src.it.unimi.dsi.fastutil.floats.FloatOpenHashSet Maven / Gradle / Ivy
Show all versions of phoenix-server-hbase-2.6
/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Primitive-type-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/*
* Copyright (C) 2002-2015 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package it.unimi.dsi.fastutil.floats;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
/** A type-specific hash set with with a fast, small-footprint implementation.
*
* Instances of this class use a hash table to represent a set. The table is enlarged as needed by doubling its size when new entries are created, but it is never made smaller (even on a
* {@link #clear()}). A family of {@linkplain #trim() trimming methods} lets you control the size of the table; this is particularly useful if you reuse instances of this class.
*
* @see Hash
* @see HashCommon */
public class FloatOpenHashSet extends AbstractFloatSet implements java.io.Serializable, Cloneable, Hash {
private static final long serialVersionUID = 0L;
private static final boolean ASSERTS = false;
/** The array of keys. */
protected transient float[] key;
/** The mask for wrapping a position counter. */
protected transient int mask;
/** Whether this set contains the null key. */
protected transient boolean containsNull;
/** The current table size. */
protected transient int n;
/** Threshold after which we rehash. It must be the table size times {@link #f}. */
protected transient int maxFill;
/** Number of entries in the set (including the null key, if present). */
protected int size;
/** The acceptable load factor. */
protected final float f;
/** Creates a new hash set.
*
*
The actual table size will be the least power of two greater than expected
/f
.
*
* @param expected the expected number of elements in the hash set.
* @param f the load factor. */
public FloatOpenHashSet( final int expected, final float f ) {
if ( f <= 0 || f > 1 ) throw new IllegalArgumentException( "Load factor must be greater than 0 and smaller than or equal to 1" );
if ( expected < 0 ) throw new IllegalArgumentException( "The expected number of elements must be nonnegative" );
this.f = f;
n = arraySize( expected, f );
mask = n - 1;
maxFill = maxFill( n, f );
key = new float[ n + 1 ];
}
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor.
*
* @param expected the expected number of elements in the hash set. */
public FloatOpenHashSet( final int expected ) {
this( expected, DEFAULT_LOAD_FACTOR );
}
/** Creates a new hash set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */
public FloatOpenHashSet() {
this( DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR );
}
/** Creates a new hash set copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash set.
* @param f the load factor. */
public FloatOpenHashSet( final Collection extends Float> c, final float f ) {
this( c.size(), f );
addAll( c );
}
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given collection.
*
* @param c a {@link Collection} to be copied into the new hash set. */
public FloatOpenHashSet( final Collection extends Float> c ) {
this( c, DEFAULT_LOAD_FACTOR );
}
/** Creates a new hash set copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new hash set.
* @param f the load factor. */
public FloatOpenHashSet( final FloatCollection c, final float f ) {
this( c.size(), f );
addAll( c );
}
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given type-specific collection.
*
* @param c a type-specific collection to be copied into the new hash set. */
public FloatOpenHashSet( final FloatCollection c ) {
this( c, DEFAULT_LOAD_FACTOR );
}
/** Creates a new hash set using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the set.
* @param f the load factor. */
public FloatOpenHashSet( final FloatIterator i, final float f ) {
this( DEFAULT_INITIAL_SIZE, f );
while ( i.hasNext() )
add( i.nextFloat() );
}
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator.
*
* @param i a type-specific iterator whose elements will fill the set. */
public FloatOpenHashSet( final FloatIterator i ) {
this( i, DEFAULT_LOAD_FACTOR );
}
/** Creates a new hash set using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the set.
* @param f the load factor. */
public FloatOpenHashSet( final Iterator> i, final float f ) {
this( FloatIterators.asFloatIterator( i ), f );
}
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator.
*
* @param i an iterator whose elements will fill the set. */
public FloatOpenHashSet( final Iterator> i ) {
this( FloatIterators.asFloatIterator( i ) );
}
/** Creates a new hash set and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the set.
* @param offset the first element to use.
* @param length the number of elements to use.
* @param f the load factor. */
public FloatOpenHashSet( final float[] a, final int offset, final int length, final float f ) {
this( length < 0 ? 0 : length, f );
FloatArrays.ensureOffsetLength( a, offset, length );
for ( int i = 0; i < length; i++ )
add( a[ offset + i ] );
}
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array.
*
* @param a an array whose elements will be used to fill the set.
* @param offset the first element to use.
* @param length the number of elements to use. */
public FloatOpenHashSet( final float[] a, final int offset, final int length ) {
this( a, offset, length, DEFAULT_LOAD_FACTOR );
}
/** Creates a new hash set copying the elements of an array.
*
* @param a an array to be copied into the new hash set.
* @param f the load factor. */
public FloatOpenHashSet( final float[] a, final float f ) {
this( a, 0, a.length, f );
}
/** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying the elements of an array.
*
* @param a an array to be copied into the new hash set. */
public FloatOpenHashSet( final float[] a ) {
this( a, DEFAULT_LOAD_FACTOR );
}
private int realSize() {
return containsNull ? size - 1 : size;
}
private void ensureCapacity( final int capacity ) {
final int needed = arraySize( capacity, f );
if ( needed > n ) rehash( needed );
}
private void tryCapacity( final long capacity ) {
final int needed = (int)Math.min( 1 << 30, Math.max( 2, HashCommon.nextPowerOfTwo( (long)Math.ceil( capacity / f ) ) ) );
if ( needed > n ) rehash( needed );
}
/** {@inheritDoc} */
public boolean addAll( FloatCollection c ) {
if ( f <= .5 ) ensureCapacity( c.size() ); // The resulting collection will be sized for c.size() elements
else tryCapacity( size() + c.size() ); // The resulting collection will be tentatively sized for size() + c.size() elements
return super.addAll( c );
}
/** {@inheritDoc} */
public boolean addAll( Collection extends Float> c ) {
// The resulting collection will be at least c.size() big
if ( f <= .5 ) ensureCapacity( c.size() ); // The resulting collection will be sized for c.size() elements
else tryCapacity( size() + c.size() ); // The resulting collection will be tentatively sized for size() + c.size() elements
return super.addAll( c );
}
public boolean add( final float k ) {
int pos;
if ( ( Float.floatToIntBits( k ) == 0 ) ) {
if ( containsNull ) return false;
containsNull = true;
}
else {
float curr;
final float[] key = this.key;
// The starting point.
if ( !( Float.floatToIntBits( curr = key[ pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int( k ) ) & mask ] ) == 0 ) ) {
if ( ( Float.floatToIntBits( curr ) == Float.floatToIntBits( k ) ) ) return false;
while ( !( Float.floatToIntBits( curr = key[ pos = ( pos + 1 ) & mask ] ) == 0 ) )
if ( ( Float.floatToIntBits( curr ) == Float.floatToIntBits( k ) ) ) return false;
}
key[ pos ] = k;
}
if ( size++ >= maxFill ) rehash( arraySize( size + 1, f ) );
if ( ASSERTS ) checkTable();
return true;
}
/** Shifts left entries with the specified hash code, starting at the specified position, and empties the resulting free entry.
*
* @param pos a starting position. */
protected final void shiftKeys( int pos ) {
// Shift entries with the same hash.
int last, slot;
float curr;
final float[] key = this.key;
for ( ;; ) {
pos = ( ( last = pos ) + 1 ) & mask;
for ( ;; ) {
if ( ( Float.floatToIntBits( curr = key[ pos ] ) == 0 ) ) {
key[ last ] = ( 0 );
return;
}
slot = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int( curr ) ) & mask;
if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break;
pos = ( pos + 1 ) & mask;
}
key[ last ] = curr;
}
}
private boolean removeEntry( final int pos ) {
size--;
shiftKeys( pos );
if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 );
return true;
}
private boolean removeNullEntry() {
containsNull = false;
size--;
if ( size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE ) rehash( n / 2 );
return true;
}
public boolean remove( final float k ) {
if ( ( Float.floatToIntBits( k ) == 0 ) ) {
if ( containsNull ) return removeNullEntry();
return false;
}
float curr;
final float[] key = this.key;
int pos;
// The starting point.
if ( ( Float.floatToIntBits( curr = key[ pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int( k ) ) & mask ] ) == 0 ) ) return false;
if ( ( Float.floatToIntBits( k ) == Float.floatToIntBits( curr ) ) ) return removeEntry( pos );
while ( true ) {
if ( ( Float.floatToIntBits( curr = key[ pos = ( pos + 1 ) & mask ] ) == 0 ) ) return false;
if ( ( Float.floatToIntBits( k ) == Float.floatToIntBits( curr ) ) ) return removeEntry( pos );
}
}
public boolean contains( final float k ) {
if ( ( Float.floatToIntBits( k ) == 0 ) ) return containsNull;
float curr;
final float[] key = this.key;
int pos;
// The starting point.
if ( ( Float.floatToIntBits( curr = key[ pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int( k ) ) & mask ] ) == 0 ) ) return false;
if ( ( Float.floatToIntBits( k ) == Float.floatToIntBits( curr ) ) ) return true;
while ( true ) {
if ( ( Float.floatToIntBits( curr = key[ pos = ( pos + 1 ) & mask ] ) == 0 ) ) return false;
if ( ( Float.floatToIntBits( k ) == Float.floatToIntBits( curr ) ) ) return true;
}
}
/* Removes all elements from this set.
*
*
To increase object reuse, this method does not change the table size. If you want to reduce the table size, you must use {@link #trim()}. */
public void clear() {
if ( size == 0 ) return;
size = 0;
containsNull = false;
Arrays.fill( key, ( 0 ) );
}
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
/** A no-op for backward compatibility.
*
* @param growthFactor unused.
* @deprecated Since fastutil
6.1.0, hash tables are doubled when they are too full. */
@Deprecated
public void growthFactor( int growthFactor ) {}
/** Gets the growth factor (2).
*
* @return the growth factor of this set, which is fixed (2).
* @see #growthFactor(int)
* @deprecated Since fastutil
6.1.0, hash tables are doubled when they are too full. */
@Deprecated
public int growthFactor() {
return 16;
}
/** An iterator over a hash set. */
private class SetIterator extends AbstractFloatIterator {
/** The index of the last entry returned, if positive or zero; initially, {@link #n}. If negative, the last element returned was that of index {@code - pos - 1} from the {@link #wrapped} list. */
int pos = n;
/** The index of the last entry that has been returned (more precisely, the value of {@link #pos} if {@link #pos} is positive, or {@link Integer#MIN_VALUE} if {@link #pos} is negative). It is
* -1 if either we did not return an entry yet, or the last returned entry has been removed. */
int last = -1;
/** A downward counter measuring how many entries must still be returned. */
int c = size;
/** A boolean telling us whether we should return the null key. */
boolean mustReturnNull = FloatOpenHashSet.this.containsNull;
/** A lazily allocated list containing elements that have wrapped around the table because of removals. */
FloatArrayList wrapped;
public boolean hasNext() {
return c != 0;
}
public float nextFloat() {
if ( !hasNext() ) throw new NoSuchElementException();
c--;
if ( mustReturnNull ) {
mustReturnNull = false;
last = n;
return ( 0 );
}
final float key[] = FloatOpenHashSet.this.key;
for ( ;; ) {
if ( --pos < 0 ) {
// We are just enumerating elements from the wrapped list.
last = Integer.MIN_VALUE;
return wrapped.getFloat( -pos - 1 );
}
if ( !( Float.floatToIntBits( key[ pos ] ) == 0 ) ) return key[ last = pos ];
}
}
/** Shifts left entries with the specified hash code, starting at the specified position, and empties the resulting free entry.
*
* @param pos a starting position. */
private final void shiftKeys( int pos ) {
// Shift entries with the same hash.
int last, slot;
float curr;
final float[] key = FloatOpenHashSet.this.key;
for ( ;; ) {
pos = ( ( last = pos ) + 1 ) & mask;
for ( ;; ) {
if ( ( Float.floatToIntBits( curr = key[ pos ] ) == 0 ) ) {
key[ last ] = ( 0 );
return;
}
slot = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int( curr ) ) & mask;
if ( last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos ) break;
pos = ( pos + 1 ) & mask;
}
if ( pos < last ) { // Wrapped entry.
if ( wrapped == null ) wrapped = new FloatArrayList( 2 );
wrapped.add( key[ pos ] );
}
key[ last ] = curr;
}
}
public void remove() {
if ( last == -1 ) throw new IllegalStateException();
if ( last == n ) FloatOpenHashSet.this.containsNull = false;
else if ( pos >= 0 ) shiftKeys( last );
else {
// We're removing wrapped entries.
FloatOpenHashSet.this.remove( wrapped.getFloat( -pos - 1 ) );
last = -1; // Note that we must not decrement size
return;
}
size--;
last = -1; // You can no longer remove this entry.
if ( ASSERTS ) checkTable();
}
}
public FloatIterator iterator() {
return new SetIterator();
}
/** A no-op for backward compatibility. The kind of tables implemented by this class never need rehashing.
*
*
If you need to reduce the table size to fit exactly this set, use {@link #trim()}.
*
* @return true.
* @see #trim()
* @deprecated A no-op. */
@Deprecated
public boolean rehash() {
return true;
}
/** Rehashes this set, making the table as small as possible.
*
*
This method rehashes the table to the smallest size satisfying the load factor. It can be used when the set will not be changed anymore, so to optimize access speed and size.
*
*
If the table size is already the minimum possible, this method does nothing.
*
* @return true if there was enough memory to trim the set.
* @see #trim(int) */
public boolean trim() {
final int l = arraySize( size, f );
if ( l >= n ) return true;
try {
rehash( l );
}
catch ( OutOfMemoryError cantDoIt ) {
return false;
}
return true;
}
/** Rehashes this set if the table is too large.
*
*
Let N be the smallest table size that can hold max(n,{@link #size()})
entries, still satisfying the load factor. If the current table size is smaller than or equal to
* N, this method does nothing. Otherwise, it rehashes this set in a table of size N.
*
*
This method is useful when reusing sets. {@linkplain #clear() Clearing a set} leaves the table size untouched. If you are reusing a set many times, you can call this method with a typical
* size to avoid keeping around a very large table just because of a few large transient sets.
*
* @param n the threshold for the trimming.
* @return true if there was enough memory to trim the set.
* @see #trim() */
public boolean trim( final int n ) {
final int l = HashCommon.nextPowerOfTwo( (int)Math.ceil( n / f ) );
if ( this.n <= l ) return true;
try {
rehash( l );
}
catch ( OutOfMemoryError cantDoIt ) {
return false;
}
return true;
}
/** Rehashes the set.
*
*
This method implements the basic rehashing strategy, and may be overriden by subclasses implementing different rehashing strategies (e.g., disk-based rehashing). However, you should not
* override this method unless you understand the internal workings of this class.
*
* @param newN the new size */
protected void rehash( final int newN ) {
final float key[] = this.key;
final int mask = newN - 1; // Note that this is used by the hashing macro
final float newKey[] = new float[ newN + 1 ];
int i = n, pos;
for ( int j = realSize(); j-- != 0; ) {
while ( ( Float.floatToIntBits( key[ --i ] ) == 0 ) );
if ( !( Float.floatToIntBits( newKey[ pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int( key[ i ] ) ) & mask ] ) == 0 ) ) while ( !( Float
.floatToIntBits( newKey[ pos = ( pos + 1 ) & mask ] ) == 0 ) );
newKey[ pos ] = key[ i ];
}
n = newN;
this.mask = mask;
maxFill = maxFill( n, f );
this.key = newKey;
}
/** Returns a deep copy of this set.
*
*
This method performs a deep copy of this hash set; the data stored in the set, however, is not cloned. Note that this makes a difference only for object keys.
*
* @return a deep copy of this set. */
public FloatOpenHashSet clone() {
FloatOpenHashSet c;
try {
c = (FloatOpenHashSet)super.clone();
}
catch ( CloneNotSupportedException cantHappen ) {
throw new InternalError();
}
c.key = key.clone();
c.containsNull = containsNull;
return c;
}
/** Returns a hash code for this set.
*
* This method overrides the generic method provided by the superclass. Since equals()
is not overriden, it is important that the value returned by this method is the same value as
* the one returned by the overriden method.
*
* @return a hash code for this set. */
public int hashCode() {
int h = 0;
for ( int j = realSize(), i = 0; j-- != 0; ) {
while ( ( Float.floatToIntBits( key[ i ] ) == 0 ) )
i++;
h += it.unimi.dsi.fastutil.HashCommon.float2int( key[ i ] );
i++;
}
// Zero / null have hash zero.
return h;
}
private void writeObject( java.io.ObjectOutputStream s ) throws java.io.IOException {
final FloatIterator i = iterator();
s.defaultWriteObject();
for ( int j = size; j-- != 0; )
s.writeFloat( i.nextFloat() );
}
private void readObject( java.io.ObjectInputStream s ) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
n = arraySize( size, f );
maxFill = maxFill( n, f );
mask = n - 1;
final float key[] = this.key = new float[ n + 1 ];
float k;
for ( int i = size, pos; i-- != 0; ) {
k = s.readFloat();
if ( ( Float.floatToIntBits( k ) == 0 ) ) {
pos = n;
containsNull = true;
}
else {
if ( !( Float.floatToIntBits( key[ pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int( k ) ) & mask ] ) == 0 ) ) while ( !( Float
.floatToIntBits( key[ pos = ( pos + 1 ) & mask ] ) == 0 ) );
key[ pos ] = k;
}
}
if ( ASSERTS ) checkTable();
}
private void checkTable() {}
}