All Downloads are FREE. Search and download functionalities are using the official Maven repository.

src.it.unimi.dsi.fastutil.objects.ObjectRBTreeSet Maven / Gradle / Ivy

The newest version!
/* Generic definitions */
/* Assertions (useful to generate conditional code) */
/* Current type and class (and size, if applicable) */
/* Value methods */
/* Interfaces (keys) */
/* Interfaces (values) */
/* Abstract implementations (keys) */
/* Abstract implementations (values) */
/* Static containers (keys) */
/* Static containers (values) */
/* Implementations */
/* Synchronized wrappers */
/* Unmodifiable wrappers */
/* Other wrappers */
/* Methods (keys) */
/* Methods (values) */
/* Methods (keys/values) */
/* Methods that have special names depending on keys (but the special names depend on values) */
/* Equality */
/* Object/Reference-only definitions (keys) */
/* Object/Reference-only definitions (values) */
/*		 
 * Copyright (C) 2002-2015 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. 
 */
package it.unimi.dsi.fastutil.objects;

import java.util.Collection;
import java.util.Comparator;
import java.util.Iterator;
import java.util.SortedSet;
import java.util.NoSuchElementException;

/** A type-specific red-black tree set with a fast, small-footprint implementation.
 *
 * 

The iterators provided by this class are type-specific {@link it.unimi.dsi.fastutil.BidirectionalIterator bidirectional iterators}. Moreover, the iterator returned by iterator() can * be safely cast to a type-specific {@linkplain java.util.ListIterator list iterator}. */ public class ObjectRBTreeSet extends AbstractObjectSortedSet implements java.io.Serializable, Cloneable, ObjectSortedSet { /** A reference to the root entry. */ protected transient Entry tree; /** Number of elements in this set. */ protected int count; /** The entry of the first element of this set. */ protected transient Entry firstEntry; /** The entry of the last element of this set. */ protected transient Entry lastEntry; /** This set's comparator, as provided in the constructor. */ protected Comparator storedComparator; /** This set's actual comparator; it may differ from {@link #storedComparator} because it is always a type-specific comparator, so it could be derived from the former by wrapping. */ protected transient Comparator actualComparator; private static final long serialVersionUID = -7046029254386353130L; private static final boolean ASSERTS = false; { allocatePaths(); } /** Creates a new empty tree set. */ public ObjectRBTreeSet() { tree = null; count = 0; } /** Generates the comparator that will be actually used. * *

When a specific {@link Comparator} is specified and stored in {@link #storedComparator}, we must check whether it is type-specific. If it is so, we can used directly, and we store it in * {@link #actualComparator}. Otherwise, we generate on-the-fly an anonymous class that wraps the non-specific {@link Comparator} and makes it into a type-specific one. */ private void setActualComparator() { actualComparator = storedComparator; } /** Creates a new empty tree set with the given comparator. * * @param c a {@link Comparator} (even better, a type-specific comparator). */ public ObjectRBTreeSet( final Comparator c ) { this(); storedComparator = c; setActualComparator(); } /** Creates a new tree set copying a given collection. * * @param c a collection to be copied into the new tree set. */ public ObjectRBTreeSet( final Collection c ) { this(); addAll( c ); } /** Creates a new tree set copying a given sorted set (and its {@link Comparator}). * * @param s a {@link SortedSet} to be copied into the new tree set. */ public ObjectRBTreeSet( final SortedSet s ) { this( s.comparator() ); addAll( s ); } /** Creates a new tree set copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new tree set. */ public ObjectRBTreeSet( final ObjectCollection c ) { this(); addAll( c ); } /** Creates a new tree set copying a given type-specific sorted set (and its {@link Comparator}). * * @param s a type-specific sorted set to be copied into the new tree set. */ public ObjectRBTreeSet( final ObjectSortedSet s ) { this( s.comparator() ); addAll( s ); } /** Creates a new tree set using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. */ public ObjectRBTreeSet( final Iterator i ) { while ( i.hasNext() ) add( i.next() ); } /** Creates a new tree set and fills it with the elements of a given array using a given {@link Comparator}. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. * @param c a {@link Comparator} (even better, a type-specific comparator). */ public ObjectRBTreeSet( final K[] a, final int offset, final int length, final Comparator c ) { this( c ); ObjectArrays.ensureOffsetLength( a, offset, length ); for ( int i = 0; i < length; i++ ) add( a[ offset + i ] ); } /** Creates a new tree set and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. */ public ObjectRBTreeSet( final K[] a, final int offset, final int length ) { this( a, offset, length, null ); } /** Creates a new tree set copying the elements of an array. * * @param a an array to be copied into the new tree set. */ public ObjectRBTreeSet( final K[] a ) { this(); int i = a.length; while ( i-- != 0 ) add( a[ i ] ); } /** Creates a new tree set copying the elements of an array using a given {@link Comparator}. * * @param a an array to be copied into the new tree set. * @param c a {@link Comparator} (even better, a type-specific comparator). */ public ObjectRBTreeSet( final K[] a, final Comparator c ) { this( c ); int i = a.length; while ( i-- != 0 ) add( a[ i ] ); } /* The following methods implements some basic building blocks used by all accessors. They are (and should be maintained) identical to those used in RBTreeMap.drv. * * The add()/remove() code is derived from Ben Pfaff's GNU libavl (http://www.msu.edu/~pfaffben/avl/). If you want to understand what's going on, you should have a look at the literate code * contained therein first. */ /** Compares two keys in the right way. * *

This method uses the {@link #actualComparator} if it is non-null. Otherwise, it resorts to primitive type comparisons or to {@link Comparable#compareTo(Object) compareTo()}. * * @param k1 the first key. * @param k2 the second key. * @return a number smaller than, equal to or greater than 0, as usual (i.e., when k1 < k2, k1 = k2 or k1 > k2, respectively). */ @SuppressWarnings("unchecked") final int compare( final K k1, final K k2 ) { return actualComparator == null ? ( ( (Comparable)( k1 ) ).compareTo( k2 ) ) : actualComparator.compare( k1, k2 ); } /** Returns the entry corresponding to the given key, if it is in the tree; null, otherwise. * * @param k the key to search for. * @return the corresponding entry, or null if no entry with the given key exists. */ private Entry findKey( final K k ) { Entry e = tree; int cmp; while ( e != null && ( cmp = compare( k, e.key ) ) != 0 ) e = cmp < 0 ? e.left() : e.right(); return e; } /** Locates a key. * * @param k a key. * @return the last entry on a search for the given key; this will be the given key, if it present; otherwise, it will be either the smallest greater key or the greatest smaller key. */ final Entry locateKey( final K k ) { Entry e = tree, last = tree; int cmp = 0; while ( e != null && ( cmp = compare( k, e.key ) ) != 0 ) { last = e; e = cmp < 0 ? e.left() : e.right(); } return cmp == 0 ? e : last; } /** This vector remembers the path and the direction followed during the current insertion. It suffices for about 232 entries. */ private transient boolean dirPath[]; private transient Entry nodePath[]; @SuppressWarnings("unchecked") private void allocatePaths() { dirPath = new boolean[ 64 ]; nodePath = new Entry[ 64 ]; } public boolean add( final K k ) { int maxDepth = 0; if ( tree == null ) { // The case of the empty tree is treated separately. count++; tree = lastEntry = firstEntry = new Entry( k ); } else { Entry p = tree, e; int cmp, i = 0; while ( true ) { if ( ( cmp = compare( k, p.key ) ) == 0 ) { // We clean up the node path, or we could have stale references later. while ( i-- != 0 ) nodePath[ i ] = null; return false; } nodePath[ i ] = p; if ( dirPath[ i++ ] = cmp > 0 ) { if ( p.succ() ) { count++; e = new Entry( k ); if ( p.right == null ) lastEntry = e; e.left = p; e.right = p.right; p.right( e ); break; } p = p.right; } else { if ( p.pred() ) { count++; e = new Entry( k ); if ( p.left == null ) firstEntry = e; e.right = p; e.left = p.left; p.left( e ); break; } p = p.left; } } maxDepth = i--; while ( i > 0 && !nodePath[ i ].black() ) { if ( !dirPath[ i - 1 ] ) { Entry y = nodePath[ i - 1 ].right; if ( !nodePath[ i - 1 ].succ() && !y.black() ) { nodePath[ i ].black( true ); y.black( true ); nodePath[ i - 1 ].black( false ); i -= 2; } else { Entry x; if ( !dirPath[ i ] ) y = nodePath[ i ]; else { x = nodePath[ i ]; y = x.right; x.right = y.left; y.left = x; nodePath[ i - 1 ].left = y; if ( y.pred() ) { y.pred( false ); x.succ( y ); } } x = nodePath[ i - 1 ]; x.black( false ); y.black( true ); x.left = y.right; y.right = x; if ( i < 2 ) tree = y; else { if ( dirPath[ i - 2 ] ) nodePath[ i - 2 ].right = y; else nodePath[ i - 2 ].left = y; } if ( y.succ() ) { y.succ( false ); x.pred( y ); } break; } } else { Entry y = nodePath[ i - 1 ].left; if ( !nodePath[ i - 1 ].pred() && !y.black() ) { nodePath[ i ].black( true ); y.black( true ); nodePath[ i - 1 ].black( false ); i -= 2; } else { Entry x; if ( dirPath[ i ] ) y = nodePath[ i ]; else { x = nodePath[ i ]; y = x.left; x.left = y.right; y.right = x; nodePath[ i - 1 ].right = y; if ( y.succ() ) { y.succ( false ); x.pred( y ); } } x = nodePath[ i - 1 ]; x.black( false ); y.black( true ); x.right = y.left; y.left = x; if ( i < 2 ) tree = y; else { if ( dirPath[ i - 2 ] ) nodePath[ i - 2 ].right = y; else nodePath[ i - 2 ].left = y; } if ( y.pred() ) { y.pred( false ); x.succ( y ); } break; } } } } tree.black( true ); // We clean up the node path, or we could have stale references later. while ( maxDepth-- != 0 ) nodePath[ maxDepth ] = null; if ( ASSERTS ) { checkNodePath(); checkTree( tree, 0, -1 ); } return true; } @SuppressWarnings("unchecked") public boolean remove( final Object k ) { if ( tree == null ) return false; Entry p = tree; int cmp; int i = 0; final K kk = (K)k; while ( true ) { if ( ( cmp = compare( kk, p.key ) ) == 0 ) break; dirPath[ i ] = cmp > 0; nodePath[ i ] = p; if ( dirPath[ i++ ] ) { if ( ( p = p.right() ) == null ) { // We clean up the node path, or we could have stale references later. while ( i-- != 0 ) nodePath[ i ] = null; return false; } } else { if ( ( p = p.left() ) == null ) { // We clean up the node path, or we could have stale references later. while ( i-- != 0 ) nodePath[ i ] = null; return false; } } } if ( p.left == null ) firstEntry = p.next(); if ( p.right == null ) lastEntry = p.prev(); if ( p.succ() ) { if ( p.pred() ) { if ( i == 0 ) tree = p.left; else { if ( dirPath[ i - 1 ] ) nodePath[ i - 1 ].succ( p.right ); else nodePath[ i - 1 ].pred( p.left ); } } else { p.prev().right = p.right; if ( i == 0 ) tree = p.left; else { if ( dirPath[ i - 1 ] ) nodePath[ i - 1 ].right = p.left; else nodePath[ i - 1 ].left = p.left; } } } else { boolean color; Entry r = p.right; if ( r.pred() ) { r.left = p.left; r.pred( p.pred() ); if ( !r.pred() ) r.prev().right = r; if ( i == 0 ) tree = r; else { if ( dirPath[ i - 1 ] ) nodePath[ i - 1 ].right = r; else nodePath[ i - 1 ].left = r; } color = r.black(); r.black( p.black() ); p.black( color ); dirPath[ i ] = true; nodePath[ i++ ] = r; } else { Entry s; int j = i++; while ( true ) { dirPath[ i ] = false; nodePath[ i++ ] = r; s = r.left; if ( s.pred() ) break; r = s; } dirPath[ j ] = true; nodePath[ j ] = s; if ( s.succ() ) r.pred( s ); else r.left = s.right; s.left = p.left; if ( !p.pred() ) { p.prev().right = s; s.pred( false ); } s.right( p.right ); color = s.black(); s.black( p.black() ); p.black( color ); if ( j == 0 ) tree = s; else { if ( dirPath[ j - 1 ] ) nodePath[ j - 1 ].right = s; else nodePath[ j - 1 ].left = s; } } } int maxDepth = i; if ( p.black() ) { for ( ; i > 0; i-- ) { if ( dirPath[ i - 1 ] && !nodePath[ i - 1 ].succ() || !dirPath[ i - 1 ] && !nodePath[ i - 1 ].pred() ) { Entry x = dirPath[ i - 1 ] ? nodePath[ i - 1 ].right : nodePath[ i - 1 ].left; if ( !x.black() ) { x.black( true ); break; } } if ( !dirPath[ i - 1 ] ) { Entry w = nodePath[ i - 1 ].right; if ( !w.black() ) { w.black( true ); nodePath[ i - 1 ].black( false ); nodePath[ i - 1 ].right = w.left; w.left = nodePath[ i - 1 ]; if ( i < 2 ) tree = w; else { if ( dirPath[ i - 2 ] ) nodePath[ i - 2 ].right = w; else nodePath[ i - 2 ].left = w; } nodePath[ i ] = nodePath[ i - 1 ]; dirPath[ i ] = false; nodePath[ i - 1 ] = w; if ( maxDepth == i++ ) maxDepth++; w = nodePath[ i - 1 ].right; } if ( ( w.pred() || w.left.black() ) && ( w.succ() || w.right.black() ) ) { w.black( false ); } else { if ( w.succ() || w.right.black() ) { Entry y = w.left; y.black( true ); w.black( false ); w.left = y.right; y.right = w; w = nodePath[ i - 1 ].right = y; if ( w.succ() ) { w.succ( false ); w.right.pred( w ); } } w.black( nodePath[ i - 1 ].black() ); nodePath[ i - 1 ].black( true ); w.right.black( true ); nodePath[ i - 1 ].right = w.left; w.left = nodePath[ i - 1 ]; if ( i < 2 ) tree = w; else { if ( dirPath[ i - 2 ] ) nodePath[ i - 2 ].right = w; else nodePath[ i - 2 ].left = w; } if ( w.pred() ) { w.pred( false ); nodePath[ i - 1 ].succ( w ); } break; } } else { Entry w = nodePath[ i - 1 ].left; if ( !w.black() ) { w.black( true ); nodePath[ i - 1 ].black( false ); nodePath[ i - 1 ].left = w.right; w.right = nodePath[ i - 1 ]; if ( i < 2 ) tree = w; else { if ( dirPath[ i - 2 ] ) nodePath[ i - 2 ].right = w; else nodePath[ i - 2 ].left = w; } nodePath[ i ] = nodePath[ i - 1 ]; dirPath[ i ] = true; nodePath[ i - 1 ] = w; if ( maxDepth == i++ ) maxDepth++; w = nodePath[ i - 1 ].left; } if ( ( w.pred() || w.left.black() ) && ( w.succ() || w.right.black() ) ) { w.black( false ); } else { if ( w.pred() || w.left.black() ) { Entry y = w.right; y.black( true ); w.black( false ); w.right = y.left; y.left = w; w = nodePath[ i - 1 ].left = y; if ( w.pred() ) { w.pred( false ); w.left.succ( w ); } } w.black( nodePath[ i - 1 ].black() ); nodePath[ i - 1 ].black( true ); w.left.black( true ); nodePath[ i - 1 ].left = w.right; w.right = nodePath[ i - 1 ]; if ( i < 2 ) tree = w; else { if ( dirPath[ i - 2 ] ) nodePath[ i - 2 ].right = w; else nodePath[ i - 2 ].left = w; } if ( w.succ() ) { w.succ( false ); nodePath[ i - 1 ].pred( w ); } break; } } } if ( tree != null ) tree.black( true ); } count--; // We clean up the node path, or we could have stale references later. while ( maxDepth-- != 0 ) nodePath[ maxDepth ] = null; if ( ASSERTS ) { checkNodePath(); checkTree( tree, 0, -1 ); } return true; } @SuppressWarnings("unchecked") public boolean contains( final Object k ) { return findKey( (K)k ) != null; } public void clear() { count = 0; tree = null; firstEntry = lastEntry = null; } /** This class represent an entry in a tree set. * *

We use the only "metadata", i.e., {@link Entry#info}, to store information about color, predecessor status and successor status. * *

Note that since the class is recursive, it can be considered equivalently a tree. */ private static final class Entry implements Cloneable { /** The the bit in this mask is true, the node is black. */ private final static int BLACK_MASK = 1; /** If the bit in this mask is true, {@link #right} points to a successor. */ private final static int SUCC_MASK = 1 << 31; /** If the bit in this mask is true, {@link #left} points to a predecessor. */ private final static int PRED_MASK = 1 << 30; /** The key of this entry. */ K key; /** The pointers to the left and right subtrees. */ Entry left, right; /** This integers holds different information in different bits (see {@link #SUCC_MASK}, {@link #PRED_MASK} and {@link #BLACK_MASK}). */ int info; Entry() {} /** Creates a new red entry with the given key. * * @param k a key. */ Entry( final K k ) { this.key = k; info = SUCC_MASK | PRED_MASK; } /** Returns the left subtree. * * @return the left subtree (null if the left subtree is empty). */ Entry left() { return ( info & PRED_MASK ) != 0 ? null : left; } /** Returns the right subtree. * * @return the right subtree (null if the right subtree is empty). */ Entry right() { return ( info & SUCC_MASK ) != 0 ? null : right; } /** Checks whether the left pointer is really a predecessor. * * @return true if the left pointer is a predecessor. */ boolean pred() { return ( info & PRED_MASK ) != 0; } /** Checks whether the right pointer is really a successor. * * @return true if the right pointer is a successor. */ boolean succ() { return ( info & SUCC_MASK ) != 0; } /** Sets whether the left pointer is really a predecessor. * * @param pred if true then the left pointer will be considered a predecessor. */ void pred( final boolean pred ) { if ( pred ) info |= PRED_MASK; else info &= ~PRED_MASK; } /** Sets whether the right pointer is really a successor. * * @param succ if true then the right pointer will be considered a successor. */ void succ( final boolean succ ) { if ( succ ) info |= SUCC_MASK; else info &= ~SUCC_MASK; } /** Sets the left pointer to a predecessor. * * @param pred the predecessr. */ void pred( final Entry pred ) { info |= PRED_MASK; left = pred; } /** Sets the right pointer to a successor. * * @param succ the successor. */ void succ( final Entry succ ) { info |= SUCC_MASK; right = succ; } /** Sets the left pointer to the given subtree. * * @param left the new left subtree. */ void left( final Entry left ) { info &= ~PRED_MASK; this.left = left; } /** Sets the right pointer to the given subtree. * * @param right the new right subtree. */ void right( final Entry right ) { info &= ~SUCC_MASK; this.right = right; } /** Returns whether this node is black. * * @return true iff this node is black. */ boolean black() { return ( info & BLACK_MASK ) != 0; } /** Sets whether this node is black. * * @param black if true, then this node becomes black; otherwise, it becomes red.. */ void black( final boolean black ) { if ( black ) info |= BLACK_MASK; else info &= ~BLACK_MASK; } /** Computes the next entry in the set order. * * @return the next entry (null) if this is the last entry). */ Entry next() { Entry next = this.right; if ( ( info & SUCC_MASK ) == 0 ) while ( ( next.info & PRED_MASK ) == 0 ) next = next.left; return next; } /** Computes the previous entry in the set order. * * @return the previous entry (null) if this is the first entry). */ Entry prev() { Entry prev = this.left; if ( ( info & PRED_MASK ) == 0 ) while ( ( prev.info & SUCC_MASK ) == 0 ) prev = prev.right; return prev; } @SuppressWarnings("unchecked") public Entry clone() { Entry c; try { c = (Entry)super.clone(); } catch ( CloneNotSupportedException cantHappen ) { throw new InternalError(); } c.key = key; c.info = info; return c; } public boolean equals( final Object o ) { if ( !( o instanceof Entry ) ) return false; Entry e = (Entry)o; return ( ( key ) == null ? ( e.key ) == null : ( key ).equals( e.key ) ); } public int hashCode() { return ( ( key ).hashCode() ); } public String toString() { return String.valueOf( key ); } /*public void prettyPrint() { prettyPrint(0); } * * * public void prettyPrint(int level) { if ( pred() ) { for (int i = 0; i < level; i++) System.err.print(" "); System.err.println("pred: " + left ); } else if (left != null) * left.prettyPrint(level +1 ); for (int i = 0; i < level; i++) System.err.print(" "); System.err.println(key + " (" + (black() ? "black" : "red") + ")"); if ( succ() ) { for (int i = 0; i < * level; i++) System.err.print(" "); System.err.println("succ: " + right ); } else if (right != null) right.prettyPrint(level + 1); } */ } /*public void prettyPrint() { System.err.println("size: " + count); if (tree != null) tree.prettyPrint(); } */ public int size() { return count; } public boolean isEmpty() { return count == 0; } public K first() { if ( tree == null ) throw new NoSuchElementException(); return firstEntry.key; } public K last() { if ( tree == null ) throw new NoSuchElementException(); return lastEntry.key; } /** An iterator on the whole range. * *

This class can iterate in both directions on a threaded tree. */ private class SetIterator extends AbstractObjectListIterator { /** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or null if no previous entry exists). */ Entry prev; /** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or null if no next entry exists). */ Entry next; /** The last entry that was returned (or null if we did not iterate or used {@link #remove()}). */ Entry curr; /** The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not meaningful when this iterator has been created using the nonempty constructor. */ int index = 0; SetIterator() { next = firstEntry; } SetIterator( final K k ) { if ( ( next = locateKey( k ) ) != null ) { if ( compare( next.key, k ) <= 0 ) { prev = next; next = next.next(); } else prev = next.prev(); } } public boolean hasNext() { return next != null; } public boolean hasPrevious() { return prev != null; } void updateNext() { next = next.next(); } Entry nextEntry() { if ( !hasNext() ) throw new NoSuchElementException(); curr = prev = next; index++; updateNext(); return curr; } public K next() { return nextEntry().key; } public K previous() { return previousEntry().key; } void updatePrevious() { prev = prev.prev(); } Entry previousEntry() { if ( !hasPrevious() ) throw new NoSuchElementException(); curr = next = prev; index--; updatePrevious(); return curr; } public int nextIndex() { return index; } public int previousIndex() { return index - 1; } public void remove() { if ( curr == null ) throw new IllegalStateException(); /* * If the last operation was a next(), we are removing an entry that preceeds the current index, and thus we must decrement it. */ if ( curr == prev ) index--; next = prev = curr; updatePrevious(); updateNext(); ObjectRBTreeSet.this.remove( curr.key ); curr = null; } } public ObjectBidirectionalIterator iterator() { return new SetIterator(); } public ObjectBidirectionalIterator iterator( final K from ) { return new SetIterator( from ); } public Comparator comparator() { return actualComparator; } public ObjectSortedSet headSet( final K to ) { return new Subset( ( null ), true, to, false ); } public ObjectSortedSet tailSet( final K from ) { return new Subset( from, false, ( null ), true ); } public ObjectSortedSet subSet( final K from, final K to ) { return new Subset( from, false, to, false ); } /** A subset with given range. * *

This class represents a subset. One has to specify the left/right limits (which can be set to -∞ or ∞). Since the subset is a view on the set, at a given moment it could happen * that the limits of the range are not any longer in the main set. Thus, things such as {@link java.util.SortedSet#first()} or {@link java.util.Collection#size()} must be always computed * on-the-fly. */ private final class Subset extends AbstractObjectSortedSet implements java.io.Serializable, ObjectSortedSet { private static final long serialVersionUID = -7046029254386353129L; /** The start of the subset range, unless {@link #bottom} is true. */ K from; /** The end of the subset range, unless {@link #top} is true. */ K to; /** If true, the subset range starts from -∞. */ boolean bottom; /** If true, the subset range goes to ∞. */ boolean top; /** Creates a new subset with given key range. * * @param from the start of the subset range. * @param bottom if true, the first parameter is ignored and the range starts from -∞. * @param to the end of the subset range. * @param top if true, the third parameter is ignored and the range goes to ∞. */ public Subset( final K from, final boolean bottom, final K to, final boolean top ) { if ( !bottom && !top && ObjectRBTreeSet.this.compare( from, to ) > 0 ) throw new IllegalArgumentException( "Start element (" + from + ") is larger than end element (" + to + ")" ); this.from = from; this.bottom = bottom; this.to = to; this.top = top; } public void clear() { final SubsetIterator i = new SubsetIterator(); while ( i.hasNext() ) { i.next(); i.remove(); } } /** Checks whether a key is in the subset range. * * @param k a key. * @return true if is the key is in the subset range. */ final boolean in( final K k ) { return ( bottom || ObjectRBTreeSet.this.compare( k, from ) >= 0 ) && ( top || ObjectRBTreeSet.this.compare( k, to ) < 0 ); } @SuppressWarnings("unchecked") public boolean contains( final Object k ) { return in( (K)k ) && ObjectRBTreeSet.this.contains( k ); } public boolean add( final K k ) { if ( !in( k ) ) throw new IllegalArgumentException( "Element (" + k + ") out of range [" + ( bottom ? "-" : String.valueOf( from ) ) + ", " + ( top ? "-" : String.valueOf( to ) ) + ")" ); return ObjectRBTreeSet.this.add( k ); } @SuppressWarnings("unchecked") public boolean remove( final Object k ) { if ( !in( (K)k ) ) return false; return ObjectRBTreeSet.this.remove( k ); } public int size() { final SubsetIterator i = new SubsetIterator(); int n = 0; while ( i.hasNext() ) { n++; i.next(); } return n; } public boolean isEmpty() { return !new SubsetIterator().hasNext(); } public Comparator comparator() { return actualComparator; } public ObjectBidirectionalIterator iterator() { return new SubsetIterator(); } public ObjectBidirectionalIterator iterator( final K from ) { return new SubsetIterator( from ); } public ObjectSortedSet headSet( final K to ) { if ( top ) return new Subset( from, bottom, to, false ); return compare( to, this.to ) < 0 ? new Subset( from, bottom, to, false ) : this; } public ObjectSortedSet tailSet( final K from ) { if ( bottom ) return new Subset( from, false, to, top ); return compare( from, this.from ) > 0 ? new Subset( from, false, to, top ) : this; } public ObjectSortedSet subSet( K from, K to ) { if ( top && bottom ) return new Subset( from, false, to, false ); if ( !top ) to = compare( to, this.to ) < 0 ? to : this.to; if ( !bottom ) from = compare( from, this.from ) > 0 ? from : this.from; if ( !top && !bottom && from == this.from && to == this.to ) return this; return new Subset( from, false, to, false ); } /** Locates the first entry. * * @return the first entry of this subset, or null if the subset is empty. */ public ObjectRBTreeSet.Entry firstEntry() { if ( tree == null ) return null; // If this subset goes to -infinity, we return the main set first entry; otherwise, we locate the start of the set. ObjectRBTreeSet.Entry e; if ( bottom ) e = firstEntry; else { e = locateKey( from ); // If we find either the start or something greater we're OK. if ( compare( e.key, from ) < 0 ) e = e.next(); } // Finally, if this subset doesn't go to infinity, we check that the resulting key isn't greater than the end. if ( e == null || !top && compare( e.key, to ) >= 0 ) return null; return e; } /** Locates the last entry. * * @return the last entry of this subset, or null if the subset is empty. */ public ObjectRBTreeSet.Entry lastEntry() { if ( tree == null ) return null; // If this subset goes to infinity, we return the main set last entry; otherwise, we locate the end of the set. ObjectRBTreeSet.Entry e; if ( top ) e = lastEntry; else { e = locateKey( to ); // If we find something smaller than the end we're OK. if ( compare( e.key, to ) >= 0 ) e = e.prev(); } // Finally, if this subset doesn't go to -infinity, we check that the resulting key isn't smaller than the start. if ( e == null || !bottom && compare( e.key, from ) < 0 ) return null; return e; } public K first() { ObjectRBTreeSet.Entry e = firstEntry(); if ( e == null ) throw new NoSuchElementException(); return e.key; } public K last() { ObjectRBTreeSet.Entry e = lastEntry(); if ( e == null ) throw new NoSuchElementException(); return e.key; } /** An iterator for subranges. * *

This class inherits from {@link SetIterator}, but overrides the methods that update the pointer after a {@link java.util.ListIterator#next()} or {@link java.util.ListIterator#previous()} * . If we would move out of the range of the subset we just overwrite the next or previous entry with null. */ private final class SubsetIterator extends SetIterator { SubsetIterator() { next = firstEntry(); } SubsetIterator( final K k ) { this(); if ( next != null ) { if ( !bottom && compare( k, next.key ) < 0 ) prev = null; else if ( !top && compare( k, ( prev = lastEntry() ).key ) >= 0 ) next = null; else { next = locateKey( k ); if ( compare( next.key, k ) <= 0 ) { prev = next; next = next.next(); } else prev = next.prev(); } } } void updatePrevious() { prev = prev.prev(); if ( !bottom && prev != null && ObjectRBTreeSet.this.compare( prev.key, from ) < 0 ) prev = null; } void updateNext() { next = next.next(); if ( !top && next != null && ObjectRBTreeSet.this.compare( next.key, to ) >= 0 ) next = null; } } } /** Returns a deep copy of this tree set. * *

This method performs a deep copy of this tree set; the data stored in the set, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this tree set. */ @SuppressWarnings("unchecked") public Object clone() { ObjectRBTreeSet c; try { c = (ObjectRBTreeSet)super.clone(); } catch ( CloneNotSupportedException cantHappen ) { throw new InternalError(); } c.allocatePaths(); if ( count != 0 ) { // Also this apparently unfathomable code is derived from GNU libavl. Entry e, p, q, rp = new Entry(), rq = new Entry(); p = rp; rp.left( tree ); q = rq; rq.pred( null ); while ( true ) { if ( !p.pred() ) { e = p.left.clone(); e.pred( q.left ); e.succ( q ); q.left( e ); p = p.left; q = q.left; } else { while ( p.succ() ) { p = p.right; if ( p == null ) { q.right = null; c.tree = rq.left; c.firstEntry = c.tree; while ( c.firstEntry.left != null ) c.firstEntry = c.firstEntry.left; c.lastEntry = c.tree; while ( c.lastEntry.right != null ) c.lastEntry = c.lastEntry.right; return c; } q = q.right; } p = p.right; q = q.right; } if ( !p.succ() ) { e = p.right.clone(); e.succ( q.right ); e.pred( q ); q.right( e ); } } } return c; } private void writeObject( java.io.ObjectOutputStream s ) throws java.io.IOException { int n = count; SetIterator i = new SetIterator(); s.defaultWriteObject(); while ( n-- != 0 ) s.writeObject( i.next() ); } /** Reads the given number of entries from the input stream, returning the corresponding tree. * * @param s the input stream. * @param n the (positive) number of entries to read. * @param pred the entry containing the key that preceeds the first key in the tree. * @param succ the entry containing the key that follows the last key in the tree. */ @SuppressWarnings("unchecked") private Entry readTree( final java.io.ObjectInputStream s, final int n, final Entry pred, final Entry succ ) throws java.io.IOException, ClassNotFoundException { if ( n == 1 ) { final Entry top = new Entry( (K)s.readObject() ); top.pred( pred ); top.succ( succ ); top.black( true ); return top; } if ( n == 2 ) { /* * We handle separately this case so that recursion willalways* be on nonempty subtrees. */ final Entry top = new Entry( (K)s.readObject() ); top.black( true ); top.right( new Entry( (K)s.readObject() ) ); top.right.pred( top ); top.pred( pred ); top.right.succ( succ ); return top; } // The right subtree is the largest one. final int rightN = n / 2, leftN = n - rightN - 1; final Entry top = new Entry(); top.left( readTree( s, leftN, pred, top ) ); top.key = (K)s.readObject(); top.black( true ); top.right( readTree( s, rightN, top, succ ) ); if ( n + 2 == ( ( n + 2 ) & -( n + 2 ) ) ) top.right.black( false ); // Quick test for determining whether n + 2 is a power of 2. return top; } private void readObject( java.io.ObjectInputStream s ) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); /* * The storedComparator is now correctly set, but we must restore on-the-fly the actualComparator. */ setActualComparator(); allocatePaths(); if ( count != 0 ) { tree = readTree( s, count, null, null ); Entry e; e = tree; while ( e.left() != null ) e = e.left(); firstEntry = e; e = tree; while ( e.right() != null ) e = e.right(); lastEntry = e; } if ( ASSERTS ) checkTree( tree, 0, -1 ); } private void checkNodePath() {} @SuppressWarnings("unused") private int checkTree( Entry e, int d, int D ) { return 0; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy