All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.pig.builtin.COV Maven / Gradle / Ivy

There is a newer version: 0.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.pig.builtin;


import java.io.IOException;
import java.util.Iterator;
import java.util.Vector;

import org.apache.pig.Algebraic;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.DataBag;
import org.apache.pig.data.DataType;
import org.apache.pig.data.DefaultBagFactory;
import org.apache.pig.data.TupleFactory;
import org.apache.pig.data.Tuple;
import org.apache.pig.impl.logicalLayer.schema.Schema;

/**
* Computes the covariance between sets of data.  The returned value 
* will be a bag which will contain a tuple for each combination of input 
* schema and inside tuple we will have two schema name and covariance between 
* those  two schemas. 
* 
* A = load 'input.xml' using PigStorage(':');
* B = group A all;
* D = foreach B generate group,COV(A.$0,A.$1,A.$2);
*/ public class COV extends EvalFunc implements Algebraic { //name of the schemas. Initialize when user use define protected VectorschemaName = new Vector(); //flag to indicate if define is called or not. private boolean flag = false; public COV(){} public COV(String... schemaName){ for(int i=0;i { @Override public Tuple exec(Tuple input) throws IOException { if (input == null || input.size() == 0) return null; Tuple output = TupleFactory.getInstance().newTuple(); try { for(int i=0;i { @Override public Tuple exec(Tuple input) throws IOException { try{ return combine((DataBag)input.get(0)); }catch(Exception e){ throw new IOException("Caught exception in COV.Intermed", e); } } } public static class Final extends EvalFunc { protected VectorschemaName = new Vector(); boolean flag = false; public Final(){} public Final(String... schemaName){ for(int i=0;i it = values.iterator(); it.hasNext();ct++) { Tuple t = it.next(); try{ tuple.set(ct, t);}catch(Exception e){} } try{ Tuple temp = (Tuple)tuple.get(0); int size = temp.size(); for(int i=0;i iterator_x = first.iterator(); Iterator iterator_y = second.iterator(); try{ while(iterator_x.hasNext()){ double x = (Double)iterator_x.next().get(0); double y = (Double)iterator_y.next().get(0); sum_x_y+=x*y; sum_x+=x; sum_y+=y; } }catch (Exception e){ throw new IOException("Caught exception processing input", e); } Tuple result = TupleFactory.getInstance().newTuple(3); try{ result.set(0, sum_x_y); result.set(1, sum_x); result.set(2, sum_y); }catch(Exception e) { throw new IOException("Caught exception processing result", e); } return result; } @Override public Schema outputSchema(Schema input) { return new Schema(new Schema.FieldSchema(getSchemaName(this.getClass().getName().toLowerCase(), input), DataType.BAG)); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy