All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.royale.abc.semantics.ECMASupport Maven / Gradle / Ivy

There is a newer version: 0.9.10
Show newest version
/*
 *
 *  Licensed to the Apache Software Foundation (ASF) under one or more
 *  contributor license agreements.  See the NOTICE file distributed with
 *  this work for additional information regarding copyright ownership.
 *  The ASF licenses this file to You under the Apache License, Version 2.0
 *  (the "License"); you may not use this file except in compliance with
 *  the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 */

package org.apache.royale.abc.semantics;

import org.apache.royale.abc.ABCConstants;

import java.math.BigDecimal;
import java.math.MathContext;

/**
 * Provides helper functions for for various operations as specified by ECMA.
 * 
 * @see ECMA 262 spec
 */
public class ECMASupport
{
    private static final long MASK_32_BIT_UINT = 0xffffffffL;
    private static final double TWO_TO_THE_31ST = Math.pow(2, 31);
    private static final double TWO_TO_THE_32ND = Math.pow(2, 32);

    /**
     * The abstract operation ToInt32 converts its argument to one of 2^32
     * integer values in the range -2^31 through 2^31-1, inclusive. This
     * abstract operation functions as follows:
     * 
    *
  1. Let {@code number} be the result of calling ToNumber on the input * argument.
  2. *
  3. If {@code number} is NaN, +0, -0, positive infinity, or negative * infinity, return +0.
  4. *
  5. Let {@code posInt} be {@code sign(number) * floor(abs(number))}.
  6. *
  7. Let {@code int32bit} be {@code posInt modulo 2^ 32}; that is, a * finite integer value k of Number type with positive sign and less than * 2^32 in magnitude such that the mathematical difference of posInt and k * is mathematically an integer multiple of 2^32.
  8. *
  9. If {@code int32bit} is greater than or equal to 2^31, return * {@code int32bit - 2^32}, otherwise return {@code int32bit}.
  10. *
* NOTE Given the above definition of {@code ToInt32}: *
    *
  • The ToInt32 abstract operation is idempotent: if applied to a result * that it produced, the second application leaves that value unchanged.
  • *
  • ToInt32(ToUint32(x)) is equal to ToInt32(x) for all values of x. (It * is to preserve this latter property that positive infinity and negative * infinity are mapped to +0.)
  • *
  • ToInt32 maps -0 to +0.
  • *
* * @param number IEEE number. * @return 32-bit integer. */ public static int toInt32(final double number) { final long int32bit = toUInt32(number); if (int32bit >= TWO_TO_THE_31ST) return (int)(int32bit - TWO_TO_THE_32ND); else return (int)int32bit; } public static int toInt32(final Number number) { return toInt32(number.doubleValue()); } public static int toInt32(final Object value) { return toInt32(toNumeric(value)); } /** * The abstract operation ToUInt32 converts its argument to one of 2^32 * integer values in the range 0 through 2^32-1, inclusive. This abstract * operation functions as follows: *
    *
  1. Let {@code number} be the result of calling ToNumber on the input * argument.
  2. *
  3. If {@code number} is NaN, +0, -0, positive infinity, or negative * infinity, return +0.
  4. *
  5. Let {@code posInt} be {@code sign(number) x floor(abs(number))}.
  6. *
  7. Let {@code int32bit} be {@code posInt modulo 2^ 32}; that is, a * finite integer value k of Number type with positive sign and less than * 2^32 in magnitude such that the mathematical difference of posInt and k * is mathematically an integer multiple of 2^32.
  8. *
  9. Return {@code int32bit}.
  10. *
* NOTE Given the above definition of {@code ToInt32}: *
    *
  • Step 5 is the only difference between {@link #toUInt32(double)} and * {@link #toInt32(double)}.
  • *
  • The ToUint32 abstract operation is idempotent: if applied to a result * that it produced, the second application leaves that value unchanged.
  • *
  • ToUint32 maps -0 to +0.
  • *
* * @param number IEEE number. * @return 32-bit unsigned integer. */ public static long toUInt32(final double number) { final double posInt = toInteger(number); final double int32bit = posInt % TWO_TO_THE_32ND; return (long)int32bit & MASK_32_BIT_UINT; } /** * Version of toUInt32 that operates on Number */ public static long toUInt32(final Number value) { return toUInt32(value.doubleValue()); } /** * Version of toUInt32 that operates on Object */ public static long toUInt32(final Object value) { return toUInt32(toNumeric(value)); } /** * The abstract operation ToInteger converts its argument to an integral * numeric value. This abstract operation functions as follows: *
    *
  1. Let {@code number} be the result of calling ToNumber on the input * argument.
  2. *
  3. If {@code number} is NaN, return +0.
  4. *
  5. If {@code number} is +0, -0, positive infinity, or negative infinity, * return {@code number}.
  6. *
  7. Return the result of computing * {@code sign(number) x floor(abs(number))}.
  8. *
* * @param number IEEE number. * @return ECMA integer stored in a IEEE number. */ public static double toInteger(final double number) { if (isNan(number) || 0 == number || Double.isInfinite(number)) return 0; final double posInt = Math.signum(number) * Math.floor(Math.abs(number)); return posInt; } /** * Converts "anything" to boolean using ECMA algorithm * * @param - Number or String */ public static boolean toBoolean(T value) { assert value != null : "to pass null use ABCConstants.NULL_VALUE"; if (value == ABCConstants.NULL_VALUE) // ECMA: null is always false return false; if (value == ABCConstants.UNDEFINED_VALUE) // ECMA: undefined is always false return false; if (value instanceof Number) return toBoolean((Number)value); if (value instanceof String) return toBoolean((String)value); if (value instanceof Boolean) return (Boolean)value; return true; // ECMA: non-null object is true } /** * Converts a Number to boolean using ECMA algorithm The following rules * apply: *
    *
  1. If number is zero, return false
  2. *
  3. If number is Nan, return false
  4. *
  5. Otherwise, return true
  6. *
*/ public static boolean toBoolean(Number value) { if(isNan(value.doubleValue()) ) return false; return value.doubleValue() != 0; // works for all number types, because even if there is // rounding, != 0 will still be correct } /** * Converts a String to boolean using ECMA algorithm The following rules * apply: *
    *
  1. If value is empty, return false
  2. *
  3. Otherwise, return true
  4. *
*/ public static boolean toBoolean(String value) { return !value.isEmpty(); } /** * Determines is a specific floating poing number is Nan */ public static boolean isNan(final double number) { return Double.isNaN(number); // Luckily ECMA uses the standard IEEE conventions for NaN } /** * The Left Shift Operator ( << ) performs a bitwise left shift operation on * the left operand by the amount specified by the right operand. The * production * {@code ShiftExpression : ShiftExpression << AdditiveExpression} is * evaluated as follows: *
    *
  1. Let lref be the result of evaluating ShiftExpression.
  2. *
  3. Let lval be GetValue(lref).
  4. *
  5. Let rref be the result of evaluating AdditiveExpression.
  6. *
  7. Let rval be GetValue(rref).
  8. *
  9. Let lnum be ToInt32(lval).
  10. *
  11. Let rnum be ToUint32(rval).
  12. *
  13. Let shiftCount be the result of masking out all but the least * significant 5 bits of rnum, that is, compute rnum & 0x1F.
  14. *
  15. Return the result of left shifting lnum by shiftCount bits. The * result is a signed 32-bit integer.
  16. *
* * @param left Value of the left operand. * @param right Value of the right operand. * @return 32-bit signed integer. */ public static int leftShiftOperation(final Number left, final Number right) { final double lval = left.doubleValue(); final double rval = right.doubleValue(); final int lnum = toInt32(lval); final long rnum = toUInt32(rval); final long shiftCount = rnum & 0x1F; return lnum << shiftCount; } /** * Performs a sign-filling bitwise right shift operation on the left operand * by the amount specified by the right operand. The production * {@code ShiftExpression : ShiftExpression >> AdditiveExpression} is * evaluated as follows: *
    *
  1. Let lref be the result of evaluating ShiftExpression.
  2. *
  3. Let lval be GetValue(lref).
  4. *
  5. Let rref be the result of evaluating AdditiveExpression.
  6. *
  7. Let rval be GetValue(rref).
  8. *
  9. Let lnum be ToInt32(lval).
  10. *
  11. Let rnum be ToUint32(rval).
  12. *
  13. Let shiftCount be the result of masking out all but the least * significant 5 bits of rnum, that is, compute rnum & 0x1F.
  14. *
  15. Return the result of performing a sign-extending right shift of lnum * by shiftCount bits. The most significant bit is propagated. The result is * a signed 32-bit integer.
  16. *
* * @param left Value of the left operand. * @param right Value of the right operand. * @return 32-bit signed integer. */ public static int signedRightShiftOperation(final Number left, final Number right) { final double lval = left.doubleValue(); final double rval = right.doubleValue(); final int lnum = toInt32(lval); final long rnum = toUInt32(rval); final long shiftCount = rnum & 0x1F; return lnum >> shiftCount; } /** * Performs a zero-filling bitwise right shift operation on the left operand * by the amount specified by the right operand. The production * {@code ShiftExpression : ShiftExpression >>> AdditiveExpression} is * evaluated as follows: *
    *
  1. Let lref be the result of evaluating ShiftExpression.
  2. *
  3. Let lval be GetValue(lref).
  4. *
  5. Let rref be the result of evaluating AdditiveExpression.
  6. *
  7. Let rval be GetValue(rref).
  8. *
  9. Let lnum be ToUInt32(lval).
  10. *
  11. Let rnum be ToUint32(rval).
  12. *
  13. Let shiftCount be the result of masking out all but the least * significant 5 bits of rnum, that is, compute rnum & 0x1F.
  14. *
  15. Return the result of performing a zero-filling right shift of lnum by * shiftCount bits. Vacated bits are filled with zero. The result is an * unsigned 32-bit integer.
  16. *
* * @param left Value of the left operand. * @param right Value of the right operand. * @return 32-bit unsigned integer. */ public static long unsignedRightShiftOperation(final Number left, final Number right) { final double lval = left.doubleValue(); final double rval = right.doubleValue(); final long lnum = toUInt32(lval); final long rnum = toUInt32(rval); final long shiftCount = rnum & 0x1F; return lnum >>> shiftCount; } /** * Performs the logical and (&&) operation on two objects. The production * {@code LogicalANDExpression : LogicalANDExpression && BitwiseORExpression} * is evaluated as follows: *
    *
  1. Let lref be the result of evaluating LogicalANDExpression.
  2. *
  3. lval be GetValue(lref).
  4. *
  5. If ToBoolean(lval) is false, return lval.
  6. *
  7. Let rref be the result of evaluating BitwiseORExpression.
  8. *
  9. Return GetValue(rref). * * @param is the numeric type of the operands, and the return type * @param left Value of the left operand * @param right Value of the right operand */ public static T logicalAnd(T left, T right) { boolean b = toBoolean(left); return b ? right : left; } /** * Performs the logical or (||) operation on two objects. is evaluated as * follows: *
      *
    1. Let lref be the result of evaluating LogicalANDExpression.
    2. *
    3. lval be GetValue(lref).
    4. *
    5. If ToBoolean(lval) is true, return lval.
    6. *
    7. Let rref be the result of evaluating BitwiseORExpression.
    8. *
    9. Return GetValue(rref). * * @param is the numeric type of the operands, and the return type * @param left Value of the left operand * @param right Value of the right operand */ public static T logicalOr(T left, T right) { boolean b = toBoolean(left); return b ? left : right; } /** * Perform the logical not (!) operation on an object As per the ECMA spec * this is done as follows *
        *
      1. Let expr be the result of evaluating UnaryExpression
      2. *
      3. Let oldValue be ToBoolean(GetValue(expr)).
      4. *
      5. If oldValue is true, return false.
      6. *
      7. Return true.
      8. *
      * * @param is the numeric type of the operand * @param e is the operand */ public static boolean logicalNot(T e) { return !toBoolean(e); } /** * Implement the ECMA ToNumber (ECMA 262, 3rd Edition section 9.3) algorithm. This will convert any value * into a numeric value.. * * @param value the value to convert * @return the numeric representation of the value, as specified by the ToNumber algorithm */ public static Number toNumeric(T value) { if( value == ABCConstants.UNDEFINED_VALUE ) return Double.NaN; if( value == ABCConstants.NULL_VALUE ) return 0; if( value instanceof Number ) return (Number)value; if( value instanceof Boolean ) return toNumeric((Boolean) value); if( value instanceof String ) return toNumeric((String) value); return null; } /** * Implement ToNumber for boolean values - ECMA 262, 3rd edition section 9.3 */ private static int toNumeric (Boolean value) { return ((Boolean)value).booleanValue() ? 1 : 0; } /** * trim according to ECMA - will get rid of escaped unicode characters * that java's trim does not remove * * For use when converting Strings -> Number */ private static String numberTrim(String str) { StringBuilder buf = new StringBuilder(); for (int i=0; i=0; i--) { Character c = str.charAt(i); if (Character.isWhitespace(c)) { continue; } buf.append(c); } str = new String(buf.reverse()); return str; } /** * Implement ToNumber for string values - ECMA 262, 3rd edition section 9.3.1 */ private static Number toNumeric(String str ) { double sign[] = new double[1]; str = numberTrim(str); str = numberSign(str, sign); double num; if (str.equals("")) { num = 0; } else if (str.equals("Infinity")) { if (sign[0] > 0) { num = Double.POSITIVE_INFINITY; } else { num = Double.NEGATIVE_INFINITY; } } else if (str.equals("NaN")) { num = Double.NaN; } else if (str.startsWith("0x") || str.startsWith("0X")) { try { num = sign[0] * Long.valueOf(str.substring(2), 16); } catch (NumberFormatException e) { num = Double.NaN; } } else { if (!Character.isDigit(str.charAt(str.length()-1)) && str.charAt(str.length()-1) != '.') { // localization? num = Double.NaN; // "1f" "1F" "1d" "1D" are all NaN in AS3 } else { try { num = sign[0] * Double.valueOf(str); } catch (NumberFormatException e) { num = Double.NaN; } } } return num; } /** * Helper method for converting strings to numbers - strips off any leaving '-' or '+' characters * and determines what the sign of the number should be */ private static String numberSign(String str, double[] num) { if(str.length() == 0) { num[0] = +1; } else if (str.equals("-") || str.equals("+")) { num[0] = 0; // leave it alone, to produce NaN later } else if(str.startsWith("-")) { num[0] = -1; str = str.substring(1); } else if(str.startsWith("+")) { num[0] = +1; str = str.substring(1); } else { num[0] = +1; } return str; } /** * Implement equality of numbers - see ECMA 262 3d Edition, section 11.9.3 * @param l the left number * @param r the right number * @return true if the numbers are equal according to the ECMA spec */ public static boolean equals(Number l, Number r) { // NaN is not equal to anything, not even itself double lDouble = l.doubleValue(); if( Double.isNaN(lDouble) ) return false; return lDouble == r.doubleValue(); } /** * Implement equality of strings - see ECMA 262 3d Edition, section 11.9.3 * @param l the left string * @param r the right string * @return true if the strings are equal according to the ECMA spec */ public static boolean equals(String l, String r) { return l.equals(r); } /** * Implement equality of booleans - see ECMA 262 3d Edition, section 11.9.3 * @param l the left boolean * @param r the right boolean * @return true if the booleans are equal according to the ECMA spec */ public static boolean equals(Boolean l, Boolean r) { return l.equals(r); } /** * Implement the Abstract Equality Comparison algorithm - see ECMA 262 3d Edition, section 11.9.3 * @param l the left value * @param r the right value * @return true if the value are equal according to the ECMA spec */ public static boolean equals(Object l, Object r) { ECMAType leftType = getType(l); ECMAType rightType = getType(r); if( leftType == rightType) { switch (leftType) { case Boolean: return equals((Boolean)l, (Boolean)r); case Number: return equals((Number)l, (Number)r); case String: return equals((String)l, (String)r); case Null: return true; case Undefined: return true; } } if( l == r ) return true; switch (leftType) { case Boolean: return equals(toNumeric((Boolean)l), r); case Number: if( rightType == ECMAType.String ) return equals((Number)l, toNumeric((String)r)); break; case String: if( rightType == ECMAType.Number ) return equals(toNumeric((String)l), (Number)r); break; case Null: if( rightType == ECMAType.Undefined ) return true; break; case Undefined: if( rightType == ECMAType.Null ) return true; break; } if( rightType == ECMAType.Boolean ) return equals(l, toNumeric((Boolean)r)); return false; } /** * Implement the strict equality comparison algorithm - see ECMA 262 3d Edition, section 11.9.6 * * Used for '===', '!==', etc. * * @param l the left value * @param r the right value * @return true if the values are equal according to the ECMA spec */ public static boolean strictEquals(Object l, Object r) { ECMAType leftType = getType(l); ECMAType rightType = getType(r); if( leftType == rightType) { switch (leftType) { case Boolean: return equals((Boolean)l, (Boolean)r); case Number: return equals((Number)l, (Number)r); case String: return equals((String)l, (String)r); case Null: return true; case Undefined: return true; } } return false; } /** * Helper method for the comparison methods - return an enum representing the type * of the value to avoid lots of if( instanceof ) checking. */ private static ECMAType getType(Object o) { if( o instanceof String ) return ECMAType.String; if( o instanceof Number ) return ECMAType.Number; if( o instanceof Boolean ) return ECMAType.Boolean; if( o == ABCConstants.NULL_VALUE ) return ECMAType.Null; if( o == ABCConstants.UNDEFINED_VALUE ) return ECMAType.Undefined; assert false : "unknown constant type"; return null; } /** * Enum to represent the various ECMA types we may be folding */ private static enum ECMAType { Boolean, Number, String, Null, Undefined } /** * Implement the abstract relational comparison algorithm - see ECMA 262 3rd edition, section 11.8.5 * * less than, greater than, etc are implement in terms of this algorithm * @param l the first value to compare * @param r the second value to compare * @return true, false, or java null (which means at least one operand was NaN) */ private static Boolean relationalCompare(Object l, Object r) { ECMAType lType = getType(l); ECMAType rType = getType(r); if (lType == ECMAType.String && rType == ECMAType.String ) return relationalCompare((String)l, (String)r); return relationalCompare(toNumeric(l), toNumeric(r)); } /** * Specialized relational compare method for String. */ private static Boolean relationalCompare(String l, String r) { if( l.compareTo(r) < 0 ) return true; return false; } /** * Specialized relational compare method for Numbers. */ private static Boolean relationalCompare(Number l, Number r) { double lVal = l.doubleValue(); double rVal = r.doubleValue(); if( isNan(lVal) || isNan(rVal) ) return null; return lVal < rVal; } /** * ECMA less-than operator - ECMA 262 3rd edition, section 11.8.1 */ public static boolean lessThan(Number l, Number r) { Boolean res = relationalCompare(l, r); if( res == null ) return false; return res; } /** * ECMA less-than operator - ECMA 262 3rd edition, section 11.8.1 */ public static boolean lessThan(Object l, Object r) { Boolean res = relationalCompare(l, r); if( res == null ) return false; return res; } /** * ECMA less-than-or-equal operator - ECMA 262 3rd edition, section 11.8.3 */ public static boolean lessThanEquals(Number l, Number r) { Boolean res = relationalCompare(r, l); if( res == null || res == true ) return false; return true; } /** * ECMA less-than-or-equal operator - ECMA 262 3rd edition, section 11.8.3 */ public static boolean lessThanEquals(Object l, Object r) { Boolean res = relationalCompare(r, l); if( res == null || res == true) return false; return true; } /** * ECMA greater-than - ECMA 262 3rd edition, section 11.8.2 */ public static boolean greaterThan(Number l, Number r) { Boolean res = relationalCompare(r, l); if( res == null ) return false; return res; } /** * ECMA greater-than - ECMA 262 3rd edition, section 11.8.2 */ public static boolean greaterThan(Object l, Object r) { Boolean res = relationalCompare(r, l); if( res == null ) return false; return res; } /** * ECMA greater-than-or-equal operator - ECMA 262 3rd edition, section 11.8.4 */ public static boolean greaterThanEquals(Number l, Number r) { Boolean res = relationalCompare(l, r); if( res == null || res == true ) return false; return true; } /** * ECMA greater-than-or-equal operator - ECMA 262 3rd edition, section 11.8.4 */ public static boolean greaterThanEquals(Object l, Object r) { Boolean res = relationalCompare(l, r); if( res == null || res == true) return false; return true; } /** * Implement the ECMA ToString algorithm - ECMA 262 3rd edition, section 9.8 * @param o the value to convert to a String * @return the String representation of the value */ public static String toString(Object o) { if( o instanceof String ) return (String)o; if( o instanceof Double ) return toString((Double) o); if( o instanceof Integer ) return toString((Integer)o); if( o instanceof Long ) return toString((Long)o); if( o instanceof Boolean ) return toString((Boolean)o); if( o == ABCConstants.NULL_VALUE ) return "null"; if( o == ABCConstants.UNDEFINED_VALUE ) return "undefined"; return null; } /** * Implement the ECMA ToString algorithm - ECMA 262 3rd edition, section 9.8.1 */ public static String toString(Double d) { String str = ""; if (d.isNaN() || d.isInfinite()) { str = "" + d; } else { // machinations for getting formatting to match AVM BigDecimal bd = new BigDecimal(d.doubleValue()).round(MathContext.DECIMAL64).stripTrailingZeros(); // BigDecimal bd = new BigDecimal(d.doubleValue()).round(new MathContext(15asc , RoundingMode.DOWN)).stripTrailingZeros(); //out.println("dval="+dval+" bd="+bd+" scale="+bd.scale()+" prec="+bd.precision()); if (bd.scale() < 0 && bd.scale() > -21) { bd = bd.setScale(0); } str = "" + bd; str = str.replaceFirst("E", "e"); } return str; } /** * Specialized toString for ints - ECMA 262 3rd edition, section 9.8.1 */ public static String toString(Integer i) { return "" + new BigDecimal(i); } /** * Specialized toString for uint's - ECMA 262 3rd edition, section 9.8.1 */ public static String toString(Long i) { return "" + new BigDecimal(i); } /** * Specialized toString for booleans - ECMA 262 3rd edition, section 9.8 */ public static String toString(Boolean b) { if( b.booleanValue() ) return "true"; return "false"; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy