All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.it.unimi.dsi.fastutil.objects.Object2ObjectAVLTreeMap Maven / Gradle / Ivy

The newest version!
/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/*		 
 * Copyright (C) 2002-2015 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */
package it.unimi.dsi.fastutil.objects;

import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectCollection;
import it.unimi.dsi.fastutil.objects.AbstractObjectCollection;
import it.unimi.dsi.fastutil.objects.ObjectIterator;
import java.util.Comparator;
import java.util.Iterator;
import java.util.Map;
import java.util.SortedMap;
import java.util.NoSuchElementException;

/** A type-specific AVL tree map with a fast, small-footprint implementation.
 *
 * 

The iterators provided by the views of this class are type-specific {@linkplain it.unimi.dsi.fastutil.BidirectionalIterator bidirectional iterators}. Moreover, the iterator returned by * iterator() can be safely cast to a type-specific {@linkplain java.util.ListIterator list iterator}. */ public class Object2ObjectAVLTreeMap extends AbstractObject2ObjectSortedMap implements java.io.Serializable, Cloneable { /** A reference to the root entry. */ protected transient Entry tree; /** Number of entries in this map. */ protected int count; /** The first key in this map. */ protected transient Entry firstEntry; /** The last key in this map. */ protected transient Entry lastEntry; /** Cached set of entries. */ protected transient volatile ObjectSortedSet> entries; /** Cached set of keys. */ protected transient volatile ObjectSortedSet keys; /** Cached collection of values. */ protected transient volatile ObjectCollection values; /** The value of this variable remembers, after a put() or a remove(), whether the domain of the map has been modified. */ protected transient boolean modified; /** This map's comparator, as provided in the constructor. */ protected Comparator storedComparator; /** This map's actual comparator; it may differ from {@link #storedComparator} because it is always a type-specific comparator, so it could be derived from the former by wrapping. */ protected transient Comparator actualComparator; private static final long serialVersionUID = -7046029254386353129L; private static final boolean ASSERTS = false; { allocatePaths(); } /** Creates a new empty tree map. */ public Object2ObjectAVLTreeMap() { tree = null; count = 0; } /** Generates the comparator that will be actually used. * *

When a specific {@link Comparator} is specified and stored in {@link #storedComparator}, we must check whether it is type-specific. If it is so, we can used directly, and we store it in * {@link #actualComparator}. Otherwise, we generate on-the-fly an anonymous class that wraps the non-specific {@link Comparator} and makes it into a type-specific one. */ private void setActualComparator() { actualComparator = storedComparator; } /** Creates a new empty tree map with the given comparator. * * @param c a (possibly type-specific) comparator. */ public Object2ObjectAVLTreeMap( final Comparator c ) { this(); storedComparator = c; setActualComparator(); } /** Creates a new tree map copying a given map. * * @param m a {@link Map} to be copied into the new tree map. */ public Object2ObjectAVLTreeMap( final Map m ) { this(); putAll( m ); } /** Creates a new tree map copying a given sorted map (and its {@link Comparator}). * * @param m a {@link SortedMap} to be copied into the new tree map. */ public Object2ObjectAVLTreeMap( final SortedMap m ) { this( m.comparator() ); putAll( m ); } /** Creates a new tree map copying a given map. * * @param m a type-specific map to be copied into the new tree map. */ public Object2ObjectAVLTreeMap( final Object2ObjectMap m ) { this(); putAll( m ); } /** Creates a new tree map copying a given sorted map (and its {@link Comparator}). * * @param m a type-specific sorted map to be copied into the new tree map. */ public Object2ObjectAVLTreeMap( final Object2ObjectSortedMap m ) { this( m.comparator() ); putAll( m ); } /** Creates a new tree map using the elements of two parallel arrays and the given comparator. * * @param k the array of keys of the new tree map. * @param v the array of corresponding values in the new tree map. * @param c a (possibly type-specific) comparator. * @throws IllegalArgumentException if k and v have different lengths. */ public Object2ObjectAVLTreeMap( final K[] k, final V v[], final Comparator c ) { this( c ); if ( k.length != v.length ) throw new IllegalArgumentException( "The key array and the value array have different lengths (" + k.length + " and " + v.length + ")" ); for ( int i = 0; i < k.length; i++ ) this.put( k[ i ], v[ i ] ); } /** Creates a new tree map using the elements of two parallel arrays. * * @param k the array of keys of the new tree map. * @param v the array of corresponding values in the new tree map. * @throws IllegalArgumentException if k and v have different lengths. */ public Object2ObjectAVLTreeMap( final K[] k, final V v[] ) { this( k, v, null ); } /* The following methods implements some basic building blocks used by all accessors. They are (and should be maintained) identical to those used in AVLTreeSet.drv. * * The put()/remove() code is derived from Ben Pfaff's GNU libavl (http://www.msu.edu/~pfaffben/avl/). If you want to understand what's going on, you should have a look at the literate code * contained therein first. */ /** Compares two keys in the right way. * *

This method uses the {@link #actualComparator} if it is non-null. Otherwise, it resorts to primitive type comparisons or to {@link Comparable#compareTo(Object) compareTo()}. * * @param k1 the first key. * @param k2 the second key. * @return a number smaller than, equal to or greater than 0, as usual (i.e., when k1 < k2, k1 = k2 or k1 > k2, respectively). */ @SuppressWarnings("unchecked") final int compare( final K k1, final K k2 ) { return actualComparator == null ? ( ( (Comparable)( k1 ) ).compareTo( k2 ) ) : actualComparator.compare( k1, k2 ); } /** Returns the entry corresponding to the given key, if it is in the tree; null, otherwise. * * @param k the key to search for. * @return the corresponding entry, or null if no entry with the given key exists. */ final Entry findKey( final K k ) { Entry e = tree; int cmp; while ( e != null && ( cmp = compare( k, e.key ) ) != 0 ) e = cmp < 0 ? e.left() : e.right(); return e; } /** Locates a key. * * @param k a key. * @return the last entry on a search for the given key; this will be the given key, if it present; otherwise, it will be either the smallest greater key or the greatest smaller key. */ final Entry locateKey( final K k ) { Entry e = tree, last = tree; int cmp = 0; while ( e != null && ( cmp = compare( k, e.key ) ) != 0 ) { last = e; e = cmp < 0 ? e.left() : e.right(); } return cmp == 0 ? e : last; } /** This vector remembers the directions followed during the current insertion. It suffices for about 232 entries. */ private transient boolean dirPath[]; private void allocatePaths() { dirPath = new boolean[ 48 ]; } /* * After execution of this method, modified is true iff a new entry has been inserted. */ public V put( final K k, final V v ) { modified = false; if ( tree == null ) { // The case of the empty tree is treated separately. count++; tree = lastEntry = firstEntry = new Entry( k, v ); modified = true; } else { Entry p = tree, q = null, y = tree, z = null, e = null, w = null; int cmp, i = 0; while ( true ) { if ( ( cmp = compare( k, p.key ) ) == 0 ) { final V oldValue = p.value; p.value = v; return oldValue; } if ( p.balance() != 0 ) { i = 0; z = q; y = p; } if ( dirPath[ i++ ] = cmp > 0 ) { if ( p.succ() ) { count++; e = new Entry( k, v ); modified = true; if ( p.right == null ) lastEntry = e; e.left = p; e.right = p.right; p.right( e ); break; } q = p; p = p.right; } else { if ( p.pred() ) { count++; e = new Entry( k, v ); modified = true; if ( p.left == null ) firstEntry = e; e.right = p; e.left = p.left; p.left( e ); break; } q = p; p = p.left; } } p = y; i = 0; while ( p != e ) { if ( dirPath[ i ] ) p.incBalance(); else p.decBalance(); p = dirPath[ i++ ] ? p.right : p.left; } if ( y.balance() == -2 ) { Entry x = y.left; if ( x.balance() == -1 ) { w = x; if ( x.succ() ) { x.succ( false ); y.pred( x ); } else y.left = x.right; x.right = y; x.balance( 0 ); y.balance( 0 ); } else { if ( ASSERTS ) assert x.balance() == 1; w = x.right; x.right = w.left; w.left = x; y.left = w.right; w.right = y; if ( w.balance() == -1 ) { x.balance( 0 ); y.balance( 1 ); } else if ( w.balance() == 0 ) { x.balance( 0 ); y.balance( 0 ); } else { x.balance( -1 ); y.balance( 0 ); } w.balance( 0 ); if ( w.pred() ) { x.succ( w ); w.pred( false ); } if ( w.succ() ) { y.pred( w ); w.succ( false ); } } } else if ( y.balance() == +2 ) { Entry x = y.right; if ( x.balance() == 1 ) { w = x; if ( x.pred() ) { x.pred( false ); y.succ( x ); } else y.right = x.left; x.left = y; x.balance( 0 ); y.balance( 0 ); } else { if ( ASSERTS ) assert x.balance() == -1; w = x.left; x.left = w.right; w.right = x; y.right = w.left; w.left = y; if ( w.balance() == 1 ) { x.balance( 0 ); y.balance( -1 ); } else if ( w.balance() == 0 ) { x.balance( 0 ); y.balance( 0 ); } else { x.balance( 1 ); y.balance( 0 ); } w.balance( 0 ); if ( w.pred() ) { y.succ( w ); w.pred( false ); } if ( w.succ() ) { x.pred( w ); w.succ( false ); } } } else return defRetValue; if ( z == null ) tree = w; else { if ( z.left == y ) z.left = w; else z.right = w; } } if ( ASSERTS ) checkTree( tree ); return defRetValue; } /** Finds the parent of an entry. * * @param e a node of the tree. * @return the parent of the given node, or null for the root. */ private Entry parent( final Entry e ) { if ( e == tree ) return null; Entry x, y, p; x = y = e; while ( true ) { if ( y.succ() ) { p = y.right; if ( p == null || p.left != e ) { while ( !x.pred() ) x = x.left; p = x.left; } return p; } else if ( x.pred() ) { p = x.left; if ( p == null || p.right != e ) { while ( !y.succ() ) y = y.right; p = y.right; } return p; } x = x.left; y = y.right; } } /* * After execution of this method, {@link #modified} is true iff an entry has been deleted. */ @SuppressWarnings("unchecked") public V remove( final Object k ) { modified = false; if ( tree == null ) return defRetValue; int cmp; Entry p = tree, q = null; boolean dir = false; final K kk = (K)k; while ( true ) { if ( ( cmp = compare( kk, p.key ) ) == 0 ) break; else if ( dir = cmp > 0 ) { q = p; if ( ( p = p.right() ) == null ) return defRetValue; } else { q = p; if ( ( p = p.left() ) == null ) return defRetValue; } } if ( p.left == null ) firstEntry = p.next(); if ( p.right == null ) lastEntry = p.prev(); if ( p.succ() ) { if ( p.pred() ) { if ( q != null ) { if ( dir ) q.succ( p.right ); else q.pred( p.left ); } else tree = dir ? p.right : p.left; } else { p.prev().right = p.right; if ( q != null ) { if ( dir ) q.right = p.left; else q.left = p.left; } else tree = p.left; } } else { Entry r = p.right; if ( r.pred() ) { r.left = p.left; r.pred( p.pred() ); if ( !r.pred() ) r.prev().right = r; if ( q != null ) { if ( dir ) q.right = r; else q.left = r; } else tree = r; r.balance( p.balance() ); q = r; dir = true; } else { Entry s; while ( true ) { s = r.left; if ( s.pred() ) break; r = s; } if ( s.succ() ) r.pred( s ); else r.left = s.right; s.left = p.left; if ( !p.pred() ) { p.prev().right = s; s.pred( false ); } s.right = p.right; s.succ( false ); if ( q != null ) { if ( dir ) q.right = s; else q.left = s; } else tree = s; s.balance( p.balance() ); q = r; dir = false; } } Entry y; while ( q != null ) { y = q; q = parent( y ); if ( !dir ) { dir = q != null && q.left != y; y.incBalance(); if ( y.balance() == 1 ) break; else if ( y.balance() == 2 ) { Entry x = y.right; if ( ASSERTS ) assert x != null; if ( x.balance() == -1 ) { Entry w; if ( ASSERTS ) assert x.balance() == -1; w = x.left; x.left = w.right; w.right = x; y.right = w.left; w.left = y; if ( w.balance() == 1 ) { x.balance( 0 ); y.balance( -1 ); } else if ( w.balance() == 0 ) { x.balance( 0 ); y.balance( 0 ); } else { if ( ASSERTS ) assert w.balance() == -1; x.balance( 1 ); y.balance( 0 ); } w.balance( 0 ); if ( w.pred() ) { y.succ( w ); w.pred( false ); } if ( w.succ() ) { x.pred( w ); w.succ( false ); } if ( q != null ) { if ( dir ) q.right = w; else q.left = w; } else tree = w; } else { if ( q != null ) { if ( dir ) q.right = x; else q.left = x; } else tree = x; if ( x.balance() == 0 ) { y.right = x.left; x.left = y; x.balance( -1 ); y.balance( +1 ); break; } if ( ASSERTS ) assert x.balance() == 1; if ( x.pred() ) { y.succ( true ); x.pred( false ); } else y.right = x.left; x.left = y; y.balance( 0 ); x.balance( 0 ); } } } else { dir = q != null && q.left != y; y.decBalance(); if ( y.balance() == -1 ) break; else if ( y.balance() == -2 ) { Entry x = y.left; if ( ASSERTS ) assert x != null; if ( x.balance() == 1 ) { Entry w; if ( ASSERTS ) assert x.balance() == 1; w = x.right; x.right = w.left; w.left = x; y.left = w.right; w.right = y; if ( w.balance() == -1 ) { x.balance( 0 ); y.balance( 1 ); } else if ( w.balance() == 0 ) { x.balance( 0 ); y.balance( 0 ); } else { if ( ASSERTS ) assert w.balance() == 1; x.balance( -1 ); y.balance( 0 ); } w.balance( 0 ); if ( w.pred() ) { x.succ( w ); w.pred( false ); } if ( w.succ() ) { y.pred( w ); w.succ( false ); } if ( q != null ) { if ( dir ) q.right = w; else q.left = w; } else tree = w; } else { if ( q != null ) { if ( dir ) q.right = x; else q.left = x; } else tree = x; if ( x.balance() == 0 ) { y.left = x.right; x.right = y; x.balance( +1 ); y.balance( -1 ); break; } if ( ASSERTS ) assert x.balance() == -1; if ( x.succ() ) { y.pred( true ); x.succ( false ); } else y.left = x.right; x.right = y; y.balance( 0 ); x.balance( 0 ); } } } } modified = true; count--; if ( ASSERTS ) checkTree( tree ); return p.value; } public boolean containsValue( final Object v ) { final ValueIterator i = new ValueIterator(); V ev; int j = count; while ( j-- != 0 ) { ev = i.next(); if ( ( ( ev ) == null ? ( v ) == null : ( ev ).equals( v ) ) ) return true; } return false; } public void clear() { count = 0; tree = null; entries = null; values = null; keys = null; firstEntry = lastEntry = null; } /** This class represent an entry in a tree map. * *

We use the only "metadata", i.e., {@link Entry#info}, to store information about balance, predecessor status and successor status. * *

Note that since the class is recursive, it can be considered equivalently a tree. */ private static final class Entry implements Cloneable, Object2ObjectMap.Entry { /** If the bit in this mask is true, {@link #right} points to a successor. */ private final static int SUCC_MASK = 1 << 31; /** If the bit in this mask is true, {@link #left} points to a predecessor. */ private final static int PRED_MASK = 1 << 30; /** The bits in this mask hold the node balance info. You can get it just by casting to byte. */ private final static int BALANCE_MASK = 0xFF; /** The key of this entry. */ K key; /** The value of this entry. */ V value; /** The pointers to the left and right subtrees. */ Entry left, right; /** This integers holds different information in different bits (see {@link #SUCC_MASK}, {@link #PRED_MASK} and {@link #BALANCE_MASK}). */ int info; Entry() {} /** Creates a new entry with the given key and value. * * @param k a key. * @param v a value. */ Entry( final K k, final V v ) { this.key = k; this.value = v; info = SUCC_MASK | PRED_MASK; } /** Returns the left subtree. * * @return the left subtree (null if the left subtree is empty). */ Entry left() { return ( info & PRED_MASK ) != 0 ? null : left; } /** Returns the right subtree. * * @return the right subtree (null if the right subtree is empty). */ Entry right() { return ( info & SUCC_MASK ) != 0 ? null : right; } /** Checks whether the left pointer is really a predecessor. * * @return true if the left pointer is a predecessor. */ boolean pred() { return ( info & PRED_MASK ) != 0; } /** Checks whether the right pointer is really a successor. * * @return true if the right pointer is a successor. */ boolean succ() { return ( info & SUCC_MASK ) != 0; } /** Sets whether the left pointer is really a predecessor. * * @param pred if true then the left pointer will be considered a predecessor. */ void pred( final boolean pred ) { if ( pred ) info |= PRED_MASK; else info &= ~PRED_MASK; } /** Sets whether the right pointer is really a successor. * * @param succ if true then the right pointer will be considered a successor. */ void succ( final boolean succ ) { if ( succ ) info |= SUCC_MASK; else info &= ~SUCC_MASK; } /** Sets the left pointer to a predecessor. * * @param pred the predecessr. */ void pred( final Entry pred ) { info |= PRED_MASK; left = pred; } /** Sets the right pointer to a successor. * * @param succ the successor. */ void succ( final Entry succ ) { info |= SUCC_MASK; right = succ; } /** Sets the left pointer to the given subtree. * * @param left the new left subtree. */ void left( final Entry left ) { info &= ~PRED_MASK; this.left = left; } /** Sets the right pointer to the given subtree. * * @param right the new right subtree. */ void right( final Entry right ) { info &= ~SUCC_MASK; this.right = right; } /** Returns the current level of the node. * * @return the current level of this node. */ int balance() { return (byte)info; } /** Sets the level of this node. * * @param level the new level of this node. */ void balance( int level ) { info &= ~BALANCE_MASK; info |= ( level & BALANCE_MASK ); } /** Increments the level of this node. */ void incBalance() { info = info & ~BALANCE_MASK | ( (byte)info + 1 ) & 0xFF; } /** Decrements the level of this node. */ protected void decBalance() { info = info & ~BALANCE_MASK | ( (byte)info - 1 ) & 0xFF; } /** Computes the next entry in the set order. * * @return the next entry (null) if this is the last entry). */ Entry next() { Entry next = this.right; if ( ( info & SUCC_MASK ) == 0 ) while ( ( next.info & PRED_MASK ) == 0 ) next = next.left; return next; } /** Computes the previous entry in the set order. * * @return the previous entry (null) if this is the first entry). */ Entry prev() { Entry prev = this.left; if ( ( info & PRED_MASK ) == 0 ) while ( ( prev.info & SUCC_MASK ) == 0 ) prev = prev.right; return prev; } public K getKey() { return ( key ); } public V getValue() { return ( value ); } public V setValue( final V value ) { final V oldValue = this.value; this.value = value; return oldValue; } @SuppressWarnings("unchecked") public Entry clone() { Entry c; try { c = (Entry)super.clone(); } catch ( CloneNotSupportedException cantHappen ) { throw new InternalError(); } c.key = key; c.value = value; c.info = info; return c; } @SuppressWarnings("unchecked") public boolean equals( final Object o ) { if ( !( o instanceof Map.Entry ) ) return false; Map.Entry e = (Map.Entry)o; return ( ( key ) == null ? ( ( e.getKey() ) ) == null : ( key ).equals( ( e.getKey() ) ) ) && ( ( value ) == null ? ( ( e.getValue() ) ) == null : ( value ).equals( ( e.getValue() ) ) ); } public int hashCode() { return ( ( key ).hashCode() ) ^ ( ( value ) == null ? 0 : ( value ).hashCode() ); } public String toString() { return key + "=>" + value; } /*public void prettyPrint() { prettyPrint(0); } * * public void prettyPrint(int level) { if ( pred() ) { for (int i = 0; i < level; i++) System.err.print(" "); System.err.println("pred: " + left ); } else if (left != null) * left.prettyPrint(level +1 ); for (int i = 0; i < level; i++) System.err.print(" "); System.err.println(key + "=" + value + " (" + balance() + ")"); if ( succ() ) { for (int i = 0; i < * level; i++) System.err.print(" "); System.err.println("succ: " + right ); } else if (right != null) right.prettyPrint(level + 1); } */ } /*public void prettyPrint() { System.err.println("size: " + count); if (tree != null) tree.prettyPrint(); } */ @SuppressWarnings("unchecked") public boolean containsKey( final Object k ) { return findKey( (K)k ) != null; } public int size() { return count; } public boolean isEmpty() { return count == 0; } @SuppressWarnings("unchecked") public V get( final Object k ) { final Entry e = findKey( (K)k ); return e == null ? defRetValue : e.value; } public K firstKey() { if ( tree == null ) throw new NoSuchElementException(); return firstEntry.key; } public K lastKey() { if ( tree == null ) throw new NoSuchElementException(); return lastEntry.key; } /** An abstract iterator on the whole range. * *

This class can iterate in both directions on a threaded tree. */ private class TreeIterator { /** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or null if no previous entry exists). */ Entry prev; /** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or null if no next entry exists). */ Entry next; /** The last entry that was returned (or null if we did not iterate or used {@link #remove()}). */ Entry curr; /** The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not meaningful when this {@link TreeIterator} has been created using the nonempty constructor. */ int index = 0; TreeIterator() { next = firstEntry; } TreeIterator( final K k ) { if ( ( next = locateKey( k ) ) != null ) { if ( compare( next.key, k ) <= 0 ) { prev = next; next = next.next(); } else prev = next.prev(); } } public boolean hasNext() { return next != null; } public boolean hasPrevious() { return prev != null; } void updateNext() { next = next.next(); } Entry nextEntry() { if ( !hasNext() ) throw new NoSuchElementException(); curr = prev = next; index++; updateNext(); return curr; } void updatePrevious() { prev = prev.prev(); } Entry previousEntry() { if ( !hasPrevious() ) throw new NoSuchElementException(); curr = next = prev; index--; updatePrevious(); return curr; } public int nextIndex() { return index; } public int previousIndex() { return index - 1; } public void remove() { if ( curr == null ) throw new IllegalStateException(); /* * If the last operation was a next(), we are removing an entry that preceeds the current index, and thus we must decrement it. */ if ( curr == prev ) index--; next = prev = curr; updatePrevious(); updateNext(); Object2ObjectAVLTreeMap.this.remove( curr.key ); curr = null; } public int skip( final int n ) { int i = n; while ( i-- != 0 && hasNext() ) nextEntry(); return n - i - 1; } public int back( final int n ) { int i = n; while ( i-- != 0 && hasPrevious() ) previousEntry(); return n - i - 1; } } /** An iterator on the whole range. * *

This class can iterate in both directions on a threaded tree. */ private class EntryIterator extends TreeIterator implements ObjectListIterator> { EntryIterator() {} EntryIterator( final K k ) { super( k ); } public Object2ObjectMap.Entry next() { return nextEntry(); } public Object2ObjectMap.Entry previous() { return previousEntry(); } public void set( Object2ObjectMap.Entry ok ) { throw new UnsupportedOperationException(); } public void add( Object2ObjectMap.Entry ok ) { throw new UnsupportedOperationException(); } } public ObjectSortedSet> object2ObjectEntrySet() { if ( entries == null ) entries = new AbstractObjectSortedSet>() { final Comparator> comparator = new Comparator>() { public int compare( final Object2ObjectMap.Entry x, final Object2ObjectMap.Entry y ) { return Object2ObjectAVLTreeMap.this.actualComparator.compare( x.getKey(), y.getKey() ); } }; public Comparator> comparator() { return comparator; } public ObjectBidirectionalIterator> iterator() { return new EntryIterator(); } public ObjectBidirectionalIterator> iterator( final Object2ObjectMap.Entry from ) { return new EntryIterator( from.getKey() ); } @SuppressWarnings("unchecked") public boolean contains( final Object o ) { if ( !( o instanceof Map.Entry ) ) return false; final Map.Entry e = (Map.Entry)o; final Entry f = findKey( ( e.getKey() ) ); return e.equals( f ); } @SuppressWarnings("unchecked") public boolean remove( final Object o ) { if ( !( o instanceof Map.Entry ) ) return false; final Map.Entry e = (Map.Entry)o; final Entry f = findKey( ( e.getKey() ) ); if ( f != null ) Object2ObjectAVLTreeMap.this.remove( f.key ); return f != null; } public int size() { return count; } public void clear() { Object2ObjectAVLTreeMap.this.clear(); } public Object2ObjectMap.Entry first() { return firstEntry; } public Object2ObjectMap.Entry last() { return lastEntry; } public ObjectSortedSet> subSet( Object2ObjectMap.Entry from, Object2ObjectMap.Entry to ) { return subMap( from.getKey(), to.getKey() ).object2ObjectEntrySet(); } public ObjectSortedSet> headSet( Object2ObjectMap.Entry to ) { return headMap( to.getKey() ).object2ObjectEntrySet(); } public ObjectSortedSet> tailSet( Object2ObjectMap.Entry from ) { return tailMap( from.getKey() ).object2ObjectEntrySet(); } }; return entries; } /** An iterator on the whole range of keys. * *

This class can iterate in both directions on the keys of a threaded tree. We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and * possibly their type-specific counterparts) so that they return keys instead of entries. */ private final class KeyIterator extends TreeIterator implements ObjectListIterator { public KeyIterator() {} public KeyIterator( final K k ) { super( k ); } public K next() { return nextEntry().key; } public K previous() { return previousEntry().key; } public void set( K k ) { throw new UnsupportedOperationException(); } public void add( K k ) { throw new UnsupportedOperationException(); } }; /** A keyset implementation using a more direct implementation for iterators. */ private class KeySet extends AbstractObject2ObjectSortedMap.KeySet { public ObjectBidirectionalIterator iterator() { return new KeyIterator(); } public ObjectBidirectionalIterator iterator( final K from ) { return new KeyIterator( from ); } } /** Returns a type-specific sorted set view of the keys contained in this map. * *

In addition to the semantics of {@link java.util.Map#keySet()}, you can safely cast the set returned by this call to a type-specific sorted set interface. * * @return a type-specific sorted set view of the keys contained in this map. */ public ObjectSortedSet keySet() { if ( keys == null ) keys = new KeySet(); return keys; } /** An iterator on the whole range of values. * *

This class can iterate in both directions on the values of a threaded tree. We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods * (and possibly their type-specific counterparts) so that they return values instead of entries. */ private final class ValueIterator extends TreeIterator implements ObjectListIterator { public V next() { return nextEntry().value; } public V previous() { return previousEntry().value; } public void set( V v ) { throw new UnsupportedOperationException(); } public void add( V v ) { throw new UnsupportedOperationException(); } }; /** Returns a type-specific collection view of the values contained in this map. * *

In addition to the semantics of {@link java.util.Map#values()}, you can safely cast the collection returned by this call to a type-specific collection interface. * * @return a type-specific collection view of the values contained in this map. */ public ObjectCollection values() { if ( values == null ) values = new AbstractObjectCollection() { public ObjectIterator iterator() { return new ValueIterator(); } public boolean contains( final Object k ) { return containsValue( k ); } public int size() { return count; } public void clear() { Object2ObjectAVLTreeMap.this.clear(); } }; return values; } public Comparator comparator() { return actualComparator; } public Object2ObjectSortedMap headMap( K to ) { return new Submap( ( null ), true, to, false ); } public Object2ObjectSortedMap tailMap( K from ) { return new Submap( from, false, ( null ), true ); } public Object2ObjectSortedMap subMap( K from, K to ) { return new Submap( from, false, to, false ); } /** A submap with given range. * *

This class represents a submap. One has to specify the left/right limits (which can be set to -∞ or ∞). Since the submap is a view on the map, at a given moment it could happen * that the limits of the range are not any longer in the main map. Thus, things such as {@link java.util.SortedMap#firstKey()} or {@link java.util.Collection#size()} must be always computed * on-the-fly. */ private final class Submap extends AbstractObject2ObjectSortedMap implements java.io.Serializable { private static final long serialVersionUID = -7046029254386353129L; /** The start of the submap range, unless {@link #bottom} is true. */ K from; /** The end of the submap range, unless {@link #top} is true. */ K to; /** If true, the submap range starts from -∞. */ boolean bottom; /** If true, the submap range goes to ∞. */ boolean top; /** Cached set of entries. */ @SuppressWarnings("hiding") protected transient volatile ObjectSortedSet> entries; /** Cached set of keys. */ @SuppressWarnings("hiding") protected transient volatile ObjectSortedSet keys; /** Cached collection of values. */ @SuppressWarnings("hiding") protected transient volatile ObjectCollection values; /** Creates a new submap with given key range. * * @param from the start of the submap range. * @param bottom if true, the first parameter is ignored and the range starts from -∞. * @param to the end of the submap range. * @param top if true, the third parameter is ignored and the range goes to ∞. */ public Submap( final K from, final boolean bottom, final K to, final boolean top ) { if ( !bottom && !top && Object2ObjectAVLTreeMap.this.compare( from, to ) > 0 ) throw new IllegalArgumentException( "Start key (" + from + ") is larger than end key (" + to + ")" ); this.from = from; this.bottom = bottom; this.to = to; this.top = top; this.defRetValue = Object2ObjectAVLTreeMap.this.defRetValue; } public void clear() { final SubmapIterator i = new SubmapIterator(); while ( i.hasNext() ) { i.nextEntry(); i.remove(); } } /** Checks whether a key is in the submap range. * * @param k a key. * @return true if is the key is in the submap range. */ final boolean in( final K k ) { return ( bottom || Object2ObjectAVLTreeMap.this.compare( k, from ) >= 0 ) && ( top || Object2ObjectAVLTreeMap.this.compare( k, to ) < 0 ); } public ObjectSortedSet> object2ObjectEntrySet() { if ( entries == null ) entries = new AbstractObjectSortedSet>() { public ObjectBidirectionalIterator> iterator() { return new SubmapEntryIterator(); } public ObjectBidirectionalIterator> iterator( final Object2ObjectMap.Entry from ) { return new SubmapEntryIterator( from.getKey() ); } public Comparator> comparator() { return Object2ObjectAVLTreeMap.this.entrySet().comparator(); } @SuppressWarnings("unchecked") public boolean contains( final Object o ) { if ( !( o instanceof Map.Entry ) ) return false; final Map.Entry e = (Map.Entry)o; final Object2ObjectAVLTreeMap.Entry f = findKey( ( e.getKey() ) ); return f != null && in( f.key ) && e.equals( f ); } @SuppressWarnings("unchecked") public boolean remove( final Object o ) { if ( !( o instanceof Map.Entry ) ) return false; final Map.Entry e = (Map.Entry)o; final Object2ObjectAVLTreeMap.Entry f = findKey( ( e.getKey() ) ); if ( f != null && in( f.key ) ) Submap.this.remove( f.key ); return f != null; } public int size() { int c = 0; for ( Iterator i = iterator(); i.hasNext(); i.next() ) c++; return c; } public boolean isEmpty() { return !new SubmapIterator().hasNext(); } public void clear() { Submap.this.clear(); } public Object2ObjectMap.Entry first() { return firstEntry(); } public Object2ObjectMap.Entry last() { return lastEntry(); } public ObjectSortedSet> subSet( Object2ObjectMap.Entry from, Object2ObjectMap.Entry to ) { return subMap( from.getKey(), to.getKey() ).object2ObjectEntrySet(); } public ObjectSortedSet> headSet( Object2ObjectMap.Entry to ) { return headMap( to.getKey() ).object2ObjectEntrySet(); } public ObjectSortedSet> tailSet( Object2ObjectMap.Entry from ) { return tailMap( from.getKey() ).object2ObjectEntrySet(); } }; return entries; } private class KeySet extends AbstractObject2ObjectSortedMap.KeySet { public ObjectBidirectionalIterator iterator() { return new SubmapKeyIterator(); } public ObjectBidirectionalIterator iterator( final K from ) { return new SubmapKeyIterator( from ); } } public ObjectSortedSet keySet() { if ( keys == null ) keys = new KeySet(); return keys; } public ObjectCollection values() { if ( values == null ) values = new AbstractObjectCollection() { public ObjectIterator iterator() { return new SubmapValueIterator(); } public boolean contains( final Object k ) { return containsValue( k ); } public int size() { return Submap.this.size(); } public void clear() { Submap.this.clear(); } }; return values; } @SuppressWarnings("unchecked") public boolean containsKey( final Object k ) { return in( (K)k ) && Object2ObjectAVLTreeMap.this.containsKey( k ); } public boolean containsValue( final Object v ) { final SubmapIterator i = new SubmapIterator(); Object ev; while ( i.hasNext() ) { ev = i.nextEntry().value; if ( ( ( ev ) == null ? ( v ) == null : ( ev ).equals( v ) ) ) return true; } return false; } @SuppressWarnings("unchecked") public V get( final Object k ) { final Object2ObjectAVLTreeMap.Entry e; final K kk = (K)k; return in( kk ) && ( e = findKey( kk ) ) != null ? e.value : this.defRetValue; } public V put( final K k, final V v ) { modified = false; if ( !in( k ) ) throw new IllegalArgumentException( "Key (" + k + ") out of range [" + ( bottom ? "-" : String.valueOf( from ) ) + ", " + ( top ? "-" : String.valueOf( to ) ) + ")" ); final V oldValue = Object2ObjectAVLTreeMap.this.put( k, v ); return modified ? this.defRetValue : oldValue; } @SuppressWarnings("unchecked") public V remove( final Object k ) { modified = false; if ( !in( (K)k ) ) return this.defRetValue; final V oldValue = Object2ObjectAVLTreeMap.this.remove( k ); return modified ? oldValue : this.defRetValue; } public int size() { final SubmapIterator i = new SubmapIterator(); int n = 0; while ( i.hasNext() ) { n++; i.nextEntry(); } return n; } public boolean isEmpty() { return !new SubmapIterator().hasNext(); } public Comparator comparator() { return actualComparator; } public Object2ObjectSortedMap headMap( final K to ) { if ( top ) return new Submap( from, bottom, to, false ); return compare( to, this.to ) < 0 ? new Submap( from, bottom, to, false ) : this; } public Object2ObjectSortedMap tailMap( final K from ) { if ( bottom ) return new Submap( from, false, to, top ); return compare( from, this.from ) > 0 ? new Submap( from, false, to, top ) : this; } public Object2ObjectSortedMap subMap( K from, K to ) { if ( top && bottom ) return new Submap( from, false, to, false ); if ( !top ) to = compare( to, this.to ) < 0 ? to : this.to; if ( !bottom ) from = compare( from, this.from ) > 0 ? from : this.from; if ( !top && !bottom && from == this.from && to == this.to ) return this; return new Submap( from, false, to, false ); } /** Locates the first entry. * * @return the first entry of this submap, or null if the submap is empty. */ public Object2ObjectAVLTreeMap.Entry firstEntry() { if ( tree == null ) return null; // If this submap goes to -infinity, we return the main map first entry; otherwise, we locate the start of the map. Object2ObjectAVLTreeMap.Entry e; if ( bottom ) e = firstEntry; else { e = locateKey( from ); // If we find either the start or something greater we're OK. if ( compare( e.key, from ) < 0 ) e = e.next(); } // Finally, if this subset doesn't go to infinity, we check that the resulting key isn't greater than the end. if ( e == null || !top && compare( e.key, to ) >= 0 ) return null; return e; } /** Locates the last entry. * * @return the last entry of this submap, or null if the submap is empty. */ public Object2ObjectAVLTreeMap.Entry lastEntry() { if ( tree == null ) return null; // If this submap goes to infinity, we return the main map last entry; otherwise, we locate the end of the map. Object2ObjectAVLTreeMap.Entry e; if ( top ) e = lastEntry; else { e = locateKey( to ); // If we find something smaller than the end we're OK. if ( compare( e.key, to ) >= 0 ) e = e.prev(); } // Finally, if this subset doesn't go to -infinity, we check that the resulting key isn't smaller than the start. if ( e == null || !bottom && compare( e.key, from ) < 0 ) return null; return e; } public K firstKey() { Object2ObjectAVLTreeMap.Entry e = firstEntry(); if ( e == null ) throw new NoSuchElementException(); return e.key; } public K lastKey() { Object2ObjectAVLTreeMap.Entry e = lastEntry(); if ( e == null ) throw new NoSuchElementException(); return e.key; } /** An iterator for subranges. * *

This class inherits from {@link TreeIterator}, but overrides the methods that update the pointer after a {@link java.util.ListIterator#next()} or * {@link java.util.ListIterator#previous()}. If we would move out of the range of the submap we just overwrite the next or previous entry with null. */ private class SubmapIterator extends TreeIterator { SubmapIterator() { next = firstEntry(); } SubmapIterator( final K k ) { this(); if ( next != null ) { if ( !bottom && compare( k, next.key ) < 0 ) prev = null; else if ( !top && compare( k, ( prev = lastEntry() ).key ) >= 0 ) next = null; else { next = locateKey( k ); if ( compare( next.key, k ) <= 0 ) { prev = next; next = next.next(); } else prev = next.prev(); } } } void updatePrevious() { prev = prev.prev(); if ( !bottom && prev != null && Object2ObjectAVLTreeMap.this.compare( prev.key, from ) < 0 ) prev = null; } void updateNext() { next = next.next(); if ( !top && next != null && Object2ObjectAVLTreeMap.this.compare( next.key, to ) >= 0 ) next = null; } } private class SubmapEntryIterator extends SubmapIterator implements ObjectListIterator> { SubmapEntryIterator() {} SubmapEntryIterator( final K k ) { super( k ); } public Object2ObjectMap.Entry next() { return nextEntry(); } public Object2ObjectMap.Entry previous() { return previousEntry(); } public void set( Object2ObjectMap.Entry ok ) { throw new UnsupportedOperationException(); } public void add( Object2ObjectMap.Entry ok ) { throw new UnsupportedOperationException(); } } /** An iterator on a subrange of keys. * *

This class can iterate in both directions on a subrange of the keys of a threaded tree. We simply override the {@link java.util.ListIterator#next()}/ * {@link java.util.ListIterator#previous()} methods (and possibly their type-specific counterparts) so that they return keys instead of entries. */ private final class SubmapKeyIterator extends SubmapIterator implements ObjectListIterator { public SubmapKeyIterator() { super(); } public SubmapKeyIterator( K from ) { super( from ); } public K next() { return nextEntry().key; } public K previous() { return previousEntry().key; } public void set( K k ) { throw new UnsupportedOperationException(); } public void add( K k ) { throw new UnsupportedOperationException(); } }; /** An iterator on a subrange of values. * *

This class can iterate in both directions on the values of a subrange of the keys of a threaded tree. We simply override the {@link java.util.ListIterator#next()}/ * {@link java.util.ListIterator#previous()} methods (and possibly their type-specific counterparts) so that they return values instead of entries. */ private final class SubmapValueIterator extends SubmapIterator implements ObjectListIterator { public V next() { return nextEntry().value; } public V previous() { return previousEntry().value; } public void set( V v ) { throw new UnsupportedOperationException(); } public void add( V v ) { throw new UnsupportedOperationException(); } }; } /** Returns a deep copy of this tree map. * *

This method performs a deep copy of this tree map; the data stored in the set, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this tree map. */ @SuppressWarnings("unchecked") public Object2ObjectAVLTreeMap clone() { Object2ObjectAVLTreeMap c; try { c = (Object2ObjectAVLTreeMap)super.clone(); } catch ( CloneNotSupportedException cantHappen ) { throw new InternalError(); } c.keys = null; c.values = null; c.entries = null; c.allocatePaths(); if ( count != 0 ) { // Also this apparently unfathomable code is derived from GNU libavl. Entry e, p, q, rp = new Entry(), rq = new Entry(); p = rp; rp.left( tree ); q = rq; rq.pred( null ); while ( true ) { if ( !p.pred() ) { e = p.left.clone(); e.pred( q.left ); e.succ( q ); q.left( e ); p = p.left; q = q.left; } else { while ( p.succ() ) { p = p.right; if ( p == null ) { q.right = null; c.tree = rq.left; c.firstEntry = c.tree; while ( c.firstEntry.left != null ) c.firstEntry = c.firstEntry.left; c.lastEntry = c.tree; while ( c.lastEntry.right != null ) c.lastEntry = c.lastEntry.right; return c; } q = q.right; } p = p.right; q = q.right; } if ( !p.succ() ) { e = p.right.clone(); e.succ( q.right ); e.pred( q ); q.right( e ); } } } return c; } private void writeObject( java.io.ObjectOutputStream s ) throws java.io.IOException { int n = count; EntryIterator i = new EntryIterator(); Entry e; s.defaultWriteObject(); while ( n-- != 0 ) { e = i.nextEntry(); s.writeObject( e.key ); s.writeObject( e.value ); } } /** Reads the given number of entries from the input stream, returning the corresponding tree. * * @param s the input stream. * @param n the (positive) number of entries to read. * @param pred the entry containing the key that preceeds the first key in the tree. * @param succ the entry containing the key that follows the last key in the tree. */ @SuppressWarnings("unchecked") private Entry readTree( final java.io.ObjectInputStream s, final int n, final Entry pred, final Entry succ ) throws java.io.IOException, ClassNotFoundException { if ( n == 1 ) { final Entry top = new Entry( (K)s.readObject(), (V)s.readObject() ); top.pred( pred ); top.succ( succ ); return top; } if ( n == 2 ) { /* * We handle separately this case so that recursion willalways* be on nonempty subtrees. */ final Entry top = new Entry( (K)s.readObject(), (V)s.readObject() ); top.right( new Entry( (K)s.readObject(), (V)s.readObject() ) ); top.right.pred( top ); top.balance( 1 ); top.pred( pred ); top.right.succ( succ ); return top; } // The right subtree is the largest one. final int rightN = n / 2, leftN = n - rightN - 1; final Entry top = new Entry(); top.left( readTree( s, leftN, pred, top ) ); top.key = (K)s.readObject(); top.value = (V)s.readObject(); top.right( readTree( s, rightN, top, succ ) ); if ( n == ( n & -n ) ) top.balance( 1 ); // Quick test for determining whether n is a power of 2. return top; } private void readObject( java.io.ObjectInputStream s ) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); /* * The storedComparator is now correctly set, but we must restore on-the-fly the actualComparator. */ setActualComparator(); allocatePaths(); if ( count != 0 ) { tree = readTree( s, count, null, null ); Entry e; e = tree; while ( e.left() != null ) e = e.left(); firstEntry = e; e = tree; while ( e.right() != null ) e = e.right(); lastEntry = e; } if ( ASSERTS ) checkTree( tree ); } private static int checkTree( @SuppressWarnings("unused") Entry e ) { return 0; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy