i - 1 ].right = y;
if ( w.succ() ) {
w.succ( false );
w.right.pred( w );
}
}
w.black( nodePath[ i - 1 ].black() );
nodePath[ i - 1 ].black( true );
w.right.black( true );
nodePath[ i - 1 ].right = w.left;
w.left = nodePath[ i - 1 ];
if ( i < 2 ) tree = w;
else {
if ( dirPath[ i - 2 ] ) nodePath[ i - 2 ].right = w;
else nodePath[ i - 2 ].left = w;
}
if ( w.pred() ) {
w.pred( false );
nodePath[ i - 1 ].succ( w );
}
break;
}
}
else {
Entry w = nodePath[ i - 1 ].left;
if ( !w.black() ) {
w.black( true );
nodePath[ i - 1 ].black( false );
nodePath[ i - 1 ].left = w.right;
w.right = nodePath[ i - 1 ];
if ( i < 2 ) tree = w;
else {
if ( dirPath[ i - 2 ] ) nodePath[ i - 2 ].right = w;
else nodePath[ i - 2 ].left = w;
}
nodePath[ i ] = nodePath[ i - 1 ];
dirPath[ i ] = true;
nodePath[ i - 1 ] = w;
if ( maxDepth == i++ ) maxDepth++;
w = nodePath[ i - 1 ].left;
}
if ( ( w.pred() || w.left.black() ) &&
( w.succ() || w.right.black() ) ) {
w.black( false );
}
else {
if ( w.pred() || w.left.black() ) {
Entry y = w.right;
y.black( true );
w.black( false );
w.right = y.left;
y.left = w;
w = nodePath[ i - 1 ].left = y;
if ( w.pred() ) {
w.pred( false );
w.left.succ( w );
}
}
w.black( nodePath[ i - 1 ].black() );
nodePath[ i - 1 ].black( true );
w.left.black( true );
nodePath[ i - 1 ].left = w.right;
w.right = nodePath[ i - 1 ];
if ( i < 2 ) tree = w;
else {
if ( dirPath[ i - 2 ] ) nodePath[ i - 2 ].right = w;
else nodePath[ i - 2 ].left = w;
}
if ( w.succ() ) {
w.succ( false );
nodePath[ i - 1 ].pred( w );
}
break;
}
}
}
if ( tree != null ) tree.black( true );
}
modified = true;
count--;
// We clean up the node path, or we could have stale references later.
while ( maxDepth-- != 0 )
nodePath[ maxDepth ] = null;
if ( ASSERTS ) {
checkNodePath();
checkTree( tree, 0, -1 );
}
return p.value;
}
public Integer put( final Float ok, final Integer ov ) {
final int oldValue = put( ( ( ok ).floatValue() ), ( ( ov ).intValue() ) );
return modified ? ( null ) : ( Integer.valueOf( oldValue ) );
}
public Integer remove( final Object ok ) {
final int oldValue = remove( ( ( ( (Float)( ok ) ).floatValue() ) ) );
return modified ? ( Integer.valueOf( oldValue ) ) : ( null );
}
public boolean containsValue( final int v ) {
final ValueIterator i = new ValueIterator();
int ev;
int j = count;
while ( j-- != 0 ) {
ev = i.nextInt();
if ( ( ( ev ) == ( v ) ) ) return true;
}
return false;
}
public void clear() {
count = 0;
tree = null;
entries = null;
values = null;
keys = null;
firstEntry = lastEntry = null;
}
/** This class represent an entry in a tree map.
*
*
We use the only "metadata", i.e., {@link Entry#info}, to store information about color, predecessor status and successor status.
*
*
Note that since the class is recursive, it can be considered equivalently a tree. */
private static final class Entry implements Cloneable, Float2IntMap.Entry {
/** The the bit in this mask is true, the node is black. */
private final static int BLACK_MASK = 1;
/** If the bit in this mask is true, {@link #right} points to a successor. */
private final static int SUCC_MASK = 1 << 31;
/** If the bit in this mask is true, {@link #left} points to a predecessor. */
private final static int PRED_MASK = 1 << 30;
/** The key of this entry. */
float key;
/** The value of this entry. */
int value;
/** The pointers to the left and right subtrees. */
Entry left, right;
/** This integers holds different information in different bits (see {@link #SUCC_MASK} and {@link #PRED_MASK}. */
int info;
Entry() {}
/** Creates a new entry with the given key and value.
*
* @param k a key.
* @param v a value. */
Entry( final float k, final int v ) {
this.key = k;
this.value = v;
info = SUCC_MASK | PRED_MASK;
}
/** Returns the left subtree.
*
* @return the left subtree (null
if the left subtree is empty). */
Entry left() {
return ( info & PRED_MASK ) != 0 ? null : left;
}
/** Returns the right subtree.
*
* @return the right subtree (null
if the right subtree is empty). */
Entry right() {
return ( info & SUCC_MASK ) != 0 ? null : right;
}
/** Checks whether the left pointer is really a predecessor.
*
* @return true if the left pointer is a predecessor. */
boolean pred() {
return ( info & PRED_MASK ) != 0;
}
/** Checks whether the right pointer is really a successor.
*
* @return true if the right pointer is a successor. */
boolean succ() {
return ( info & SUCC_MASK ) != 0;
}
/** Sets whether the left pointer is really a predecessor.
*
* @param pred if true then the left pointer will be considered a predecessor. */
void pred( final boolean pred ) {
if ( pred ) info |= PRED_MASK;
else info &= ~PRED_MASK;
}
/** Sets whether the right pointer is really a successor.
*
* @param succ if true then the right pointer will be considered a successor. */
void succ( final boolean succ ) {
if ( succ ) info |= SUCC_MASK;
else info &= ~SUCC_MASK;
}
/** Sets the left pointer to a predecessor.
*
* @param pred the predecessr. */
void pred( final Entry pred ) {
info |= PRED_MASK;
left = pred;
}
/** Sets the right pointer to a successor.
*
* @param succ the successor. */
void succ( final Entry succ ) {
info |= SUCC_MASK;
right = succ;
}
/** Sets the left pointer to the given subtree.
*
* @param left the new left subtree. */
void left( final Entry left ) {
info &= ~PRED_MASK;
this.left = left;
}
/** Sets the right pointer to the given subtree.
*
* @param right the new right subtree. */
void right( final Entry right ) {
info &= ~SUCC_MASK;
this.right = right;
}
/** Returns whether this node is black.
*
* @return true iff this node is black. */
boolean black() {
return ( info & BLACK_MASK ) != 0;
}
/** Sets whether this node is black.
*
* @param black if true, then this node becomes black; otherwise, it becomes red.. */
void black( final boolean black ) {
if ( black ) info |= BLACK_MASK;
else info &= ~BLACK_MASK;
}
/** Computes the next entry in the set order.
*
* @return the next entry (null
) if this is the last entry). */
Entry next() {
Entry next = this.right;
if ( ( info & SUCC_MASK ) == 0 ) while ( ( next.info & PRED_MASK ) == 0 )
next = next.left;
return next;
}
/** Computes the previous entry in the set order.
*
* @return the previous entry (null
) if this is the first entry). */
Entry prev() {
Entry prev = this.left;
if ( ( info & PRED_MASK ) == 0 ) while ( ( prev.info & SUCC_MASK ) == 0 )
prev = prev.right;
return prev;
}
public Float getKey() {
return ( Float.valueOf( key ) );
}
public float getFloatKey() {
return key;
}
public Integer getValue() {
return ( Integer.valueOf( value ) );
}
public int getIntValue() {
return value;
}
public int setValue( final int value ) {
final int oldValue = this.value;
this.value = value;
return oldValue;
}
public Integer setValue( final Integer value ) {
return ( Integer.valueOf( setValue( ( ( value ).intValue() ) ) ) );
}
public Entry clone() {
Entry c;
try {
c = (Entry)super.clone();
}
catch ( CloneNotSupportedException cantHappen ) {
throw new InternalError();
}
c.key = key;
c.value = value;
c.info = info;
return c;
}
@SuppressWarnings("unchecked")
public boolean equals( final Object o ) {
if ( !( o instanceof Map.Entry ) ) return false;
Map.Entry e = (Map.Entry)o;
return ( Float.floatToIntBits( key ) == Float.floatToIntBits( ( ( e.getKey() ).floatValue() ) ) ) && ( ( value ) == ( ( ( e.getValue() ).intValue() ) ) );
}
public int hashCode() {
return it.unimi.dsi.fastutil.HashCommon.float2int( key ) ^ ( value );
}
public String toString() {
return key + "=>" + value;
}
/*public void prettyPrint() { prettyPrint(0); }
*
* public void prettyPrint(int level) { if ( pred() ) { for (int i = 0; i < level; i++) System.err.print(" "); System.err.println("pred: " + left ); } else if (left != null)
* left.prettyPrint(level +1 ); for (int i = 0; i < level; i++) System.err.print(" "); System.err.println(key + "=" + value + " (" + balance() + ")"); if ( succ() ) { for (int i = 0; i <
* level; i++) System.err.print(" "); System.err.println("succ: " + right ); } else if (right != null) right.prettyPrint(level + 1); } */
}
/*public void prettyPrint() { System.err.println("size: " + count); if (tree != null) tree.prettyPrint(); } */
public boolean containsKey( final float k ) {
return findKey( k ) != null;
}
public int size() {
return count;
}
public boolean isEmpty() {
return count == 0;
}
public int get( final float k ) {
final Entry e = findKey( k );
return e == null ? defRetValue : e.value;
}
public float firstFloatKey() {
if ( tree == null ) throw new NoSuchElementException();
return firstEntry.key;
}
public float lastFloatKey() {
if ( tree == null ) throw new NoSuchElementException();
return lastEntry.key;
}
/** An abstract iterator on the whole range.
*
* This class can iterate in both directions on a threaded tree. */
private class TreeIterator {
/** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or null
if no previous entry exists). */
Entry prev;
/** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or null
if no next entry exists). */
Entry next;
/** The last entry that was returned (or null
if we did not iterate or used {@link #remove()}). */
Entry curr;
/** The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not meaningful when this {@link TreeIterator} has been created using the nonempty constructor. */
int index = 0;
TreeIterator() {
next = firstEntry;
}
TreeIterator( final float k ) {
if ( ( next = locateKey( k ) ) != null ) {
if ( compare( next.key, k ) <= 0 ) {
prev = next;
next = next.next();
}
else prev = next.prev();
}
}
public boolean hasNext() {
return next != null;
}
public boolean hasPrevious() {
return prev != null;
}
void updateNext() {
next = next.next();
}
Entry nextEntry() {
if ( !hasNext() ) throw new NoSuchElementException();
curr = prev = next;
index++;
updateNext();
return curr;
}
void updatePrevious() {
prev = prev.prev();
}
Entry previousEntry() {
if ( !hasPrevious() ) throw new NoSuchElementException();
curr = next = prev;
index--;
updatePrevious();
return curr;
}
public int nextIndex() {
return index;
}
public int previousIndex() {
return index - 1;
}
public void remove() {
if ( curr == null ) throw new IllegalStateException();
/*
* If the last operation was a next(), we are removing an entry that preceeds the current index, and thus we must decrement it. */
if ( curr == prev ) index--;
next = prev = curr;
updatePrevious();
updateNext();
Float2IntRBTreeMap.this.remove( curr.key );
curr = null;
}
public int skip( final int n ) {
int i = n;
while ( i-- != 0 && hasNext() )
nextEntry();
return n - i - 1;
}
public int back( final int n ) {
int i = n;
while ( i-- != 0 && hasPrevious() )
previousEntry();
return n - i - 1;
}
}
/** An iterator on the whole range.
*
*
This class can iterate in both directions on a threaded tree. */
private class EntryIterator extends TreeIterator implements ObjectListIterator {
EntryIterator() {}
EntryIterator( final float k ) {
super( k );
}
public Float2IntMap.Entry next() {
return nextEntry();
}
public Float2IntMap.Entry previous() {
return previousEntry();
}
public void set( Float2IntMap.Entry ok ) {
throw new UnsupportedOperationException();
}
public void add( Float2IntMap.Entry ok ) {
throw new UnsupportedOperationException();
}
}
public ObjectSortedSet float2IntEntrySet() {
if ( entries == null ) entries = new AbstractObjectSortedSet() {
final Comparator super Float2IntMap.Entry> comparator = new Comparator() {
public int compare( final Float2IntMap.Entry x, Float2IntMap.Entry y ) {
return Float2IntRBTreeMap.this.actualComparator.compare( x.getFloatKey(), y.getFloatKey() );
}
};
public Comparator super Float2IntMap.Entry> comparator() {
return comparator;
}
public ObjectBidirectionalIterator iterator() {
return new EntryIterator();
}
public ObjectBidirectionalIterator iterator( final Float2IntMap.Entry from ) {
return new EntryIterator( from.getFloatKey() );
}
@SuppressWarnings("unchecked")
public boolean contains( final Object o ) {
if ( !( o instanceof Map.Entry ) ) return false;
final Map.Entry e = (Map.Entry)o;
final Entry f = findKey( ( ( e.getKey() ).floatValue() ) );
return e.equals( f );
}
@SuppressWarnings("unchecked")
public boolean remove( final Object o ) {
if ( !( o instanceof Map.Entry ) ) return false;
final Map.Entry e = (Map.Entry)o;
final Entry f = findKey( ( ( e.getKey() ).floatValue() ) );
if ( f != null ) Float2IntRBTreeMap.this.remove( f.key );
return f != null;
}
public int size() {
return count;
}
public void clear() {
Float2IntRBTreeMap.this.clear();
}
public Float2IntMap.Entry first() {
return firstEntry;
}
public Float2IntMap.Entry last() {
return lastEntry;
}
public ObjectSortedSet subSet( Float2IntMap.Entry from, Float2IntMap.Entry to ) {
return subMap( from.getFloatKey(), to.getFloatKey() ).float2IntEntrySet();
}
public ObjectSortedSet headSet( Float2IntMap.Entry to ) {
return headMap( to.getFloatKey() ).float2IntEntrySet();
}
public ObjectSortedSet tailSet( Float2IntMap.Entry from ) {
return tailMap( from.getFloatKey() ).float2IntEntrySet();
}
};
return entries;
}
/** An iterator on the whole range of keys.
*
* This class can iterate in both directions on the keys of a threaded tree. We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and
* possibly their type-specific counterparts) so that they return keys instead of entries. */
private final class KeyIterator extends TreeIterator implements FloatListIterator {
public KeyIterator() {}
public KeyIterator( final float k ) {
super( k );
}
public float nextFloat() {
return nextEntry().key;
}
public float previousFloat() {
return previousEntry().key;
}
public void set( float k ) {
throw new UnsupportedOperationException();
}
public void add( float k ) {
throw new UnsupportedOperationException();
}
public Float next() {
return ( Float.valueOf( nextEntry().key ) );
}
public Float previous() {
return ( Float.valueOf( previousEntry().key ) );
}
public void set( Float ok ) {
throw new UnsupportedOperationException();
}
public void add( Float ok ) {
throw new UnsupportedOperationException();
}
};
/** A keyset implementation using a more direct implementation for iterators. */
private class KeySet extends AbstractFloat2IntSortedMap.KeySet {
public FloatBidirectionalIterator iterator() {
return new KeyIterator();
}
public FloatBidirectionalIterator iterator( final float from ) {
return new KeyIterator( from );
}
}
/** Returns a type-specific sorted set view of the keys contained in this map.
*
*
In addition to the semantics of {@link java.util.Map#keySet()}, you can safely cast the set returned by this call to a type-specific sorted set interface.
*
* @return a type-specific sorted set view of the keys contained in this map. */
public FloatSortedSet keySet() {
if ( keys == null ) keys = new KeySet();
return keys;
}
/** An iterator on the whole range of values.
*
*
This class can iterate in both directions on the values of a threaded tree. We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods
* (and possibly their type-specific counterparts) so that they return values instead of entries. */
private final class ValueIterator extends TreeIterator implements IntListIterator {
public int nextInt() {
return nextEntry().value;
}
public int previousInt() {
return previousEntry().value;
}
public void set( int v ) {
throw new UnsupportedOperationException();
}
public void add( int v ) {
throw new UnsupportedOperationException();
}
public Integer next() {
return ( Integer.valueOf( nextEntry().value ) );
}
public Integer previous() {
return ( Integer.valueOf( previousEntry().value ) );
}
public void set( Integer ok ) {
throw new UnsupportedOperationException();
}
public void add( Integer ok ) {
throw new UnsupportedOperationException();
}
};
/** Returns a type-specific collection view of the values contained in this map.
*
*
In addition to the semantics of {@link java.util.Map#values()}, you can safely cast the collection returned by this call to a type-specific collection interface.
*
* @return a type-specific collection view of the values contained in this map. */
public IntCollection values() {
if ( values == null ) values = new AbstractIntCollection() {
public IntIterator iterator() {
return new ValueIterator();
}
public boolean contains( final int k ) {
return containsValue( k );
}
public int size() {
return count;
}
public void clear() {
Float2IntRBTreeMap.this.clear();
}
};
return values;
}
public FloatComparator comparator() {
return actualComparator;
}
public Float2IntSortedMap headMap( float to ) {
return new Submap( ( 0 ), true, to, false );
}
public Float2IntSortedMap tailMap( float from ) {
return new Submap( from, false, ( 0 ), true );
}
public Float2IntSortedMap subMap( float from, float to ) {
return new Submap( from, false, to, false );
}
/** A submap with given range.
*
*
This class represents a submap. One has to specify the left/right limits (which can be set to -∞ or ∞). Since the submap is a view on the map, at a given moment it could happen
* that the limits of the range are not any longer in the main map. Thus, things such as {@link java.util.SortedMap#firstKey()} or {@link java.util.Collection#size()} must be always computed
* on-the-fly. */
private final class Submap extends AbstractFloat2IntSortedMap implements java.io.Serializable {
private static final long serialVersionUID = -7046029254386353129L;
/** The start of the submap range, unless {@link #bottom} is true. */
float from;
/** The end of the submap range, unless {@link #top} is true. */
float to;
/** If true, the submap range starts from -∞. */
boolean bottom;
/** If true, the submap range goes to ∞. */
boolean top;
/** Cached set of entries. */
@SuppressWarnings("hiding")
protected transient volatile ObjectSortedSet entries;
/** Cached set of keys. */
@SuppressWarnings("hiding")
protected transient volatile FloatSortedSet keys;
/** Cached collection of values. */
@SuppressWarnings("hiding")
protected transient volatile IntCollection values;
/** Creates a new submap with given key range.
*
* @param from the start of the submap range.
* @param bottom if true, the first parameter is ignored and the range starts from -∞.
* @param to the end of the submap range.
* @param top if true, the third parameter is ignored and the range goes to ∞. */
public Submap( final float from, final boolean bottom, final float to, final boolean top ) {
if ( !bottom && !top && Float2IntRBTreeMap.this.compare( from, to ) > 0 ) throw new IllegalArgumentException( "Start key (" + from + ") is larger than end key (" + to + ")" );
this.from = from;
this.bottom = bottom;
this.to = to;
this.top = top;
this.defRetValue = Float2IntRBTreeMap.this.defRetValue;
}
public void clear() {
final SubmapIterator i = new SubmapIterator();
while ( i.hasNext() ) {
i.nextEntry();
i.remove();
}
}
/** Checks whether a key is in the submap range.
*
* @param k a key.
* @return true if is the key is in the submap range. */
final boolean in( final float k ) {
return ( bottom || Float2IntRBTreeMap.this.compare( k, from ) >= 0 ) &&
( top || Float2IntRBTreeMap.this.compare( k, to ) < 0 );
}
public ObjectSortedSet float2IntEntrySet() {
if ( entries == null ) entries = new AbstractObjectSortedSet() {
public ObjectBidirectionalIterator iterator() {
return new SubmapEntryIterator();
}
public ObjectBidirectionalIterator iterator( final Float2IntMap.Entry from ) {
return new SubmapEntryIterator( from.getFloatKey() );
}
public Comparator super Float2IntMap.Entry> comparator() {
return Float2IntRBTreeMap.this.float2IntEntrySet().comparator();
}
@SuppressWarnings("unchecked")
public boolean contains( final Object o ) {
if ( !( o instanceof Map.Entry ) ) return false;
final Map.Entry e = (Map.Entry)o;
final Float2IntRBTreeMap.Entry f = findKey( ( ( e.getKey() ).floatValue() ) );
return f != null && in( f.key ) && e.equals( f );
}
@SuppressWarnings("unchecked")
public boolean remove( final Object o ) {
if ( !( o instanceof Map.Entry ) ) return false;
final Map.Entry e = (Map.Entry)o;
final Float2IntRBTreeMap.Entry f = findKey( ( ( e.getKey() ).floatValue() ) );
if ( f != null && in( f.key ) ) Submap.this.remove( f.key );
return f != null;
}
public int size() {
int c = 0;
for ( Iterator> i = iterator(); i.hasNext(); i.next() )
c++;
return c;
}
public boolean isEmpty() {
return !new SubmapIterator().hasNext();
}
public void clear() {
Submap.this.clear();
}
public Float2IntMap.Entry first() {
return firstEntry();
}
public Float2IntMap.Entry last() {
return lastEntry();
}
public ObjectSortedSet subSet( Float2IntMap.Entry from, Float2IntMap.Entry to ) {
return subMap( from.getFloatKey(), to.getFloatKey() ).float2IntEntrySet();
}
public ObjectSortedSet headSet( Float2IntMap.Entry to ) {
return headMap( to.getFloatKey() ).float2IntEntrySet();
}
public ObjectSortedSet tailSet( Float2IntMap.Entry from ) {
return tailMap( from.getFloatKey() ).float2IntEntrySet();
}
};
return entries;
}
private class KeySet extends AbstractFloat2IntSortedMap.KeySet {
public FloatBidirectionalIterator iterator() {
return new SubmapKeyIterator();
}
public FloatBidirectionalIterator iterator( final float from ) {
return new SubmapKeyIterator( from );
}
}
public FloatSortedSet keySet() {
if ( keys == null ) keys = new KeySet();
return keys;
}
public IntCollection values() {
if ( values == null ) values = new AbstractIntCollection() {
public IntIterator iterator() {
return new SubmapValueIterator();
}
public boolean contains( final int k ) {
return containsValue( k );
}
public int size() {
return Submap.this.size();
}
public void clear() {
Submap.this.clear();
}
};
return values;
}
public boolean containsKey( final float k ) {
return in( k ) && Float2IntRBTreeMap.this.containsKey( k );
}
public boolean containsValue( final int v ) {
final SubmapIterator i = new SubmapIterator();
int ev;
while ( i.hasNext() ) {
ev = i.nextEntry().value;
if ( ( ( ev ) == ( v ) ) ) return true;
}
return false;
}
public int get( final float k ) {
final Float2IntRBTreeMap.Entry e;
final float kk = k;
return in( kk ) && ( e = findKey( kk ) ) != null ? e.value : this.defRetValue;
}
public int put( final float k, final int v ) {
modified = false;
if ( !in( k ) ) throw new IllegalArgumentException( "Key (" + k + ") out of range [" + ( bottom ? "-" : String.valueOf( from ) ) + ", " + ( top ? "-" : String.valueOf( to ) ) + ")" );
final int oldValue = Float2IntRBTreeMap.this.put( k, v );
return modified ? this.defRetValue : oldValue;
}
public Integer put( final Float ok, final Integer ov ) {
final int oldValue = put( ( ( ok ).floatValue() ), ( ( ov ).intValue() ) );
return modified ? ( null ) : ( Integer.valueOf( oldValue ) );
}
public int remove( final float k ) {
modified = false;
if ( !in( k ) ) return this.defRetValue;
final int oldValue = Float2IntRBTreeMap.this.remove( k );
return modified ? oldValue : this.defRetValue;
}
public Integer remove( final Object ok ) {
final int oldValue = remove( ( ( ( (Float)( ok ) ).floatValue() ) ) );
return modified ? ( Integer.valueOf( oldValue ) ) : ( null );
}
public int size() {
final SubmapIterator i = new SubmapIterator();
int n = 0;
while ( i.hasNext() ) {
n++;
i.nextEntry();
}
return n;
}
public boolean isEmpty() {
return !new SubmapIterator().hasNext();
}
public FloatComparator comparator() {
return actualComparator;
}
public Float2IntSortedMap headMap( final float to ) {
if ( top ) return new Submap( from, bottom, to, false );
return compare( to, this.to ) < 0 ? new Submap( from, bottom, to, false ) : this;
}
public Float2IntSortedMap tailMap( final float from ) {
if ( bottom ) return new Submap( from, false, to, top );
return compare( from, this.from ) > 0 ? new Submap( from, false, to, top ) : this;
}
public Float2IntSortedMap subMap( float from, float to ) {
if ( top && bottom ) return new Submap( from, false, to, false );
if ( !top ) to = compare( to, this.to ) < 0 ? to : this.to;
if ( !bottom ) from = compare( from, this.from ) > 0 ? from : this.from;
if ( !top && !bottom && from == this.from && to == this.to ) return this;
return new Submap( from, false, to, false );
}
/** Locates the first entry.
*
* @return the first entry of this submap, or null
if the submap is empty. */
public Float2IntRBTreeMap.Entry firstEntry() {
if ( tree == null ) return null;
// If this submap goes to -infinity, we return the main map first entry; otherwise, we locate the start of the map.
Float2IntRBTreeMap.Entry e;
if ( bottom ) e = firstEntry;
else {
e = locateKey( from );
// If we find either the start or something greater we're OK.
if ( compare( e.key, from ) < 0 ) e = e.next();
}
// Finally, if this submap doesn't go to infinity, we check that the resulting key isn't greater than the end.
if ( e == null || !top && compare( e.key, to ) >= 0 ) return null;
return e;
}
/** Locates the last entry.
*
* @return the last entry of this submap, or null
if the submap is empty. */
public Float2IntRBTreeMap.Entry lastEntry() {
if ( tree == null ) return null;
// If this submap goes to infinity, we return the main map last entry; otherwise, we locate the end of the map.
Float2IntRBTreeMap.Entry e;
if ( top ) e = lastEntry;
else {
e = locateKey( to );
// If we find something smaller than the end we're OK.
if ( compare( e.key, to ) >= 0 ) e = e.prev();
}
// Finally, if this submap doesn't go to -infinity, we check that the resulting key isn't smaller than the start.
if ( e == null || !bottom && compare( e.key, from ) < 0 ) return null;
return e;
}
public float firstFloatKey() {
Float2IntRBTreeMap.Entry e = firstEntry();
if ( e == null ) throw new NoSuchElementException();
return e.key;
}
public float lastFloatKey() {
Float2IntRBTreeMap.Entry e = lastEntry();
if ( e == null ) throw new NoSuchElementException();
return e.key;
}
public Float firstKey() {
Float2IntRBTreeMap.Entry e = firstEntry();
if ( e == null ) throw new NoSuchElementException();
return e.getKey();
}
public Float lastKey() {
Float2IntRBTreeMap.Entry e = lastEntry();
if ( e == null ) throw new NoSuchElementException();
return e.getKey();
}
/** An iterator for subranges.
*
* This class inherits from {@link TreeIterator}, but overrides the methods that update the pointer after a {@link java.util.ListIterator#next()} or
* {@link java.util.ListIterator#previous()}. If we would move out of the range of the submap we just overwrite the next or previous entry with null
. */
private class SubmapIterator extends TreeIterator {
SubmapIterator() {
next = firstEntry();
}
SubmapIterator( final float k ) {
this();
if ( next != null ) {
if ( !bottom && compare( k, next.key ) < 0 ) prev = null;
else if ( !top && compare( k, ( prev = lastEntry() ).key ) >= 0 ) next = null;
else {
next = locateKey( k );
if ( compare( next.key, k ) <= 0 ) {
prev = next;
next = next.next();
}
else prev = next.prev();
}
}
}
void updatePrevious() {
prev = prev.prev();
if ( !bottom && prev != null && Float2IntRBTreeMap.this.compare( prev.key, from ) < 0 ) prev = null;
}
void updateNext() {
next = next.next();
if ( !top && next != null && Float2IntRBTreeMap.this.compare( next.key, to ) >= 0 ) next = null;
}
}
private class SubmapEntryIterator extends SubmapIterator implements ObjectListIterator {
SubmapEntryIterator() {}
SubmapEntryIterator( final float k ) {
super( k );
}
public Float2IntMap.Entry next() {
return nextEntry();
}
public Float2IntMap.Entry previous() {
return previousEntry();
}
public void set( Float2IntMap.Entry ok ) {
throw new UnsupportedOperationException();
}
public void add( Float2IntMap.Entry ok ) {
throw new UnsupportedOperationException();
}
}
/** An iterator on a subrange of keys.
*
* This class can iterate in both directions on a subrange of the keys of a threaded tree. We simply override the {@link java.util.ListIterator#next()}/
* {@link java.util.ListIterator#previous()} methods (and possibly their type-specific counterparts) so that they return keys instead of entries. */
private final class SubmapKeyIterator extends SubmapIterator implements FloatListIterator {
public SubmapKeyIterator() {
super();
}
public SubmapKeyIterator( float from ) {
super( from );
}
public float nextFloat() {
return nextEntry().key;
}
public float previousFloat() {
return previousEntry().key;
}
public void set( float k ) {
throw new UnsupportedOperationException();
}
public void add( float k ) {
throw new UnsupportedOperationException();
}
public Float next() {
return ( Float.valueOf( nextEntry().key ) );
}
public Float previous() {
return ( Float.valueOf( previousEntry().key ) );
}
public void set( Float ok ) {
throw new UnsupportedOperationException();
}
public void add( Float ok ) {
throw new UnsupportedOperationException();
}
};
/** An iterator on a subrange of values.
*
*
This class can iterate in both directions on the values of a subrange of the keys of a threaded tree. We simply override the {@link java.util.ListIterator#next()}/
* {@link java.util.ListIterator#previous()} methods (and possibly their type-specific counterparts) so that they return values instead of entries. */
private final class SubmapValueIterator extends SubmapIterator implements IntListIterator {
public int nextInt() {
return nextEntry().value;
}
public int previousInt() {
return previousEntry().value;
}
public void set( int v ) {
throw new UnsupportedOperationException();
}
public void add( int v ) {
throw new UnsupportedOperationException();
}
public Integer next() {
return ( Integer.valueOf( nextEntry().value ) );
}
public Integer previous() {
return ( Integer.valueOf( previousEntry().value ) );
}
public void set( Integer ok ) {
throw new UnsupportedOperationException();
}
public void add( Integer ok ) {
throw new UnsupportedOperationException();
}
};
}
/** Returns a deep copy of this tree map.
*
*
This method performs a deep copy of this tree map; the data stored in the set, however, is not cloned. Note that this makes a difference only for object keys.
*
* @return a deep copy of this tree map. */
public Float2IntRBTreeMap clone() {
Float2IntRBTreeMap c;
try {
c = (Float2IntRBTreeMap)super.clone();
}
catch ( CloneNotSupportedException cantHappen ) {
throw new InternalError();
}
c.keys = null;
c.values = null;
c.entries = null;
c.allocatePaths();
if ( count != 0 ) {
// Also this apparently unfathomable code is derived from GNU libavl.
Entry e, p, q, rp = new Entry(), rq = new Entry();
p = rp;
rp.left( tree );
q = rq;
rq.pred( null );
while ( true ) {
if ( !p.pred() ) {
e = p.left.clone();
e.pred( q.left );
e.succ( q );
q.left( e );
p = p.left;
q = q.left;
}
else {
while ( p.succ() ) {
p = p.right;
if ( p == null ) {
q.right = null;
c.tree = rq.left;
c.firstEntry = c.tree;
while ( c.firstEntry.left != null )
c.firstEntry = c.firstEntry.left;
c.lastEntry = c.tree;
while ( c.lastEntry.right != null )
c.lastEntry = c.lastEntry.right;
return c;
}
q = q.right;
}
p = p.right;
q = q.right;
}
if ( !p.succ() ) {
e = p.right.clone();
e.succ( q.right );
e.pred( q );
q.right( e );
}
}
}
return c;
}
private void writeObject( java.io.ObjectOutputStream s ) throws java.io.IOException {
int n = count;
EntryIterator i = new EntryIterator();
Entry e;
s.defaultWriteObject();
while ( n-- != 0 ) {
e = i.nextEntry();
s.writeFloat( e.key );
s.writeInt( e.value );
}
}
/** Reads the given number of entries from the input stream, returning the corresponding tree.
*
* @param s the input stream.
* @param n the (positive) number of entries to read.
* @param pred the entry containing the key that preceeds the first key in the tree.
* @param succ the entry containing the key that follows the last key in the tree. */
private Entry readTree( final java.io.ObjectInputStream s, final int n, final Entry pred, final Entry succ ) throws java.io.IOException, ClassNotFoundException {
if ( n == 1 ) {
final Entry top = new Entry( s.readFloat(), s.readInt() );
top.pred( pred );
top.succ( succ );
top.black( true );
return top;
}
if ( n == 2 ) {
/*
* We handle separately this case so that recursion willalways* be on nonempty subtrees. */
final Entry top = new Entry( s.readFloat(), s.readInt() );
top.black( true );
top.right( new Entry( s.readFloat(), s.readInt() ) );
top.right.pred( top );
top.pred( pred );
top.right.succ( succ );
return top;
}
// The right subtree is the largest one.
final int rightN = n / 2, leftN = n - rightN - 1;
final Entry top = new Entry();
top.left( readTree( s, leftN, pred, top ) );
top.key = s.readFloat();
top.value = s.readInt();
top.black( true );
top.right( readTree( s, rightN, top, succ ) );
if ( n + 2 == ( ( n + 2 ) & -( n + 2 ) ) ) top.right.black( false ); // Quick test for determining whether n + 2 is a power of 2.
return top;
}
private void readObject( java.io.ObjectInputStream s ) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
/*
* The storedComparator is now correctly set, but we must restore on-the-fly the actualComparator. */
setActualComparator();
allocatePaths();
if ( count != 0 ) {
tree = readTree( s, count, null, null );
Entry e;
e = tree;
while ( e.left() != null )
e = e.left();
firstEntry = e;
e = tree;
while ( e.right() != null )
e = e.right();
lastEntry = e;
}
if ( ASSERTS ) checkTree( tree, 0, -1 );
}
private void checkNodePath() {}
@SuppressWarnings("unused")
private static int checkTree( Entry e, int d, int D ) {
return 0;
}
}