All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.pig.builtin.CubeDimensions Maven / Gradle / Ivy

There is a newer version: 0.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.pig.builtin;

import java.io.IOException;
import java.util.List;

import org.apache.pig.EvalFunc;
import org.apache.pig.backend.executionengine.ExecException;
import org.apache.pig.data.BagFactory;
import org.apache.pig.data.DataBag;
import org.apache.pig.data.DataType;
import org.apache.pig.data.Tuple;
import org.apache.pig.data.TupleFactory;
import org.apache.pig.impl.logicalLayer.FrontendException;
import org.apache.pig.impl.logicalLayer.schema.Schema;
import org.apache.pig.impl.logicalLayer.schema.Schema.FieldSchema;

import com.google.common.collect.Lists;

/**
 * Produces a DataBag with all combinations of the argument tuple members
 * as in a data cube. Meaning, (a, b, c) will produce the following bag:
 * 
 * { (a, b, c), (null, null, null), (a, b, null), (a, null, c),
 *   (a, null, null), (null, b, c), (null, null, c), (null, b, null) }
 * 
*

* The "all" marker is null by default, but can be set to an arbitrary string by * invoking a constructor (via a DEFINE). The constructor takes a single argument, * the string you want to represent "all". *

* Usage goes something like this: *

{@code
 * events = load '/logs/events' using EventLoader() as (lang, event, app_id);
 * cubed = foreach x generate
 *   FLATTEN(piggybank.CubeDimensions(lang, event, app_id))
 *     as (lang, event, app_id),
 *   measure;
 * cube = foreach (group cubed
 *                 by (lang, event, app_id) parallel $P)
 *        generate
 *   flatten(group) as (lang, event, app_id),
 *   COUNT_STAR(cubed),
 *   SUM(measure);
 * store cube into 'event_cube';
 * }
*

* Note: doing this with non-algebraic aggregations on large data can result * in very slow reducers, since one of the groups is going to get all the * records in your relation. */ public class CubeDimensions extends EvalFunc { private static BagFactory bf = BagFactory.getInstance(); private static TupleFactory tf = TupleFactory.getInstance(); private final String allMarker; private static final String unknown = "unknown"; public CubeDimensions() { this(null); } public CubeDimensions(String allMarker) { super(); this.allMarker = allMarker; } @Override public DataBag exec(Tuple tuple) throws IOException { List result = Lists.newArrayListWithCapacity((int) Math.pow(2, tuple.size())); convertNullToUnknown(tuple); Tuple newt = tf.newTuple(tuple.size()); recursivelyCube(result, tuple, 0, newt); return bf.newDefaultBag(result); } // if the dimension values contain null then replace it with "unknown" value // since null will be used for rollups public static void convertNullToUnknown(Tuple tuple) throws ExecException { int idx = 0; for(Object obj : tuple.getAll()) { if( (obj == null) ) { tuple.set(idx, unknown); } idx++; } } private void recursivelyCube(List result, Tuple input, int index, Tuple newt) throws ExecException { newt.set(index, input.get(index)); if (index == input.size() - 1 ) { result.add(newt); } else { recursivelyCube(result, input, index + 1, newt); } // tf.newTuple makes a copy. tf.newTupleNoCopy doesn't. Tuple newnewt = tf.newTuple(newt.getAll()); newnewt.set(index, allMarker); if (index == input.size() - 1) { result.add(newnewt); } else { recursivelyCube(result, input, index + 1, newnewt); } } @Override public Schema outputSchema(Schema input) { try { return new Schema(new FieldSchema("dimensions", input, DataType.BAG)); } catch (FrontendException e) { // we are specifying BAG explicitly, so this should not happen. throw new RuntimeException(e); } } @Override public boolean allowCompileTimeCalculation() { return true; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy