All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.rocketmq.common.CountDownLatch2 Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.rocketmq.common;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.AbstractQueuedSynchronizer;

/**
 * Add reset feature for @see java.util.concurrent.CountDownLatch
 */
public class CountDownLatch2 {
    private final Sync sync;

    /**
     * Constructs a {@code CountDownLatch2} initialized with the given count.
     *
     * @param count the number of times {@link #countDown} must be invoked before threads can pass through {@link
     * #await}
     * @throws IllegalArgumentException if {@code count} is negative
     */
    public CountDownLatch2(int count) {
        if (count < 0)
            throw new IllegalArgumentException("count < 0");
        this.sync = new Sync(count);
    }

    /**
     * Causes the current thread to wait until the latch has counted down to
     * zero, unless the thread is {@linkplain Thread#interrupt interrupted}.
     *
     * 

If the current count is zero then this method returns immediately. * *

If the current count is greater than zero then the current * thread becomes disabled for thread scheduling purposes and lies * dormant until one of two things happen: *

    *
  • The count reaches zero due to invocations of the * {@link #countDown} method; or *
  • Some other thread {@linkplain Thread#interrupt interrupts} * the current thread. *
* *

If the current thread: *

    *
  • has its interrupted status set on entry to this method; or *
  • is {@linkplain Thread#interrupt interrupted} while waiting, *
* then {@link InterruptedException} is thrown and the current thread's * interrupted status is cleared. * * @throws InterruptedException if the current thread is interrupted while waiting */ public void await() throws InterruptedException { sync.acquireSharedInterruptibly(1); } /** * Causes the current thread to wait until the latch has counted down to * zero, unless the thread is {@linkplain Thread#interrupt interrupted}, * or the specified waiting time elapses. * *

If the current count is zero then this method returns immediately * with the value {@code true}. * *

If the current count is greater than zero then the current * thread becomes disabled for thread scheduling purposes and lies * dormant until one of three things happen: *

    *
  • The count reaches zero due to invocations of the * {@link #countDown} method; or *
  • Some other thread {@linkplain Thread#interrupt interrupts} * the current thread; or *
  • The specified waiting time elapses. *
* *

If the count reaches zero then the method returns with the * value {@code true}. * *

If the current thread: *

    *
  • has its interrupted status set on entry to this method; or *
  • is {@linkplain Thread#interrupt interrupted} while waiting, *
* then {@link InterruptedException} is thrown and the current thread's * interrupted status is cleared. * *

If the specified waiting time elapses then the value {@code false} * is returned. If the time is less than or equal to zero, the method * will not wait at all. * * @param timeout the maximum time to wait * @param unit the time unit of the {@code timeout} argument * @return {@code true} if the count reached zero and {@code false} if the waiting time elapsed before the count * reached zero * @throws InterruptedException if the current thread is interrupted while waiting */ public boolean await(long timeout, TimeUnit unit) throws InterruptedException { return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout)); } /** * Decrements the count of the latch, releasing all waiting threads if * the count reaches zero. * *

If the current count is greater than zero then it is decremented. * If the new count is zero then all waiting threads are re-enabled for * thread scheduling purposes. * *

If the current count equals zero then nothing happens. */ public void countDown() { sync.releaseShared(1); } /** * Returns the current count. * *

This method is typically used for debugging and testing purposes. * * @return the current count */ public long getCount() { return sync.getCount(); } public void reset() { sync.reset(); } /** * Returns a string identifying this latch, as well as its state. * The state, in brackets, includes the String {@code "Count ="} * followed by the current count. * * @return a string identifying this latch, as well as its state */ public String toString() { return super.toString() + "[Count = " + sync.getCount() + "]"; } /** * Synchronization control For CountDownLatch2. * Uses AQS state to represent count. */ private static final class Sync extends AbstractQueuedSynchronizer { private static final long serialVersionUID = 4982264981922014374L; private final int startCount; Sync(int count) { this.startCount = count; setState(count); } int getCount() { return getState(); } @Override protected int tryAcquireShared(int acquires) { return (getState() == 0) ? 1 : -1; } @Override protected boolean tryReleaseShared(int releases) { // Decrement count; signal when transition to zero for (; ; ) { int c = getState(); if (c == 0) return false; int nextc = c - 1; if (compareAndSetState(c, nextc)) return nextc == 0; } } protected void reset() { setState(startCount); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy