All Downloads are FREE. Search and download functionalities are using the official Maven repository.

co.elastic.clients.elasticsearch.ml.ElasticsearchMlAsyncClient Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to Elasticsearch B.V. under one or more contributor
 * license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright
 * ownership. Elasticsearch B.V. licenses this file to you under
 * the Apache License, Version 2.0 (the "License"); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package co.elastic.clients.elasticsearch.ml;

import co.elastic.clients.ApiClient;
import co.elastic.clients.elasticsearch._types.ErrorResponse;
import co.elastic.clients.transport.ElasticsearchTransport;
import co.elastic.clients.transport.Endpoint;
import co.elastic.clients.transport.JsonEndpoint;
import co.elastic.clients.transport.Transport;
import co.elastic.clients.transport.TransportOptions;
import co.elastic.clients.transport.endpoints.EndpointWithResponseMapperAttr;
import co.elastic.clients.util.ObjectBuilder;
import java.lang.reflect.Type;
import java.util.concurrent.CompletableFuture;
import java.util.function.Function;
import javax.annotation.Nullable;

//----------------------------------------------------------------
//       THIS CODE IS GENERATED. MANUAL EDITS WILL BE LOST.
//----------------------------------------------------------------
//
// This code is generated from the Elasticsearch API specification
// at https://github.com/elastic/elasticsearch-specification
//
// Manual updates to this file will be lost when the code is
// re-generated.
//
// If you find a property that is missing or wrongly typed, please
// open an issue or a PR on the API specification repository.
//
//----------------------------------------------------------------

/**
 * Client for the ml namespace.
 */
public class ElasticsearchMlAsyncClient extends ApiClient {

	public ElasticsearchMlAsyncClient(ElasticsearchTransport transport) {
		super(transport, null);
	}

	public ElasticsearchMlAsyncClient(ElasticsearchTransport transport, @Nullable TransportOptions transportOptions) {
		super(transport, transportOptions);
	}

	@Override
	public ElasticsearchMlAsyncClient withTransportOptions(@Nullable TransportOptions transportOptions) {
		return new ElasticsearchMlAsyncClient(this.transport, transportOptions);
	}

	// ----- Endpoint: ml.clear_trained_model_deployment_cache

	/**
	 * Clear trained model deployment cache.
	 * 

* Cache will be cleared on all nodes where the trained model is assigned. A * trained model deployment may have an inference cache enabled. As requests are * handled by each allocated node, their responses may be cached on that * individual node. Calling this API clears the caches without restarting the * deployment. * * @see Documentation * on elastic.co */ public CompletableFuture clearTrainedModelDeploymentCache( ClearTrainedModelDeploymentCacheRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) ClearTrainedModelDeploymentCacheRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Clear trained model deployment cache. *

* Cache will be cleared on all nodes where the trained model is assigned. A * trained model deployment may have an inference cache enabled. As requests are * handled by each allocated node, their responses may be cached on that * individual node. Calling this API clears the caches without restarting the * deployment. * * @param fn * a function that initializes a builder to create the * {@link ClearTrainedModelDeploymentCacheRequest} * @see Documentation * on elastic.co */ public final CompletableFuture clearTrainedModelDeploymentCache( Function> fn) { return clearTrainedModelDeploymentCache( fn.apply(new ClearTrainedModelDeploymentCacheRequest.Builder()).build()); } // ----- Endpoint: ml.close_job /** * Close anomaly detection jobs. *

* A job can be opened and closed multiple times throughout its lifecycle. A * closed job cannot receive data or perform analysis operations, but you can * still explore and navigate results. When you close a job, it runs * housekeeping tasks such as pruning the model history, flushing buffers, * calculating final results and persisting the model snapshots. Depending upon * the size of the job, it could take several minutes to close and the * equivalent time to re-open. After it is closed, the job has a minimal * overhead on the cluster except for maintaining its meta data. Therefore it is * a best practice to close jobs that are no longer required to process data. If * you close an anomaly detection job whose datafeed is running, the request * first tries to stop the datafeed. This behavior is equivalent to calling stop * datafeed API with the same timeout and force parameters as the close job * request. When a datafeed that has a specified end date stops, it * automatically closes its associated job. * * @see Documentation * on elastic.co */ public CompletableFuture closeJob(CloseJobRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) CloseJobRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Close anomaly detection jobs. *

* A job can be opened and closed multiple times throughout its lifecycle. A * closed job cannot receive data or perform analysis operations, but you can * still explore and navigate results. When you close a job, it runs * housekeeping tasks such as pruning the model history, flushing buffers, * calculating final results and persisting the model snapshots. Depending upon * the size of the job, it could take several minutes to close and the * equivalent time to re-open. After it is closed, the job has a minimal * overhead on the cluster except for maintaining its meta data. Therefore it is * a best practice to close jobs that are no longer required to process data. If * you close an anomaly detection job whose datafeed is running, the request * first tries to stop the datafeed. This behavior is equivalent to calling stop * datafeed API with the same timeout and force parameters as the close job * request. When a datafeed that has a specified end date stops, it * automatically closes its associated job. * * @param fn * a function that initializes a builder to create the * {@link CloseJobRequest} * @see Documentation * on elastic.co */ public final CompletableFuture closeJob( Function> fn) { return closeJob(fn.apply(new CloseJobRequest.Builder()).build()); } // ----- Endpoint: ml.delete_calendar /** * Delete a calendar. *

* Remove all scheduled events from a calendar, then delete it. * * @see Documentation * on elastic.co */ public CompletableFuture deleteCalendar(DeleteCalendarRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) DeleteCalendarRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Delete a calendar. *

* Remove all scheduled events from a calendar, then delete it. * * @param fn * a function that initializes a builder to create the * {@link DeleteCalendarRequest} * @see Documentation * on elastic.co */ public final CompletableFuture deleteCalendar( Function> fn) { return deleteCalendar(fn.apply(new DeleteCalendarRequest.Builder()).build()); } // ----- Endpoint: ml.delete_calendar_event /** * Delete events from a calendar. * * @see Documentation * on elastic.co */ public CompletableFuture deleteCalendarEvent(DeleteCalendarEventRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) DeleteCalendarEventRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Delete events from a calendar. * * @param fn * a function that initializes a builder to create the * {@link DeleteCalendarEventRequest} * @see Documentation * on elastic.co */ public final CompletableFuture deleteCalendarEvent( Function> fn) { return deleteCalendarEvent(fn.apply(new DeleteCalendarEventRequest.Builder()).build()); } // ----- Endpoint: ml.delete_calendar_job /** * Delete anomaly jobs from a calendar. * * @see Documentation * on elastic.co */ public CompletableFuture deleteCalendarJob(DeleteCalendarJobRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) DeleteCalendarJobRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Delete anomaly jobs from a calendar. * * @param fn * a function that initializes a builder to create the * {@link DeleteCalendarJobRequest} * @see Documentation * on elastic.co */ public final CompletableFuture deleteCalendarJob( Function> fn) { return deleteCalendarJob(fn.apply(new DeleteCalendarJobRequest.Builder()).build()); } // ----- Endpoint: ml.delete_data_frame_analytics /** * Delete a data frame analytics job. * * @see Documentation * on elastic.co */ public CompletableFuture deleteDataFrameAnalytics( DeleteDataFrameAnalyticsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) DeleteDataFrameAnalyticsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Delete a data frame analytics job. * * @param fn * a function that initializes a builder to create the * {@link DeleteDataFrameAnalyticsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture deleteDataFrameAnalytics( Function> fn) { return deleteDataFrameAnalytics(fn.apply(new DeleteDataFrameAnalyticsRequest.Builder()).build()); } // ----- Endpoint: ml.delete_datafeed /** * Delete a datafeed. * * @see Documentation * on elastic.co */ public CompletableFuture deleteDatafeed(DeleteDatafeedRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) DeleteDatafeedRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Delete a datafeed. * * @param fn * a function that initializes a builder to create the * {@link DeleteDatafeedRequest} * @see Documentation * on elastic.co */ public final CompletableFuture deleteDatafeed( Function> fn) { return deleteDatafeed(fn.apply(new DeleteDatafeedRequest.Builder()).build()); } // ----- Endpoint: ml.delete_expired_data /** * Delete expired ML data. *

* Delete all job results, model snapshots and forecast data that have exceeded * their retention days period. Machine learning state documents that are not * associated with any job are also deleted. You can limit the request to a * single or set of anomaly detection jobs by using a job identifier, a group * name, a comma-separated list of jobs, or a wildcard expression. You can * delete expired data for all anomaly detection jobs by using * _all, by specifying * as the * <job_id>, or by omitting the <job_id>. * * @see Documentation * on elastic.co */ public CompletableFuture deleteExpiredData(DeleteExpiredDataRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) DeleteExpiredDataRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Delete expired ML data. *

* Delete all job results, model snapshots and forecast data that have exceeded * their retention days period. Machine learning state documents that are not * associated with any job are also deleted. You can limit the request to a * single or set of anomaly detection jobs by using a job identifier, a group * name, a comma-separated list of jobs, or a wildcard expression. You can * delete expired data for all anomaly detection jobs by using * _all, by specifying * as the * <job_id>, or by omitting the <job_id>. * * @param fn * a function that initializes a builder to create the * {@link DeleteExpiredDataRequest} * @see Documentation * on elastic.co */ public final CompletableFuture deleteExpiredData( Function> fn) { return deleteExpiredData(fn.apply(new DeleteExpiredDataRequest.Builder()).build()); } /** * Delete expired ML data. *

* Delete all job results, model snapshots and forecast data that have exceeded * their retention days period. Machine learning state documents that are not * associated with any job are also deleted. You can limit the request to a * single or set of anomaly detection jobs by using a job identifier, a group * name, a comma-separated list of jobs, or a wildcard expression. You can * delete expired data for all anomaly detection jobs by using * _all, by specifying * as the * <job_id>, or by omitting the <job_id>. * * @see Documentation * on elastic.co */ public CompletableFuture deleteExpiredData() { return this.transport.performRequestAsync(new DeleteExpiredDataRequest.Builder().build(), DeleteExpiredDataRequest._ENDPOINT, this.transportOptions); } // ----- Endpoint: ml.delete_filter /** * Delete a filter. *

* If an anomaly detection job references the filter, you cannot delete the * filter. You must update or delete the job before you can delete the filter. * * @see Documentation * on elastic.co */ public CompletableFuture deleteFilter(DeleteFilterRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) DeleteFilterRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Delete a filter. *

* If an anomaly detection job references the filter, you cannot delete the * filter. You must update or delete the job before you can delete the filter. * * @param fn * a function that initializes a builder to create the * {@link DeleteFilterRequest} * @see Documentation * on elastic.co */ public final CompletableFuture deleteFilter( Function> fn) { return deleteFilter(fn.apply(new DeleteFilterRequest.Builder()).build()); } // ----- Endpoint: ml.delete_forecast /** * Delete forecasts from a job. *

* By default, forecasts are retained for 14 days. You can specify a different * retention period with the expires_in parameter in the forecast * jobs API. The delete forecast API enables you to delete one or more forecasts * before they expire. * * @see Documentation * on elastic.co */ public CompletableFuture deleteForecast(DeleteForecastRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) DeleteForecastRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Delete forecasts from a job. *

* By default, forecasts are retained for 14 days. You can specify a different * retention period with the expires_in parameter in the forecast * jobs API. The delete forecast API enables you to delete one or more forecasts * before they expire. * * @param fn * a function that initializes a builder to create the * {@link DeleteForecastRequest} * @see Documentation * on elastic.co */ public final CompletableFuture deleteForecast( Function> fn) { return deleteForecast(fn.apply(new DeleteForecastRequest.Builder()).build()); } // ----- Endpoint: ml.delete_job /** * Delete an anomaly detection job. *

* All job configuration, model state and results are deleted. It is not * currently possible to delete multiple jobs using wildcards or a comma * separated list. If you delete a job that has a datafeed, the request first * tries to delete the datafeed. This behavior is equivalent to calling the * delete datafeed API with the same timeout and force parameters as the delete * job request. * * @see Documentation * on elastic.co */ public CompletableFuture deleteJob(DeleteJobRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) DeleteJobRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Delete an anomaly detection job. *

* All job configuration, model state and results are deleted. It is not * currently possible to delete multiple jobs using wildcards or a comma * separated list. If you delete a job that has a datafeed, the request first * tries to delete the datafeed. This behavior is equivalent to calling the * delete datafeed API with the same timeout and force parameters as the delete * job request. * * @param fn * a function that initializes a builder to create the * {@link DeleteJobRequest} * @see Documentation * on elastic.co */ public final CompletableFuture deleteJob( Function> fn) { return deleteJob(fn.apply(new DeleteJobRequest.Builder()).build()); } // ----- Endpoint: ml.delete_model_snapshot /** * Delete a model snapshot. *

* You cannot delete the active model snapshot. To delete that snapshot, first * revert to a different one. To identify the active model snapshot, refer to * the model_snapshot_id in the results from the get jobs API. * * @see Documentation * on elastic.co */ public CompletableFuture deleteModelSnapshot(DeleteModelSnapshotRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) DeleteModelSnapshotRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Delete a model snapshot. *

* You cannot delete the active model snapshot. To delete that snapshot, first * revert to a different one. To identify the active model snapshot, refer to * the model_snapshot_id in the results from the get jobs API. * * @param fn * a function that initializes a builder to create the * {@link DeleteModelSnapshotRequest} * @see Documentation * on elastic.co */ public final CompletableFuture deleteModelSnapshot( Function> fn) { return deleteModelSnapshot(fn.apply(new DeleteModelSnapshotRequest.Builder()).build()); } // ----- Endpoint: ml.delete_trained_model /** * Delete an unreferenced trained model. *

* The request deletes a trained inference model that is not referenced by an * ingest pipeline. * * @see Documentation * on elastic.co */ public CompletableFuture deleteTrainedModel(DeleteTrainedModelRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) DeleteTrainedModelRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Delete an unreferenced trained model. *

* The request deletes a trained inference model that is not referenced by an * ingest pipeline. * * @param fn * a function that initializes a builder to create the * {@link DeleteTrainedModelRequest} * @see Documentation * on elastic.co */ public final CompletableFuture deleteTrainedModel( Function> fn) { return deleteTrainedModel(fn.apply(new DeleteTrainedModelRequest.Builder()).build()); } // ----- Endpoint: ml.delete_trained_model_alias /** * Delete a trained model alias. *

* This API deletes an existing model alias that refers to a trained model. If * the model alias is missing or refers to a model other than the one identified * by the model_id, this API returns an error. * * @see Documentation * on elastic.co */ public CompletableFuture deleteTrainedModelAlias( DeleteTrainedModelAliasRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) DeleteTrainedModelAliasRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Delete a trained model alias. *

* This API deletes an existing model alias that refers to a trained model. If * the model alias is missing or refers to a model other than the one identified * by the model_id, this API returns an error. * * @param fn * a function that initializes a builder to create the * {@link DeleteTrainedModelAliasRequest} * @see Documentation * on elastic.co */ public final CompletableFuture deleteTrainedModelAlias( Function> fn) { return deleteTrainedModelAlias(fn.apply(new DeleteTrainedModelAliasRequest.Builder()).build()); } // ----- Endpoint: ml.estimate_model_memory /** * Estimate job model memory usage. *

* Make an estimation of the memory usage for an anomaly detection job model. * The estimate is based on analysis configuration details for the job and * cardinality estimates for the fields it references. * * @see Documentation * on elastic.co */ public CompletableFuture estimateModelMemory(EstimateModelMemoryRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) EstimateModelMemoryRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Estimate job model memory usage. *

* Make an estimation of the memory usage for an anomaly detection job model. * The estimate is based on analysis configuration details for the job and * cardinality estimates for the fields it references. * * @param fn * a function that initializes a builder to create the * {@link EstimateModelMemoryRequest} * @see Documentation * on elastic.co */ public final CompletableFuture estimateModelMemory( Function> fn) { return estimateModelMemory(fn.apply(new EstimateModelMemoryRequest.Builder()).build()); } /** * Estimate job model memory usage. *

* Make an estimation of the memory usage for an anomaly detection job model. * The estimate is based on analysis configuration details for the job and * cardinality estimates for the fields it references. * * @see Documentation * on elastic.co */ public CompletableFuture estimateModelMemory() { return this.transport.performRequestAsync(new EstimateModelMemoryRequest.Builder().build(), EstimateModelMemoryRequest._ENDPOINT, this.transportOptions); } // ----- Endpoint: ml.evaluate_data_frame /** * Evaluate data frame analytics. *

* The API packages together commonly used evaluation metrics for various types * of machine learning features. This has been designed for use on indexes * created by data frame analytics. Evaluation requires both a ground truth * field and an analytics result field to be present. * * @see Documentation * on elastic.co */ public CompletableFuture evaluateDataFrame(EvaluateDataFrameRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) EvaluateDataFrameRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Evaluate data frame analytics. *

* The API packages together commonly used evaluation metrics for various types * of machine learning features. This has been designed for use on indexes * created by data frame analytics. Evaluation requires both a ground truth * field and an analytics result field to be present. * * @param fn * a function that initializes a builder to create the * {@link EvaluateDataFrameRequest} * @see Documentation * on elastic.co */ public final CompletableFuture evaluateDataFrame( Function> fn) { return evaluateDataFrame(fn.apply(new EvaluateDataFrameRequest.Builder()).build()); } // ----- Endpoint: ml.explain_data_frame_analytics /** * Explain data frame analytics config. *

* This API provides explanations for a data frame analytics config that either * exists already or one that has not been created yet. The following * explanations are provided: *

    *
  • which fields are included or not in the analysis and why,
  • *
  • how much memory is estimated to be required. The estimate can be used * when deciding the appropriate value for model_memory_limit setting later on. * If you have object fields or fields that are excluded via source filtering, * they are not included in the explanation.
  • *
* * @see Documentation * on elastic.co */ public CompletableFuture explainDataFrameAnalytics( ExplainDataFrameAnalyticsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) ExplainDataFrameAnalyticsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Explain data frame analytics config. *

* This API provides explanations for a data frame analytics config that either * exists already or one that has not been created yet. The following * explanations are provided: *

    *
  • which fields are included or not in the analysis and why,
  • *
  • how much memory is estimated to be required. The estimate can be used * when deciding the appropriate value for model_memory_limit setting later on. * If you have object fields or fields that are excluded via source filtering, * they are not included in the explanation.
  • *
* * @param fn * a function that initializes a builder to create the * {@link ExplainDataFrameAnalyticsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture explainDataFrameAnalytics( Function> fn) { return explainDataFrameAnalytics(fn.apply(new ExplainDataFrameAnalyticsRequest.Builder()).build()); } /** * Explain data frame analytics config. *

* This API provides explanations for a data frame analytics config that either * exists already or one that has not been created yet. The following * explanations are provided: *

    *
  • which fields are included or not in the analysis and why,
  • *
  • how much memory is estimated to be required. The estimate can be used * when deciding the appropriate value for model_memory_limit setting later on. * If you have object fields or fields that are excluded via source filtering, * they are not included in the explanation.
  • *
* * @see Documentation * on elastic.co */ public CompletableFuture explainDataFrameAnalytics() { return this.transport.performRequestAsync(new ExplainDataFrameAnalyticsRequest.Builder().build(), ExplainDataFrameAnalyticsRequest._ENDPOINT, this.transportOptions); } // ----- Endpoint: ml.flush_job /** * Force buffered data to be processed. The flush jobs API is only applicable * when sending data for analysis using the post data API. Depending on the * content of the buffer, then it might additionally calculate new results. Both * flush and close operations are similar, however the flush is more efficient * if you are expecting to send more data for analysis. When flushing, the job * remains open and is available to continue analyzing data. A close operation * additionally prunes and persists the model state to disk and the job must be * opened again before analyzing further data. * * @see Documentation * on elastic.co */ public CompletableFuture flushJob(FlushJobRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) FlushJobRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Force buffered data to be processed. The flush jobs API is only applicable * when sending data for analysis using the post data API. Depending on the * content of the buffer, then it might additionally calculate new results. Both * flush and close operations are similar, however the flush is more efficient * if you are expecting to send more data for analysis. When flushing, the job * remains open and is available to continue analyzing data. A close operation * additionally prunes and persists the model state to disk and the job must be * opened again before analyzing further data. * * @param fn * a function that initializes a builder to create the * {@link FlushJobRequest} * @see Documentation * on elastic.co */ public final CompletableFuture flushJob( Function> fn) { return flushJob(fn.apply(new FlushJobRequest.Builder()).build()); } // ----- Endpoint: ml.forecast /** * Predict future behavior of a time series. *

* Forecasts are not supported for jobs that perform population analysis; an * error occurs if you try to create a forecast for a job that has an * over_field_name in its configuration. Forcasts predict future * behavior based on historical data. * * @see Documentation * on elastic.co */ public CompletableFuture forecast(ForecastRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) ForecastRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Predict future behavior of a time series. *

* Forecasts are not supported for jobs that perform population analysis; an * error occurs if you try to create a forecast for a job that has an * over_field_name in its configuration. Forcasts predict future * behavior based on historical data. * * @param fn * a function that initializes a builder to create the * {@link ForecastRequest} * @see Documentation * on elastic.co */ public final CompletableFuture forecast( Function> fn) { return forecast(fn.apply(new ForecastRequest.Builder()).build()); } // ----- Endpoint: ml.get_buckets /** * Get anomaly detection job results for buckets. The API presents a * chronological view of the records, grouped by bucket. * * @see Documentation * on elastic.co */ public CompletableFuture getBuckets(GetBucketsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetBucketsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get anomaly detection job results for buckets. The API presents a * chronological view of the records, grouped by bucket. * * @param fn * a function that initializes a builder to create the * {@link GetBucketsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getBuckets( Function> fn) { return getBuckets(fn.apply(new GetBucketsRequest.Builder()).build()); } // ----- Endpoint: ml.get_calendar_events /** * Get info about events in calendars. * * @see Documentation * on elastic.co */ public CompletableFuture getCalendarEvents(GetCalendarEventsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetCalendarEventsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get info about events in calendars. * * @param fn * a function that initializes a builder to create the * {@link GetCalendarEventsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getCalendarEvents( Function> fn) { return getCalendarEvents(fn.apply(new GetCalendarEventsRequest.Builder()).build()); } // ----- Endpoint: ml.get_calendars /** * Get calendar configuration info. * * @see Documentation * on elastic.co */ public CompletableFuture getCalendars(GetCalendarsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetCalendarsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get calendar configuration info. * * @param fn * a function that initializes a builder to create the * {@link GetCalendarsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getCalendars( Function> fn) { return getCalendars(fn.apply(new GetCalendarsRequest.Builder()).build()); } /** * Get calendar configuration info. * * @see Documentation * on elastic.co */ public CompletableFuture getCalendars() { return this.transport.performRequestAsync(new GetCalendarsRequest.Builder().build(), GetCalendarsRequest._ENDPOINT, this.transportOptions); } // ----- Endpoint: ml.get_categories /** * Get anomaly detection job results for categories. * * @see Documentation * on elastic.co */ public CompletableFuture getCategories(GetCategoriesRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetCategoriesRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get anomaly detection job results for categories. * * @param fn * a function that initializes a builder to create the * {@link GetCategoriesRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getCategories( Function> fn) { return getCategories(fn.apply(new GetCategoriesRequest.Builder()).build()); } // ----- Endpoint: ml.get_data_frame_analytics /** * Get data frame analytics job configuration info. You can get information for * multiple data frame analytics jobs in a single API request by using a * comma-separated list of data frame analytics jobs or a wildcard expression. * * @see Documentation * on elastic.co */ public CompletableFuture getDataFrameAnalytics( GetDataFrameAnalyticsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetDataFrameAnalyticsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get data frame analytics job configuration info. You can get information for * multiple data frame analytics jobs in a single API request by using a * comma-separated list of data frame analytics jobs or a wildcard expression. * * @param fn * a function that initializes a builder to create the * {@link GetDataFrameAnalyticsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getDataFrameAnalytics( Function> fn) { return getDataFrameAnalytics(fn.apply(new GetDataFrameAnalyticsRequest.Builder()).build()); } /** * Get data frame analytics job configuration info. You can get information for * multiple data frame analytics jobs in a single API request by using a * comma-separated list of data frame analytics jobs or a wildcard expression. * * @see Documentation * on elastic.co */ public CompletableFuture getDataFrameAnalytics() { return this.transport.performRequestAsync(new GetDataFrameAnalyticsRequest.Builder().build(), GetDataFrameAnalyticsRequest._ENDPOINT, this.transportOptions); } // ----- Endpoint: ml.get_data_frame_analytics_stats /** * Get data frame analytics job stats. * * @see Documentation * on elastic.co */ public CompletableFuture getDataFrameAnalyticsStats( GetDataFrameAnalyticsStatsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetDataFrameAnalyticsStatsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get data frame analytics job stats. * * @param fn * a function that initializes a builder to create the * {@link GetDataFrameAnalyticsStatsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getDataFrameAnalyticsStats( Function> fn) { return getDataFrameAnalyticsStats(fn.apply(new GetDataFrameAnalyticsStatsRequest.Builder()).build()); } /** * Get data frame analytics job stats. * * @see Documentation * on elastic.co */ public CompletableFuture getDataFrameAnalyticsStats() { return this.transport.performRequestAsync(new GetDataFrameAnalyticsStatsRequest.Builder().build(), GetDataFrameAnalyticsStatsRequest._ENDPOINT, this.transportOptions); } // ----- Endpoint: ml.get_datafeed_stats /** * Get datafeed stats. You can get statistics for multiple datafeeds in a single * API request by using a comma-separated list of datafeeds or a wildcard * expression. You can get statistics for all datafeeds by using * _all, by specifying * as the * <feed_id>, or by omitting the * <feed_id>. If the datafeed is stopped, the only * information you receive is the datafeed_id and the * state. This API returns a maximum of 10,000 datafeeds. * * @see Documentation * on elastic.co */ public CompletableFuture getDatafeedStats(GetDatafeedStatsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetDatafeedStatsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get datafeed stats. You can get statistics for multiple datafeeds in a single * API request by using a comma-separated list of datafeeds or a wildcard * expression. You can get statistics for all datafeeds by using * _all, by specifying * as the * <feed_id>, or by omitting the * <feed_id>. If the datafeed is stopped, the only * information you receive is the datafeed_id and the * state. This API returns a maximum of 10,000 datafeeds. * * @param fn * a function that initializes a builder to create the * {@link GetDatafeedStatsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getDatafeedStats( Function> fn) { return getDatafeedStats(fn.apply(new GetDatafeedStatsRequest.Builder()).build()); } /** * Get datafeed stats. You can get statistics for multiple datafeeds in a single * API request by using a comma-separated list of datafeeds or a wildcard * expression. You can get statistics for all datafeeds by using * _all, by specifying * as the * <feed_id>, or by omitting the * <feed_id>. If the datafeed is stopped, the only * information you receive is the datafeed_id and the * state. This API returns a maximum of 10,000 datafeeds. * * @see Documentation * on elastic.co */ public CompletableFuture getDatafeedStats() { return this.transport.performRequestAsync(new GetDatafeedStatsRequest.Builder().build(), GetDatafeedStatsRequest._ENDPOINT, this.transportOptions); } // ----- Endpoint: ml.get_datafeeds /** * Get datafeeds configuration info. You can get information for multiple * datafeeds in a single API request by using a comma-separated list of * datafeeds or a wildcard expression. You can get information for all datafeeds * by using _all, by specifying * as the * <feed_id>, or by omitting the * <feed_id>. This API returns a maximum of 10,000 datafeeds. * * @see Documentation * on elastic.co */ public CompletableFuture getDatafeeds(GetDatafeedsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetDatafeedsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get datafeeds configuration info. You can get information for multiple * datafeeds in a single API request by using a comma-separated list of * datafeeds or a wildcard expression. You can get information for all datafeeds * by using _all, by specifying * as the * <feed_id>, or by omitting the * <feed_id>. This API returns a maximum of 10,000 datafeeds. * * @param fn * a function that initializes a builder to create the * {@link GetDatafeedsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getDatafeeds( Function> fn) { return getDatafeeds(fn.apply(new GetDatafeedsRequest.Builder()).build()); } /** * Get datafeeds configuration info. You can get information for multiple * datafeeds in a single API request by using a comma-separated list of * datafeeds or a wildcard expression. You can get information for all datafeeds * by using _all, by specifying * as the * <feed_id>, or by omitting the * <feed_id>. This API returns a maximum of 10,000 datafeeds. * * @see Documentation * on elastic.co */ public CompletableFuture getDatafeeds() { return this.transport.performRequestAsync(new GetDatafeedsRequest.Builder().build(), GetDatafeedsRequest._ENDPOINT, this.transportOptions); } // ----- Endpoint: ml.get_filters /** * Get filters. You can get a single filter or all filters. * * @see Documentation * on elastic.co */ public CompletableFuture getFilters(GetFiltersRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetFiltersRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get filters. You can get a single filter or all filters. * * @param fn * a function that initializes a builder to create the * {@link GetFiltersRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getFilters( Function> fn) { return getFilters(fn.apply(new GetFiltersRequest.Builder()).build()); } /** * Get filters. You can get a single filter or all filters. * * @see Documentation * on elastic.co */ public CompletableFuture getFilters() { return this.transport.performRequestAsync(new GetFiltersRequest.Builder().build(), GetFiltersRequest._ENDPOINT, this.transportOptions); } // ----- Endpoint: ml.get_influencers /** * Get anomaly detection job results for influencers. Influencers are the * entities that have contributed to, or are to blame for, the anomalies. * Influencer results are available only if an * influencer_field_name is specified in the job configuration. * * @see Documentation * on elastic.co */ public CompletableFuture getInfluencers(GetInfluencersRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetInfluencersRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get anomaly detection job results for influencers. Influencers are the * entities that have contributed to, or are to blame for, the anomalies. * Influencer results are available only if an * influencer_field_name is specified in the job configuration. * * @param fn * a function that initializes a builder to create the * {@link GetInfluencersRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getInfluencers( Function> fn) { return getInfluencers(fn.apply(new GetInfluencersRequest.Builder()).build()); } // ----- Endpoint: ml.get_job_stats /** * Get anomaly detection job stats. * * @see Documentation * on elastic.co */ public CompletableFuture getJobStats(GetJobStatsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetJobStatsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get anomaly detection job stats. * * @param fn * a function that initializes a builder to create the * {@link GetJobStatsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getJobStats( Function> fn) { return getJobStats(fn.apply(new GetJobStatsRequest.Builder()).build()); } /** * Get anomaly detection job stats. * * @see Documentation * on elastic.co */ public CompletableFuture getJobStats() { return this.transport.performRequestAsync(new GetJobStatsRequest.Builder().build(), GetJobStatsRequest._ENDPOINT, this.transportOptions); } // ----- Endpoint: ml.get_jobs /** * Get anomaly detection jobs configuration info. You can get information for * multiple anomaly detection jobs in a single API request by using a group * name, a comma-separated list of jobs, or a wildcard expression. You can get * information for all anomaly detection jobs by using _all, by * specifying * as the <job_id>, or by omitting * the <job_id>. * * @see Documentation * on elastic.co */ public CompletableFuture getJobs(GetJobsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetJobsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get anomaly detection jobs configuration info. You can get information for * multiple anomaly detection jobs in a single API request by using a group * name, a comma-separated list of jobs, or a wildcard expression. You can get * information for all anomaly detection jobs by using _all, by * specifying * as the <job_id>, or by omitting * the <job_id>. * * @param fn * a function that initializes a builder to create the * {@link GetJobsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getJobs( Function> fn) { return getJobs(fn.apply(new GetJobsRequest.Builder()).build()); } /** * Get anomaly detection jobs configuration info. You can get information for * multiple anomaly detection jobs in a single API request by using a group * name, a comma-separated list of jobs, or a wildcard expression. You can get * information for all anomaly detection jobs by using _all, by * specifying * as the <job_id>, or by omitting * the <job_id>. * * @see Documentation * on elastic.co */ public CompletableFuture getJobs() { return this.transport.performRequestAsync(new GetJobsRequest.Builder().build(), GetJobsRequest._ENDPOINT, this.transportOptions); } // ----- Endpoint: ml.get_memory_stats /** * Get machine learning memory usage info. Get information about how machine * learning jobs and trained models are using memory, on each node, both within * the JVM heap, and natively, outside of the JVM. * * @see Documentation * on elastic.co */ public CompletableFuture getMemoryStats(GetMemoryStatsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetMemoryStatsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get machine learning memory usage info. Get information about how machine * learning jobs and trained models are using memory, on each node, both within * the JVM heap, and natively, outside of the JVM. * * @param fn * a function that initializes a builder to create the * {@link GetMemoryStatsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getMemoryStats( Function> fn) { return getMemoryStats(fn.apply(new GetMemoryStatsRequest.Builder()).build()); } /** * Get machine learning memory usage info. Get information about how machine * learning jobs and trained models are using memory, on each node, both within * the JVM heap, and natively, outside of the JVM. * * @see Documentation * on elastic.co */ public CompletableFuture getMemoryStats() { return this.transport.performRequestAsync(new GetMemoryStatsRequest.Builder().build(), GetMemoryStatsRequest._ENDPOINT, this.transportOptions); } // ----- Endpoint: ml.get_model_snapshot_upgrade_stats /** * Get anomaly detection job model snapshot upgrade usage info. * * @see Documentation * on elastic.co */ public CompletableFuture getModelSnapshotUpgradeStats( GetModelSnapshotUpgradeStatsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetModelSnapshotUpgradeStatsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get anomaly detection job model snapshot upgrade usage info. * * @param fn * a function that initializes a builder to create the * {@link GetModelSnapshotUpgradeStatsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getModelSnapshotUpgradeStats( Function> fn) { return getModelSnapshotUpgradeStats(fn.apply(new GetModelSnapshotUpgradeStatsRequest.Builder()).build()); } // ----- Endpoint: ml.get_model_snapshots /** * Get model snapshots info. * * @see Documentation * on elastic.co */ public CompletableFuture getModelSnapshots(GetModelSnapshotsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetModelSnapshotsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get model snapshots info. * * @param fn * a function that initializes a builder to create the * {@link GetModelSnapshotsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getModelSnapshots( Function> fn) { return getModelSnapshots(fn.apply(new GetModelSnapshotsRequest.Builder()).build()); } // ----- Endpoint: ml.get_overall_buckets /** * Get overall bucket results. *

* Retrievs overall bucket results that summarize the bucket results of multiple * anomaly detection jobs. *

* The overall_score is calculated by combining the scores of all * the buckets within the overall bucket span. First, the maximum * anomaly_score per anomaly detection job in the overall bucket is * calculated. Then the top_n of those scores are averaged to * result in the overall_score. This means that you can fine-tune * the overall_score so that it is more or less sensitive to the * number of jobs that detect an anomaly at the same time. For example, if you * set top_n to 1, the overall_score is * the maximum bucket score in the overall bucket. Alternatively, if you set * top_n to the number of jobs, the overall_score is * high only when all jobs detect anomalies in that overall bucket. If you set * the bucket_span parameter (to a value greater than its default), * the overall_score is the maximum overall_score of * the overall buckets that have a span equal to the jobs' largest bucket span. * * @see Documentation * on elastic.co */ public CompletableFuture getOverallBuckets(GetOverallBucketsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetOverallBucketsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get overall bucket results. *

* Retrievs overall bucket results that summarize the bucket results of multiple * anomaly detection jobs. *

* The overall_score is calculated by combining the scores of all * the buckets within the overall bucket span. First, the maximum * anomaly_score per anomaly detection job in the overall bucket is * calculated. Then the top_n of those scores are averaged to * result in the overall_score. This means that you can fine-tune * the overall_score so that it is more or less sensitive to the * number of jobs that detect an anomaly at the same time. For example, if you * set top_n to 1, the overall_score is * the maximum bucket score in the overall bucket. Alternatively, if you set * top_n to the number of jobs, the overall_score is * high only when all jobs detect anomalies in that overall bucket. If you set * the bucket_span parameter (to a value greater than its default), * the overall_score is the maximum overall_score of * the overall buckets that have a span equal to the jobs' largest bucket span. * * @param fn * a function that initializes a builder to create the * {@link GetOverallBucketsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getOverallBuckets( Function> fn) { return getOverallBuckets(fn.apply(new GetOverallBucketsRequest.Builder()).build()); } // ----- Endpoint: ml.get_records /** * Get anomaly records for an anomaly detection job. Records contain the * detailed analytical results. They describe the anomalous activity that has * been identified in the input data based on the detector configuration. There * can be many anomaly records depending on the characteristics and size of the * input data. In practice, there are often too many to be able to manually * process them. The machine learning features therefore perform a sophisticated * aggregation of the anomaly records into buckets. The number of record results * depends on the number of anomalies found in each bucket, which relates to the * number of time series being modeled and the number of detectors. * * @see Documentation * on elastic.co */ public CompletableFuture getRecords(GetRecordsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetRecordsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get anomaly records for an anomaly detection job. Records contain the * detailed analytical results. They describe the anomalous activity that has * been identified in the input data based on the detector configuration. There * can be many anomaly records depending on the characteristics and size of the * input data. In practice, there are often too many to be able to manually * process them. The machine learning features therefore perform a sophisticated * aggregation of the anomaly records into buckets. The number of record results * depends on the number of anomalies found in each bucket, which relates to the * number of time series being modeled and the number of detectors. * * @param fn * a function that initializes a builder to create the * {@link GetRecordsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getRecords( Function> fn) { return getRecords(fn.apply(new GetRecordsRequest.Builder()).build()); } // ----- Endpoint: ml.get_trained_models /** * Get trained model configuration info. * * @see Documentation * on elastic.co */ public CompletableFuture getTrainedModels(GetTrainedModelsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetTrainedModelsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get trained model configuration info. * * @param fn * a function that initializes a builder to create the * {@link GetTrainedModelsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getTrainedModels( Function> fn) { return getTrainedModels(fn.apply(new GetTrainedModelsRequest.Builder()).build()); } /** * Get trained model configuration info. * * @see Documentation * on elastic.co */ public CompletableFuture getTrainedModels() { return this.transport.performRequestAsync(new GetTrainedModelsRequest.Builder().build(), GetTrainedModelsRequest._ENDPOINT, this.transportOptions); } // ----- Endpoint: ml.get_trained_models_stats /** * Get trained models usage info. You can get usage information for multiple * trained models in a single API request by using a comma-separated list of * model IDs or a wildcard expression. * * @see Documentation * on elastic.co */ public CompletableFuture getTrainedModelsStats( GetTrainedModelsStatsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) GetTrainedModelsStatsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Get trained models usage info. You can get usage information for multiple * trained models in a single API request by using a comma-separated list of * model IDs or a wildcard expression. * * @param fn * a function that initializes a builder to create the * {@link GetTrainedModelsStatsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture getTrainedModelsStats( Function> fn) { return getTrainedModelsStats(fn.apply(new GetTrainedModelsStatsRequest.Builder()).build()); } /** * Get trained models usage info. You can get usage information for multiple * trained models in a single API request by using a comma-separated list of * model IDs or a wildcard expression. * * @see Documentation * on elastic.co */ public CompletableFuture getTrainedModelsStats() { return this.transport.performRequestAsync(new GetTrainedModelsStatsRequest.Builder().build(), GetTrainedModelsStatsRequest._ENDPOINT, this.transportOptions); } // ----- Endpoint: ml.infer_trained_model /** * Evaluate a trained model. * * @see Documentation * on elastic.co */ public CompletableFuture inferTrainedModel(InferTrainedModelRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) InferTrainedModelRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Evaluate a trained model. * * @param fn * a function that initializes a builder to create the * {@link InferTrainedModelRequest} * @see Documentation * on elastic.co */ public final CompletableFuture inferTrainedModel( Function> fn) { return inferTrainedModel(fn.apply(new InferTrainedModelRequest.Builder()).build()); } // ----- Endpoint: ml.info /** * Get machine learning information. Get defaults and limits used by machine * learning. This endpoint is designed to be used by a user interface that needs * to fully understand machine learning configurations where some options are * not specified, meaning that the defaults should be used. This endpoint may be * used to find out what those defaults are. It also provides information about * the maximum size of machine learning jobs that could run in the current * cluster configuration. * * @see Documentation * on elastic.co */ public CompletableFuture info() { return this.transport.performRequestAsync(MlInfoRequest._INSTANCE, MlInfoRequest._ENDPOINT, this.transportOptions); } // ----- Endpoint: ml.open_job /** * Open anomaly detection jobs. *

* An anomaly detection job must be opened to be ready to receive and analyze * data. It can be opened and closed multiple times throughout its lifecycle. * When you open a new job, it starts with an empty model. When you open an * existing job, the most recent model state is automatically loaded. The job is * ready to resume its analysis from where it left off, once new data is * received. * * @see Documentation * on elastic.co */ public CompletableFuture openJob(OpenJobRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) OpenJobRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Open anomaly detection jobs. *

* An anomaly detection job must be opened to be ready to receive and analyze * data. It can be opened and closed multiple times throughout its lifecycle. * When you open a new job, it starts with an empty model. When you open an * existing job, the most recent model state is automatically loaded. The job is * ready to resume its analysis from where it left off, once new data is * received. * * @param fn * a function that initializes a builder to create the * {@link OpenJobRequest} * @see Documentation * on elastic.co */ public final CompletableFuture openJob( Function> fn) { return openJob(fn.apply(new OpenJobRequest.Builder()).build()); } // ----- Endpoint: ml.post_calendar_events /** * Add scheduled events to the calendar. * * @see Documentation * on elastic.co */ public CompletableFuture postCalendarEvents(PostCalendarEventsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) PostCalendarEventsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Add scheduled events to the calendar. * * @param fn * a function that initializes a builder to create the * {@link PostCalendarEventsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture postCalendarEvents( Function> fn) { return postCalendarEvents(fn.apply(new PostCalendarEventsRequest.Builder()).build()); } // ----- Endpoint: ml.post_data /** * Send data to an anomaly detection job for analysis. *

* IMPORTANT: For each job, data can be accepted from only a single connection * at a time. It is not currently possible to post data to multiple jobs using * wildcards or a comma-separated list. * * @see Documentation * on elastic.co */ public CompletableFuture postData(PostDataRequest request) { @SuppressWarnings("unchecked") JsonEndpoint, PostDataResponse, ErrorResponse> endpoint = (JsonEndpoint, PostDataResponse, ErrorResponse>) PostDataRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Send data to an anomaly detection job for analysis. *

* IMPORTANT: For each job, data can be accepted from only a single connection * at a time. It is not currently possible to post data to multiple jobs using * wildcards or a comma-separated list. * * @param fn * a function that initializes a builder to create the * {@link PostDataRequest} * @see Documentation * on elastic.co */ public final CompletableFuture postData( Function, ObjectBuilder>> fn) { return postData(fn.apply(new PostDataRequest.Builder()).build()); } // ----- Endpoint: ml.preview_data_frame_analytics /** * Preview features used by data frame analytics. Preview the extracted features * used by a data frame analytics config. * * @see Documentation * on elastic.co */ public CompletableFuture previewDataFrameAnalytics( PreviewDataFrameAnalyticsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) PreviewDataFrameAnalyticsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Preview features used by data frame analytics. Preview the extracted features * used by a data frame analytics config. * * @param fn * a function that initializes a builder to create the * {@link PreviewDataFrameAnalyticsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture previewDataFrameAnalytics( Function> fn) { return previewDataFrameAnalytics(fn.apply(new PreviewDataFrameAnalyticsRequest.Builder()).build()); } /** * Preview features used by data frame analytics. Preview the extracted features * used by a data frame analytics config. * * @see Documentation * on elastic.co */ public CompletableFuture previewDataFrameAnalytics() { return this.transport.performRequestAsync(new PreviewDataFrameAnalyticsRequest.Builder().build(), PreviewDataFrameAnalyticsRequest._ENDPOINT, this.transportOptions); } // ----- Endpoint: ml.preview_datafeed /** * Preview a datafeed. This API returns the first "page" of search * results from a datafeed. You can preview an existing datafeed or provide * configuration details for a datafeed and anomaly detection job in the API. * The preview shows the structure of the data that will be passed to the * anomaly detection engine. IMPORTANT: When Elasticsearch security features are * enabled, the preview uses the credentials of the user that called the API. * However, when the datafeed starts it uses the roles of the last user that * created or updated the datafeed. To get a preview that accurately reflects * the behavior of the datafeed, use the appropriate credentials. You can also * use secondary authorization headers to supply the credentials. * * @see Documentation * on elastic.co */ public CompletableFuture> previewDatafeed( PreviewDatafeedRequest request, Class tDocumentClass) { @SuppressWarnings("unchecked") JsonEndpoint, ErrorResponse> endpoint = (JsonEndpoint, ErrorResponse>) PreviewDatafeedRequest._ENDPOINT; endpoint = new EndpointWithResponseMapperAttr<>(endpoint, "co.elastic.clients:Deserializer:ml.preview_datafeed.Response.TDocument", getDeserializer(tDocumentClass)); return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Preview a datafeed. This API returns the first "page" of search * results from a datafeed. You can preview an existing datafeed or provide * configuration details for a datafeed and anomaly detection job in the API. * The preview shows the structure of the data that will be passed to the * anomaly detection engine. IMPORTANT: When Elasticsearch security features are * enabled, the preview uses the credentials of the user that called the API. * However, when the datafeed starts it uses the roles of the last user that * created or updated the datafeed. To get a preview that accurately reflects * the behavior of the datafeed, use the appropriate credentials. You can also * use secondary authorization headers to supply the credentials. * * @param fn * a function that initializes a builder to create the * {@link PreviewDatafeedRequest} * @see Documentation * on elastic.co */ public final CompletableFuture> previewDatafeed( Function> fn, Class tDocumentClass) { return previewDatafeed(fn.apply(new PreviewDatafeedRequest.Builder()).build(), tDocumentClass); } /** * Overload of {@link #previewDatafeed(PreviewDatafeedRequest, Class)}, where * Class is defined as Void, meaning the documents will not be deserialized. */ public CompletableFuture> previewDatafeed(PreviewDatafeedRequest request) { @SuppressWarnings("unchecked") JsonEndpoint, ErrorResponse> endpoint = (JsonEndpoint, ErrorResponse>) PreviewDatafeedRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Overload of {@link #previewDatafeed(Function, Class)}, where Class is defined * as Void, meaning the documents will not be deserialized. */ public final CompletableFuture> previewDatafeed( Function> fn) { return previewDatafeed(fn.apply(new PreviewDatafeedRequest.Builder()).build(), Void.class); } /** * Preview a datafeed. This API returns the first "page" of search * results from a datafeed. You can preview an existing datafeed or provide * configuration details for a datafeed and anomaly detection job in the API. * The preview shows the structure of the data that will be passed to the * anomaly detection engine. IMPORTANT: When Elasticsearch security features are * enabled, the preview uses the credentials of the user that called the API. * However, when the datafeed starts it uses the roles of the last user that * created or updated the datafeed. To get a preview that accurately reflects * the behavior of the datafeed, use the appropriate credentials. You can also * use secondary authorization headers to supply the credentials. * * @see Documentation * on elastic.co */ public CompletableFuture> previewDatafeed( PreviewDatafeedRequest request, Type tDocumentType) { @SuppressWarnings("unchecked") JsonEndpoint, ErrorResponse> endpoint = (JsonEndpoint, ErrorResponse>) PreviewDatafeedRequest._ENDPOINT; endpoint = new EndpointWithResponseMapperAttr<>(endpoint, "co.elastic.clients:Deserializer:ml.preview_datafeed.Response.TDocument", getDeserializer(tDocumentType)); return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Preview a datafeed. This API returns the first "page" of search * results from a datafeed. You can preview an existing datafeed or provide * configuration details for a datafeed and anomaly detection job in the API. * The preview shows the structure of the data that will be passed to the * anomaly detection engine. IMPORTANT: When Elasticsearch security features are * enabled, the preview uses the credentials of the user that called the API. * However, when the datafeed starts it uses the roles of the last user that * created or updated the datafeed. To get a preview that accurately reflects * the behavior of the datafeed, use the appropriate credentials. You can also * use secondary authorization headers to supply the credentials. * * @param fn * a function that initializes a builder to create the * {@link PreviewDatafeedRequest} * @see Documentation * on elastic.co */ public final CompletableFuture> previewDatafeed( Function> fn, Type tDocumentType) { return previewDatafeed(fn.apply(new PreviewDatafeedRequest.Builder()).build(), tDocumentType); } // ----- Endpoint: ml.put_calendar /** * Create a calendar. * * @see Documentation * on elastic.co */ public CompletableFuture putCalendar(PutCalendarRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) PutCalendarRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Create a calendar. * * @param fn * a function that initializes a builder to create the * {@link PutCalendarRequest} * @see Documentation * on elastic.co */ public final CompletableFuture putCalendar( Function> fn) { return putCalendar(fn.apply(new PutCalendarRequest.Builder()).build()); } // ----- Endpoint: ml.put_calendar_job /** * Add anomaly detection job to calendar. * * @see Documentation * on elastic.co */ public CompletableFuture putCalendarJob(PutCalendarJobRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) PutCalendarJobRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Add anomaly detection job to calendar. * * @param fn * a function that initializes a builder to create the * {@link PutCalendarJobRequest} * @see Documentation * on elastic.co */ public final CompletableFuture putCalendarJob( Function> fn) { return putCalendarJob(fn.apply(new PutCalendarJobRequest.Builder()).build()); } // ----- Endpoint: ml.put_data_frame_analytics /** * Create a data frame analytics job. This API creates a data frame analytics * job that performs an analysis on the source indices and stores the outcome in * a destination index. By default, the query used in the source configuration * is {"match_all": {}}. *

* If the destination index does not exist, it is created automatically when you * start the job. *

* If you supply only a subset of the regression or classification parameters, * hyperparameter optimization occurs. It determines a value for each of the * undefined parameters. * * @see Documentation * on elastic.co */ public CompletableFuture putDataFrameAnalytics( PutDataFrameAnalyticsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) PutDataFrameAnalyticsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Create a data frame analytics job. This API creates a data frame analytics * job that performs an analysis on the source indices and stores the outcome in * a destination index. By default, the query used in the source configuration * is {"match_all": {}}. *

* If the destination index does not exist, it is created automatically when you * start the job. *

* If you supply only a subset of the regression or classification parameters, * hyperparameter optimization occurs. It determines a value for each of the * undefined parameters. * * @param fn * a function that initializes a builder to create the * {@link PutDataFrameAnalyticsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture putDataFrameAnalytics( Function> fn) { return putDataFrameAnalytics(fn.apply(new PutDataFrameAnalyticsRequest.Builder()).build()); } // ----- Endpoint: ml.put_datafeed /** * Create a datafeed. Datafeeds retrieve data from Elasticsearch for analysis by * an anomaly detection job. You can associate only one datafeed with each * anomaly detection job. The datafeed contains a query that runs at a defined * interval (frequency). If you are concerned about delayed data, * you can add a delay (query_delay) at each interval. By default, * the datafeed uses the following query: * {"match_all": {"boost": 1}}. *

* When Elasticsearch security features are enabled, your datafeed remembers * which roles the user who created it had at the time of creation and runs the * query using those same roles. If you provide secondary authorization headers, * those credentials are used instead. You must use Kibana, this API, or the * create anomaly detection jobs API to create a datafeed. Do not add a datafeed * directly to the .ml-config index. Do not give users * write privileges on the .ml-config index. * * @see Documentation * on elastic.co */ public CompletableFuture putDatafeed(PutDatafeedRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) PutDatafeedRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Create a datafeed. Datafeeds retrieve data from Elasticsearch for analysis by * an anomaly detection job. You can associate only one datafeed with each * anomaly detection job. The datafeed contains a query that runs at a defined * interval (frequency). If you are concerned about delayed data, * you can add a delay (query_delay) at each interval. By default, * the datafeed uses the following query: * {"match_all": {"boost": 1}}. *

* When Elasticsearch security features are enabled, your datafeed remembers * which roles the user who created it had at the time of creation and runs the * query using those same roles. If you provide secondary authorization headers, * those credentials are used instead. You must use Kibana, this API, or the * create anomaly detection jobs API to create a datafeed. Do not add a datafeed * directly to the .ml-config index. Do not give users * write privileges on the .ml-config index. * * @param fn * a function that initializes a builder to create the * {@link PutDatafeedRequest} * @see Documentation * on elastic.co */ public final CompletableFuture putDatafeed( Function> fn) { return putDatafeed(fn.apply(new PutDatafeedRequest.Builder()).build()); } // ----- Endpoint: ml.put_filter /** * Create a filter. A filter contains a list of strings. It can be used by one * or more anomaly detection jobs. Specifically, filters are referenced in the * custom_rules property of detector configuration objects. * * @see Documentation * on elastic.co */ public CompletableFuture putFilter(PutFilterRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) PutFilterRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Create a filter. A filter contains a list of strings. It can be used by one * or more anomaly detection jobs. Specifically, filters are referenced in the * custom_rules property of detector configuration objects. * * @param fn * a function that initializes a builder to create the * {@link PutFilterRequest} * @see Documentation * on elastic.co */ public final CompletableFuture putFilter( Function> fn) { return putFilter(fn.apply(new PutFilterRequest.Builder()).build()); } // ----- Endpoint: ml.put_job /** * Create an anomaly detection job. *

* If you include a datafeed_config, you must have read index * privileges on the source index. If you include a datafeed_config * but do not provide a query, the datafeed uses * {"match_all": {"boost": 1}}. * * @see Documentation * on elastic.co */ public CompletableFuture putJob(PutJobRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) PutJobRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Create an anomaly detection job. *

* If you include a datafeed_config, you must have read index * privileges on the source index. If you include a datafeed_config * but do not provide a query, the datafeed uses * {"match_all": {"boost": 1}}. * * @param fn * a function that initializes a builder to create the * {@link PutJobRequest} * @see Documentation * on elastic.co */ public final CompletableFuture putJob( Function> fn) { return putJob(fn.apply(new PutJobRequest.Builder()).build()); } // ----- Endpoint: ml.put_trained_model /** * Create a trained model. Enable you to supply a trained model that is not * created by data frame analytics. * * @see Documentation * on elastic.co */ public CompletableFuture putTrainedModel(PutTrainedModelRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) PutTrainedModelRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Create a trained model. Enable you to supply a trained model that is not * created by data frame analytics. * * @param fn * a function that initializes a builder to create the * {@link PutTrainedModelRequest} * @see Documentation * on elastic.co */ public final CompletableFuture putTrainedModel( Function> fn) { return putTrainedModel(fn.apply(new PutTrainedModelRequest.Builder()).build()); } // ----- Endpoint: ml.put_trained_model_alias /** * Create or update a trained model alias. A trained model alias is a logical * name used to reference a single trained model. You can use aliases instead of * trained model identifiers to make it easier to reference your models. For * example, you can use aliases in inference aggregations and processors. An * alias must be unique and refer to only a single trained model. However, you * can have multiple aliases for each trained model. If you use this API to * update an alias such that it references a different trained model ID and the * model uses a different type of data frame analytics, an error occurs. For * example, this situation occurs if you have a trained model for regression * analysis and a trained model for classification analysis; you cannot reassign * an alias from one type of trained model to another. If you use this API to * update an alias and there are very few input fields in common between the old * and new trained models for the model alias, the API returns a warning. * * @see Documentation * on elastic.co */ public CompletableFuture putTrainedModelAlias(PutTrainedModelAliasRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) PutTrainedModelAliasRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Create or update a trained model alias. A trained model alias is a logical * name used to reference a single trained model. You can use aliases instead of * trained model identifiers to make it easier to reference your models. For * example, you can use aliases in inference aggregations and processors. An * alias must be unique and refer to only a single trained model. However, you * can have multiple aliases for each trained model. If you use this API to * update an alias such that it references a different trained model ID and the * model uses a different type of data frame analytics, an error occurs. For * example, this situation occurs if you have a trained model for regression * analysis and a trained model for classification analysis; you cannot reassign * an alias from one type of trained model to another. If you use this API to * update an alias and there are very few input fields in common between the old * and new trained models for the model alias, the API returns a warning. * * @param fn * a function that initializes a builder to create the * {@link PutTrainedModelAliasRequest} * @see Documentation * on elastic.co */ public final CompletableFuture putTrainedModelAlias( Function> fn) { return putTrainedModelAlias(fn.apply(new PutTrainedModelAliasRequest.Builder()).build()); } // ----- Endpoint: ml.put_trained_model_definition_part /** * Create part of a trained model definition. * * @see Documentation * on elastic.co */ public CompletableFuture putTrainedModelDefinitionPart( PutTrainedModelDefinitionPartRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) PutTrainedModelDefinitionPartRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Create part of a trained model definition. * * @param fn * a function that initializes a builder to create the * {@link PutTrainedModelDefinitionPartRequest} * @see Documentation * on elastic.co */ public final CompletableFuture putTrainedModelDefinitionPart( Function> fn) { return putTrainedModelDefinitionPart(fn.apply(new PutTrainedModelDefinitionPartRequest.Builder()).build()); } // ----- Endpoint: ml.put_trained_model_vocabulary /** * Create a trained model vocabulary. This API is supported only for natural * language processing (NLP) models. The vocabulary is stored in the index as * described in inference_config.*.vocabulary of the trained model * definition. * * @see Documentation * on elastic.co */ public CompletableFuture putTrainedModelVocabulary( PutTrainedModelVocabularyRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) PutTrainedModelVocabularyRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Create a trained model vocabulary. This API is supported only for natural * language processing (NLP) models. The vocabulary is stored in the index as * described in inference_config.*.vocabulary of the trained model * definition. * * @param fn * a function that initializes a builder to create the * {@link PutTrainedModelVocabularyRequest} * @see Documentation * on elastic.co */ public final CompletableFuture putTrainedModelVocabulary( Function> fn) { return putTrainedModelVocabulary(fn.apply(new PutTrainedModelVocabularyRequest.Builder()).build()); } // ----- Endpoint: ml.reset_job /** * Reset an anomaly detection job. All model state and results are deleted. The * job is ready to start over as if it had just been created. It is not * currently possible to reset multiple jobs using wildcards or a comma * separated list. * * @see Documentation * on elastic.co */ public CompletableFuture resetJob(ResetJobRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) ResetJobRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Reset an anomaly detection job. All model state and results are deleted. The * job is ready to start over as if it had just been created. It is not * currently possible to reset multiple jobs using wildcards or a comma * separated list. * * @param fn * a function that initializes a builder to create the * {@link ResetJobRequest} * @see Documentation * on elastic.co */ public final CompletableFuture resetJob( Function> fn) { return resetJob(fn.apply(new ResetJobRequest.Builder()).build()); } // ----- Endpoint: ml.revert_model_snapshot /** * Revert to a snapshot. The machine learning features react quickly to * anomalous input, learning new behaviors in data. Highly anomalous input * increases the variance in the models whilst the system learns whether this is * a new step-change in behavior or a one-off event. In the case where this * anomalous input is known to be a one-off, then it might be appropriate to * reset the model state to a time before this event. For example, you might * consider reverting to a saved snapshot after Black Friday or a critical * system failure. * * @see Documentation * on elastic.co */ public CompletableFuture revertModelSnapshot(RevertModelSnapshotRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) RevertModelSnapshotRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Revert to a snapshot. The machine learning features react quickly to * anomalous input, learning new behaviors in data. Highly anomalous input * increases the variance in the models whilst the system learns whether this is * a new step-change in behavior or a one-off event. In the case where this * anomalous input is known to be a one-off, then it might be appropriate to * reset the model state to a time before this event. For example, you might * consider reverting to a saved snapshot after Black Friday or a critical * system failure. * * @param fn * a function that initializes a builder to create the * {@link RevertModelSnapshotRequest} * @see Documentation * on elastic.co */ public final CompletableFuture revertModelSnapshot( Function> fn) { return revertModelSnapshot(fn.apply(new RevertModelSnapshotRequest.Builder()).build()); } // ----- Endpoint: ml.set_upgrade_mode /** * Set upgrade_mode for ML indices. Sets a cluster wide upgrade_mode setting * that prepares machine learning indices for an upgrade. When upgrading your * cluster, in some circumstances you must restart your nodes and reindex your * machine learning indices. In those circumstances, there must be no machine * learning jobs running. You can close the machine learning jobs, do the * upgrade, then open all the jobs again. Alternatively, you can use this API to * temporarily halt tasks associated with the jobs and datafeeds and prevent new * jobs from opening. You can also use this API during upgrades that do not * require you to reindex your machine learning indices, though stopping jobs is * not a requirement in that case. You can see the current value for the * upgrade_mode setting by using the get machine learning info API. * * @see Documentation * on elastic.co */ public CompletableFuture setUpgradeMode(SetUpgradeModeRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) SetUpgradeModeRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Set upgrade_mode for ML indices. Sets a cluster wide upgrade_mode setting * that prepares machine learning indices for an upgrade. When upgrading your * cluster, in some circumstances you must restart your nodes and reindex your * machine learning indices. In those circumstances, there must be no machine * learning jobs running. You can close the machine learning jobs, do the * upgrade, then open all the jobs again. Alternatively, you can use this API to * temporarily halt tasks associated with the jobs and datafeeds and prevent new * jobs from opening. You can also use this API during upgrades that do not * require you to reindex your machine learning indices, though stopping jobs is * not a requirement in that case. You can see the current value for the * upgrade_mode setting by using the get machine learning info API. * * @param fn * a function that initializes a builder to create the * {@link SetUpgradeModeRequest} * @see Documentation * on elastic.co */ public final CompletableFuture setUpgradeMode( Function> fn) { return setUpgradeMode(fn.apply(new SetUpgradeModeRequest.Builder()).build()); } /** * Set upgrade_mode for ML indices. Sets a cluster wide upgrade_mode setting * that prepares machine learning indices for an upgrade. When upgrading your * cluster, in some circumstances you must restart your nodes and reindex your * machine learning indices. In those circumstances, there must be no machine * learning jobs running. You can close the machine learning jobs, do the * upgrade, then open all the jobs again. Alternatively, you can use this API to * temporarily halt tasks associated with the jobs and datafeeds and prevent new * jobs from opening. You can also use this API during upgrades that do not * require you to reindex your machine learning indices, though stopping jobs is * not a requirement in that case. You can see the current value for the * upgrade_mode setting by using the get machine learning info API. * * @see Documentation * on elastic.co */ public CompletableFuture setUpgradeMode() { return this.transport.performRequestAsync(new SetUpgradeModeRequest.Builder().build(), SetUpgradeModeRequest._ENDPOINT, this.transportOptions); } // ----- Endpoint: ml.start_data_frame_analytics /** * Start a data frame analytics job. A data frame analytics job can be started * and stopped multiple times throughout its lifecycle. If the destination index * does not exist, it is created automatically the first time you start the data * frame analytics job. The index.number_of_shards and * index.number_of_replicas settings for the destination index are * copied from the source index. If there are multiple source indices, the * destination index copies the highest setting values. The mappings for the * destination index are also copied from the source indices. If there are any * mapping conflicts, the job fails to start. If the destination index exists, * it is used as is. You can therefore set up the destination index in advance * with custom settings and mappings. * * @see Documentation * on elastic.co */ public CompletableFuture startDataFrameAnalytics( StartDataFrameAnalyticsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) StartDataFrameAnalyticsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Start a data frame analytics job. A data frame analytics job can be started * and stopped multiple times throughout its lifecycle. If the destination index * does not exist, it is created automatically the first time you start the data * frame analytics job. The index.number_of_shards and * index.number_of_replicas settings for the destination index are * copied from the source index. If there are multiple source indices, the * destination index copies the highest setting values. The mappings for the * destination index are also copied from the source indices. If there are any * mapping conflicts, the job fails to start. If the destination index exists, * it is used as is. You can therefore set up the destination index in advance * with custom settings and mappings. * * @param fn * a function that initializes a builder to create the * {@link StartDataFrameAnalyticsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture startDataFrameAnalytics( Function> fn) { return startDataFrameAnalytics(fn.apply(new StartDataFrameAnalyticsRequest.Builder()).build()); } // ----- Endpoint: ml.start_datafeed /** * Start datafeeds. *

* A datafeed must be started in order to retrieve data from Elasticsearch. A * datafeed can be started and stopped multiple times throughout its lifecycle. *

* Before you can start a datafeed, the anomaly detection job must be open. * Otherwise, an error occurs. *

* If you restart a stopped datafeed, it continues processing input data from * the next millisecond after it was stopped. If new data was indexed for that * exact millisecond between stopping and starting, it will be ignored. *

* When Elasticsearch security features are enabled, your datafeed remembers * which roles the last user to create or update it had at the time of creation * or update and runs the query using those same roles. If you provided * secondary authorization headers when you created or updated the datafeed, * those credentials are used instead. * * @see Documentation * on elastic.co */ public CompletableFuture startDatafeed(StartDatafeedRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) StartDatafeedRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Start datafeeds. *

* A datafeed must be started in order to retrieve data from Elasticsearch. A * datafeed can be started and stopped multiple times throughout its lifecycle. *

* Before you can start a datafeed, the anomaly detection job must be open. * Otherwise, an error occurs. *

* If you restart a stopped datafeed, it continues processing input data from * the next millisecond after it was stopped. If new data was indexed for that * exact millisecond between stopping and starting, it will be ignored. *

* When Elasticsearch security features are enabled, your datafeed remembers * which roles the last user to create or update it had at the time of creation * or update and runs the query using those same roles. If you provided * secondary authorization headers when you created or updated the datafeed, * those credentials are used instead. * * @param fn * a function that initializes a builder to create the * {@link StartDatafeedRequest} * @see Documentation * on elastic.co */ public final CompletableFuture startDatafeed( Function> fn) { return startDatafeed(fn.apply(new StartDatafeedRequest.Builder()).build()); } // ----- Endpoint: ml.start_trained_model_deployment /** * Start a trained model deployment. It allocates the model to every machine * learning node. * * @see Documentation * on elastic.co */ public CompletableFuture startTrainedModelDeployment( StartTrainedModelDeploymentRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) StartTrainedModelDeploymentRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Start a trained model deployment. It allocates the model to every machine * learning node. * * @param fn * a function that initializes a builder to create the * {@link StartTrainedModelDeploymentRequest} * @see Documentation * on elastic.co */ public final CompletableFuture startTrainedModelDeployment( Function> fn) { return startTrainedModelDeployment(fn.apply(new StartTrainedModelDeploymentRequest.Builder()).build()); } // ----- Endpoint: ml.stop_data_frame_analytics /** * Stop data frame analytics jobs. A data frame analytics job can be started and * stopped multiple times throughout its lifecycle. * * @see Documentation * on elastic.co */ public CompletableFuture stopDataFrameAnalytics( StopDataFrameAnalyticsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) StopDataFrameAnalyticsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Stop data frame analytics jobs. A data frame analytics job can be started and * stopped multiple times throughout its lifecycle. * * @param fn * a function that initializes a builder to create the * {@link StopDataFrameAnalyticsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture stopDataFrameAnalytics( Function> fn) { return stopDataFrameAnalytics(fn.apply(new StopDataFrameAnalyticsRequest.Builder()).build()); } // ----- Endpoint: ml.stop_datafeed /** * Stop datafeeds. A datafeed that is stopped ceases to retrieve data from * Elasticsearch. A datafeed can be started and stopped multiple times * throughout its lifecycle. * * @see Documentation * on elastic.co */ public CompletableFuture stopDatafeed(StopDatafeedRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) StopDatafeedRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Stop datafeeds. A datafeed that is stopped ceases to retrieve data from * Elasticsearch. A datafeed can be started and stopped multiple times * throughout its lifecycle. * * @param fn * a function that initializes a builder to create the * {@link StopDatafeedRequest} * @see Documentation * on elastic.co */ public final CompletableFuture stopDatafeed( Function> fn) { return stopDatafeed(fn.apply(new StopDatafeedRequest.Builder()).build()); } // ----- Endpoint: ml.stop_trained_model_deployment /** * Stop a trained model deployment. * * @see Documentation * on elastic.co */ public CompletableFuture stopTrainedModelDeployment( StopTrainedModelDeploymentRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) StopTrainedModelDeploymentRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Stop a trained model deployment. * * @param fn * a function that initializes a builder to create the * {@link StopTrainedModelDeploymentRequest} * @see Documentation * on elastic.co */ public final CompletableFuture stopTrainedModelDeployment( Function> fn) { return stopTrainedModelDeployment(fn.apply(new StopTrainedModelDeploymentRequest.Builder()).build()); } // ----- Endpoint: ml.update_data_frame_analytics /** * Update a data frame analytics job. * * @see Documentation * on elastic.co */ public CompletableFuture updateDataFrameAnalytics( UpdateDataFrameAnalyticsRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) UpdateDataFrameAnalyticsRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Update a data frame analytics job. * * @param fn * a function that initializes a builder to create the * {@link UpdateDataFrameAnalyticsRequest} * @see Documentation * on elastic.co */ public final CompletableFuture updateDataFrameAnalytics( Function> fn) { return updateDataFrameAnalytics(fn.apply(new UpdateDataFrameAnalyticsRequest.Builder()).build()); } // ----- Endpoint: ml.update_datafeed /** * Update a datafeed. You must stop and start the datafeed for the changes to be * applied. When Elasticsearch security features are enabled, your datafeed * remembers which roles the user who updated it had at the time of the update * and runs the query using those same roles. If you provide secondary * authorization headers, those credentials are used instead. * * @see Documentation * on elastic.co */ public CompletableFuture updateDatafeed(UpdateDatafeedRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) UpdateDatafeedRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Update a datafeed. You must stop and start the datafeed for the changes to be * applied. When Elasticsearch security features are enabled, your datafeed * remembers which roles the user who updated it had at the time of the update * and runs the query using those same roles. If you provide secondary * authorization headers, those credentials are used instead. * * @param fn * a function that initializes a builder to create the * {@link UpdateDatafeedRequest} * @see Documentation * on elastic.co */ public final CompletableFuture updateDatafeed( Function> fn) { return updateDatafeed(fn.apply(new UpdateDatafeedRequest.Builder()).build()); } // ----- Endpoint: ml.update_filter /** * Update a filter. Updates the description of a filter, adds items, or removes * items from the list. * * @see Documentation * on elastic.co */ public CompletableFuture updateFilter(UpdateFilterRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) UpdateFilterRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Update a filter. Updates the description of a filter, adds items, or removes * items from the list. * * @param fn * a function that initializes a builder to create the * {@link UpdateFilterRequest} * @see Documentation * on elastic.co */ public final CompletableFuture updateFilter( Function> fn) { return updateFilter(fn.apply(new UpdateFilterRequest.Builder()).build()); } // ----- Endpoint: ml.update_job /** * Update an anomaly detection job. Updates certain properties of an anomaly * detection job. * * @see Documentation * on elastic.co */ public CompletableFuture updateJob(UpdateJobRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) UpdateJobRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Update an anomaly detection job. Updates certain properties of an anomaly * detection job. * * @param fn * a function that initializes a builder to create the * {@link UpdateJobRequest} * @see Documentation * on elastic.co */ public final CompletableFuture updateJob( Function> fn) { return updateJob(fn.apply(new UpdateJobRequest.Builder()).build()); } // ----- Endpoint: ml.update_model_snapshot /** * Update a snapshot. Updates certain properties of a snapshot. * * @see Documentation * on elastic.co */ public CompletableFuture updateModelSnapshot(UpdateModelSnapshotRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) UpdateModelSnapshotRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Update a snapshot. Updates certain properties of a snapshot. * * @param fn * a function that initializes a builder to create the * {@link UpdateModelSnapshotRequest} * @see Documentation * on elastic.co */ public final CompletableFuture updateModelSnapshot( Function> fn) { return updateModelSnapshot(fn.apply(new UpdateModelSnapshotRequest.Builder()).build()); } // ----- Endpoint: ml.update_trained_model_deployment /** * Update a trained model deployment. * * @see Documentation * on elastic.co */ public CompletableFuture updateTrainedModelDeployment( UpdateTrainedModelDeploymentRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) UpdateTrainedModelDeploymentRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Update a trained model deployment. * * @param fn * a function that initializes a builder to create the * {@link UpdateTrainedModelDeploymentRequest} * @see Documentation * on elastic.co */ public final CompletableFuture updateTrainedModelDeployment( Function> fn) { return updateTrainedModelDeployment(fn.apply(new UpdateTrainedModelDeploymentRequest.Builder()).build()); } // ----- Endpoint: ml.upgrade_job_snapshot /** * Upgrade a snapshot. Upgrade an anomaly detection model snapshot to the latest * major version. Over time, older snapshot formats are deprecated and removed. * Anomaly detection jobs support only snapshots that are from the current or * previous major version. This API provides a means to upgrade a snapshot to * the current major version. This aids in preparing the cluster for an upgrade * to the next major version. Only one snapshot per anomaly detection job can be * upgraded at a time and the upgraded snapshot cannot be the current snapshot * of the anomaly detection job. * * @see Documentation * on elastic.co */ public CompletableFuture upgradeJobSnapshot(UpgradeJobSnapshotRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) UpgradeJobSnapshotRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Upgrade a snapshot. Upgrade an anomaly detection model snapshot to the latest * major version. Over time, older snapshot formats are deprecated and removed. * Anomaly detection jobs support only snapshots that are from the current or * previous major version. This API provides a means to upgrade a snapshot to * the current major version. This aids in preparing the cluster for an upgrade * to the next major version. Only one snapshot per anomaly detection job can be * upgraded at a time and the upgraded snapshot cannot be the current snapshot * of the anomaly detection job. * * @param fn * a function that initializes a builder to create the * {@link UpgradeJobSnapshotRequest} * @see Documentation * on elastic.co */ public final CompletableFuture upgradeJobSnapshot( Function> fn) { return upgradeJobSnapshot(fn.apply(new UpgradeJobSnapshotRequest.Builder()).build()); } // ----- Endpoint: ml.validate /** * Validate an anomaly detection job. * * @see Documentation * on elastic.co */ public CompletableFuture validate(ValidateRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) ValidateRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Validate an anomaly detection job. * * @param fn * a function that initializes a builder to create the * {@link ValidateRequest} * @see Documentation * on elastic.co */ public final CompletableFuture validate( Function> fn) { return validate(fn.apply(new ValidateRequest.Builder()).build()); } /** * Validate an anomaly detection job. * * @see Documentation * on elastic.co */ public CompletableFuture validate() { return this.transport.performRequestAsync(new ValidateRequest.Builder().build(), ValidateRequest._ENDPOINT, this.transportOptions); } // ----- Endpoint: ml.validate_detector /** * Validate an anomaly detection job. * * @see Documentation on * elastic.co */ public CompletableFuture validateDetector(ValidateDetectorRequest request) { @SuppressWarnings("unchecked") JsonEndpoint endpoint = (JsonEndpoint) ValidateDetectorRequest._ENDPOINT; return this.transport.performRequestAsync(request, endpoint, this.transportOptions); } /** * Validate an anomaly detection job. * * @param fn * a function that initializes a builder to create the * {@link ValidateDetectorRequest} * @see Documentation on * elastic.co */ public final CompletableFuture validateDetector( Function> fn) { return validateDetector(fn.apply(new ValidateDetectorRequest.Builder()).build()); } /** * Validate an anomaly detection job. * * @see Documentation on * elastic.co */ public CompletableFuture validateDetector() { return this.transport.performRequestAsync(new ValidateDetectorRequest.Builder().build(), ValidateDetectorRequest._ENDPOINT, this.transportOptions); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy