org.apache.kafka.streams.KafkaStreams Maven / Gradle / Ivy
Show all versions of org.apache.servicemix.bundles.kafka-streams
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.kafka.streams;
import org.apache.kafka.clients.CommonClientConfigs;
import org.apache.kafka.clients.admin.Admin;
import org.apache.kafka.clients.admin.ListOffsetsResult.ListOffsetsResultInfo;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.Metric;
import org.apache.kafka.common.MetricName;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.errors.TimeoutException;
import org.apache.kafka.common.metrics.JmxReporter;
import org.apache.kafka.common.metrics.MetricsContext;
import org.apache.kafka.common.metrics.KafkaMetricsContext;
import org.apache.kafka.common.metrics.MetricConfig;
import org.apache.kafka.common.metrics.Metrics;
import org.apache.kafka.common.metrics.MetricsReporter;
import org.apache.kafka.common.metrics.Sensor;
import org.apache.kafka.common.metrics.Sensor.RecordingLevel;
import org.apache.kafka.common.serialization.Serializer;
import org.apache.kafka.common.utils.LogContext;
import org.apache.kafka.common.utils.Time;
import org.apache.kafka.streams.errors.InvalidStateStoreException;
import org.apache.kafka.streams.errors.ProcessorStateException;
import org.apache.kafka.streams.errors.StreamsException;
import org.apache.kafka.streams.errors.TopologyException;
import org.apache.kafka.streams.internals.ApiUtils;
import org.apache.kafka.streams.internals.metrics.ClientMetrics;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.KTable;
import org.apache.kafka.streams.kstream.Repartitioned;
import org.apache.kafka.streams.processor.Processor;
import org.apache.kafka.streams.processor.StateRestoreListener;
import org.apache.kafka.streams.processor.StateStore;
import org.apache.kafka.streams.processor.StreamPartitioner;
import org.apache.kafka.streams.processor.ThreadMetadata;
import org.apache.kafka.streams.processor.internals.ClientUtils;
import org.apache.kafka.streams.processor.internals.DefaultKafkaClientSupplier;
import org.apache.kafka.streams.processor.internals.GlobalStreamThread;
import org.apache.kafka.streams.processor.internals.InternalTopologyBuilder;
import org.apache.kafka.streams.processor.internals.ProcessorTopology;
import org.apache.kafka.streams.processor.internals.StateDirectory;
import org.apache.kafka.streams.processor.internals.StreamThread;
import org.apache.kafka.streams.processor.internals.StreamsMetadataState;
import org.apache.kafka.streams.processor.internals.Task;
import org.apache.kafka.streams.processor.internals.ThreadStateTransitionValidator;
import org.apache.kafka.streams.processor.internals.metrics.StreamsMetricsImpl;
import org.apache.kafka.streams.state.HostInfo;
import org.apache.kafka.streams.state.QueryableStoreType;
import org.apache.kafka.streams.state.StreamsMetadata;
import org.apache.kafka.streams.state.internals.GlobalStateStoreProvider;
import org.apache.kafka.streams.state.internals.QueryableStoreProvider;
import org.apache.kafka.streams.state.internals.RocksDBGenericOptionsToDbOptionsColumnFamilyOptionsAdapter;
import org.apache.kafka.streams.state.internals.StreamThreadStateStoreProvider;
import org.apache.kafka.streams.state.internals.metrics.RocksDBMetricsRecordingTrigger;
import org.slf4j.Logger;
import java.time.Duration;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedHashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.Set;
import java.util.TreeMap;
import java.util.UUID;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
import static org.apache.kafka.streams.StreamsConfig.METRICS_RECORDING_LEVEL_CONFIG;
import static org.apache.kafka.streams.internals.ApiUtils.prepareMillisCheckFailMsgPrefix;
import static org.apache.kafka.streams.processor.internals.ClientUtils.fetchEndOffsets;
/**
* A Kafka client that allows for performing continuous computation on input coming from one or more input topics and
* sends output to zero, one, or more output topics.
*
* The computational logic can be specified either by using the {@link Topology} to define a DAG topology of
* {@link Processor}s or by using the {@link StreamsBuilder} which provides the high-level DSL to define
* transformations.
*
* One {@code KafkaStreams} instance can contain one or more threads specified in the configs for the processing work.
*
* A {@code KafkaStreams} instance can co-ordinate with any other instances with the same
* {@link StreamsConfig#APPLICATION_ID_CONFIG application ID} (whether in the same process, on other processes on this
* machine, or on remote machines) as a single (possibly distributed) stream processing application.
* These instances will divide up the work based on the assignment of the input topic partitions so that all partitions
* are being consumed.
* If instances are added or fail, all (remaining) instances will rebalance the partition assignment among themselves
* to balance processing load and ensure that all input topic partitions are processed.
*
* Internally a {@code KafkaStreams} instance contains a normal {@link KafkaProducer} and {@link KafkaConsumer} instance
* that is used for reading input and writing output.
*
* A simple example might look like this:
*
{@code
* Properties props = new Properties();
* props.put(StreamsConfig.APPLICATION_ID_CONFIG, "my-stream-processing-application");
* props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
* props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
* props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
*
* StreamsBuilder builder = new StreamsBuilder();
* builder.stream("my-input-topic").mapValues(value -> String.valueOf(value.length())).to("my-output-topic");
*
* KafkaStreams streams = new KafkaStreams(builder.build(), props);
* streams.start();
* }
*
* @see org.apache.kafka.streams.StreamsBuilder
* @see org.apache.kafka.streams.Topology
*/
public class KafkaStreams implements AutoCloseable {
private static final String JMX_PREFIX = "kafka.streams";
// processId is expected to be unique across JVMs and to be used
// in userData of the subscription request to allow assignor be aware
// of the co-location of stream thread's consumers. It is for internal
// usage only and should not be exposed to users at all.
private final Time time;
private final Logger log;
private final String clientId;
private final Metrics metrics;
private final StreamsConfig config;
protected final StreamThread[] threads;
private final StateDirectory stateDirectory;
private final StreamsMetadataState streamsMetadataState;
private final ScheduledExecutorService stateDirCleaner;
private final ScheduledExecutorService rocksDBMetricsRecordingService;
private final QueryableStoreProvider queryableStoreProvider;
private final Admin adminClient;
private final StreamsMetricsImpl streamsMetrics;
private final ProcessorTopology taskTopology;
private final ProcessorTopology globalTaskTopology;
GlobalStreamThread globalStreamThread;
private KafkaStreams.StateListener stateListener;
private StateRestoreListener globalStateRestoreListener;
private final RocksDBMetricsRecordingTrigger rocksDBMetricsRecordingTrigger;
// container states
/**
* Kafka Streams states are the possible state that a Kafka Streams instance can be in.
* An instance must only be in one state at a time.
* The expected state transition with the following defined states is:
*
*
* +--------------+
* +<----- | Created (0) |
* | +-----+--------+
* | |
* | v
* | +----+--+------+
* | | Re- |
* +<----- | Balancing (1)| -------->+
* | +-----+-+------+ |
* | | ^ |
* | v | |
* | +--------------+ v
* | | Running (2) | -------->+
* | +------+-------+ |
* | | |
* | v |
* | +------+-------+ +----+-------+
* +-----> | Pending |<--- | Error (5) |
* | Shutdown (3) | +------------+
* +------+-------+
* |
* v
* +------+-------+
* | Not |
* | Running (4) |
* +--------------+
*
*
*
* Note the following:
* - RUNNING state will transit to REBALANCING if any of its threads is in PARTITION_REVOKED or PARTITIONS_ASSIGNED state
* - REBALANCING state will transit to RUNNING if all of its threads are in RUNNING state
* - Any state except NOT_RUNNING can go to PENDING_SHUTDOWN (whenever close is called)
* - Of special importance: If the global stream thread dies, or all stream threads die (or both) then
* the instance will be in the ERROR state. The user will need to close it.
*/
public enum State {
CREATED(1, 3), // 0
REBALANCING(2, 3, 5), // 1
RUNNING(1, 2, 3, 5), // 2
PENDING_SHUTDOWN(4), // 3
NOT_RUNNING, // 4
ERROR(3); // 5
private final Set validTransitions = new HashSet<>();
State(final Integer... validTransitions) {
this.validTransitions.addAll(Arrays.asList(validTransitions));
}
public boolean isRunningOrRebalancing() {
return equals(RUNNING) || equals(REBALANCING);
}
public boolean isValidTransition(final State newState) {
return validTransitions.contains(newState.ordinal());
}
}
private final Object stateLock = new Object();
protected volatile State state = State.CREATED;
private boolean waitOnState(final State targetState, final long waitMs) {
final long begin = time.milliseconds();
synchronized (stateLock) {
long elapsedMs = 0L;
while (state != targetState) {
if (waitMs > elapsedMs) {
final long remainingMs = waitMs - elapsedMs;
try {
stateLock.wait(remainingMs);
} catch (final InterruptedException e) {
// it is ok: just move on to the next iteration
}
} else {
log.debug("Cannot transit to {} within {}ms", targetState, waitMs);
return false;
}
elapsedMs = time.milliseconds() - begin;
}
return true;
}
}
/**
* Sets the state
* @param newState New state
*/
private boolean setState(final State newState) {
final State oldState;
synchronized (stateLock) {
oldState = state;
if (state == State.PENDING_SHUTDOWN && newState != State.NOT_RUNNING) {
// when the state is already in PENDING_SHUTDOWN, all other transitions than NOT_RUNNING (due to thread dying) will be
// refused but we do not throw exception here, to allow appropriate error handling
return false;
} else if (state == State.NOT_RUNNING && (newState == State.PENDING_SHUTDOWN || newState == State.NOT_RUNNING)) {
// when the state is already in NOT_RUNNING, its transition to PENDING_SHUTDOWN or NOT_RUNNING (due to consecutive close calls)
// will be refused but we do not throw exception here, to allow idempotent close calls
return false;
} else if (state == State.REBALANCING && newState == State.REBALANCING) {
// when the state is already in REBALANCING, it should not transit to REBALANCING again
return false;
} else if (state == State.ERROR && newState == State.ERROR) {
// when the state is already in ERROR, it should not transit to ERROR again
return false;
} else if (!state.isValidTransition(newState)) {
throw new IllegalStateException("Stream-client " + clientId + ": Unexpected state transition from " + oldState + " to " + newState);
} else {
log.info("State transition from {} to {}", oldState, newState);
}
state = newState;
stateLock.notifyAll();
}
// we need to call the user customized state listener outside the state lock to avoid potential deadlocks
if (stateListener != null) {
stateListener.onChange(newState, oldState);
}
return true;
}
/**
* Return the current {@link State} of this {@code KafkaStreams} instance.
*
* @return the current state of this Kafka Streams instance
*/
public State state() {
return state;
}
private boolean isRunningOrRebalancing() {
synchronized (stateLock) {
return state.isRunningOrRebalancing();
}
}
private void validateIsRunningOrRebalancing() {
if (!isRunningOrRebalancing()) {
throw new IllegalStateException("KafkaStreams is not running. State is " + state + ".");
}
}
/**
* Listen to {@link State} change events.
*/
public interface StateListener {
/**
* Called when state changes.
*
* @param newState new state
* @param oldState previous state
*/
void onChange(final State newState, final State oldState);
}
/**
* An app can set a single {@link KafkaStreams.StateListener} so that the app is notified when state changes.
*
* @param listener a new state listener
* @throws IllegalStateException if this {@code KafkaStreams} instance is not in state {@link State#CREATED CREATED}.
*/
public void setStateListener(final KafkaStreams.StateListener listener) {
synchronized (stateLock) {
if (state == State.CREATED) {
stateListener = listener;
} else {
throw new IllegalStateException("Can only set StateListener in CREATED state. Current state is: " + state);
}
}
}
/**
* Set the handler invoked when a {@link StreamsConfig#NUM_STREAM_THREADS_CONFIG internal thread} abruptly
* terminates due to an uncaught exception.
*
* @param eh the uncaught exception handler for all internal threads; {@code null} deletes the current handler
* @throws IllegalStateException if this {@code KafkaStreams} instance is not in state {@link State#CREATED CREATED}.
*/
public void setUncaughtExceptionHandler(final Thread.UncaughtExceptionHandler eh) {
synchronized (stateLock) {
if (state == State.CREATED) {
for (final StreamThread thread : threads) {
thread.setUncaughtExceptionHandler(eh);
}
if (globalStreamThread != null) {
globalStreamThread.setUncaughtExceptionHandler(eh);
}
} else {
throw new IllegalStateException("Can only set UncaughtExceptionHandler in CREATED state. " +
"Current state is: " + state);
}
}
}
/**
* Set the listener which is triggered whenever a {@link StateStore} is being restored in order to resume
* processing.
*
* @param globalStateRestoreListener The listener triggered when {@link StateStore} is being restored.
* @throws IllegalStateException if this {@code KafkaStreams} instance is not in state {@link State#CREATED CREATED}.
*/
public void setGlobalStateRestoreListener(final StateRestoreListener globalStateRestoreListener) {
synchronized (stateLock) {
if (state == State.CREATED) {
this.globalStateRestoreListener = globalStateRestoreListener;
} else {
throw new IllegalStateException("Can only set GlobalStateRestoreListener in CREATED state. " +
"Current state is: " + state);
}
}
}
/**
* Get read-only handle on global metrics registry, including streams client's own metrics plus
* its embedded producer, consumer and admin clients' metrics.
*
* @return Map of all metrics.
*/
public Map metrics() {
final Map result = new LinkedHashMap<>();
// producer and consumer clients are per-thread
for (final StreamThread thread : threads) {
result.putAll(thread.producerMetrics());
result.putAll(thread.consumerMetrics());
// admin client is shared, so we can actually move it
// to result.putAll(adminClient.metrics()).
// we did it intentionally just for flexibility.
result.putAll(thread.adminClientMetrics());
}
// global thread's consumer client
if (globalStreamThread != null) {
result.putAll(globalStreamThread.consumerMetrics());
}
// self streams metrics
result.putAll(metrics.metrics());
return Collections.unmodifiableMap(result);
}
/**
* Class that handles stream thread transitions
*/
final class StreamStateListener implements StreamThread.StateListener {
private final Map threadState;
private GlobalStreamThread.State globalThreadState;
// this lock should always be held before the state lock
private final Object threadStatesLock;
StreamStateListener(final Map threadState,
final GlobalStreamThread.State globalThreadState) {
this.threadState = threadState;
this.globalThreadState = globalThreadState;
this.threadStatesLock = new Object();
}
/**
* If all threads are dead set to ERROR
*/
private void maybeSetError() {
// check if we have at least one thread running
for (final StreamThread.State state : threadState.values()) {
if (state != StreamThread.State.DEAD) {
return;
}
}
if (setState(State.ERROR)) {
log.error("All stream threads have died. The instance will be in error state and should be closed.");
}
}
/**
* If all threads are up, including the global thread, set to RUNNING
*/
private void maybeSetRunning() {
// state can be transferred to RUNNING if all threads are either RUNNING or DEAD
for (final StreamThread.State state : threadState.values()) {
if (state != StreamThread.State.RUNNING && state != StreamThread.State.DEAD) {
return;
}
}
// the global state thread is relevant only if it is started. There are cases
// when we don't have a global state thread at all, e.g., when we don't have global KTables
if (globalThreadState != null && globalThreadState != GlobalStreamThread.State.RUNNING) {
return;
}
setState(State.RUNNING);
}
@Override
public synchronized void onChange(final Thread thread,
final ThreadStateTransitionValidator abstractNewState,
final ThreadStateTransitionValidator abstractOldState) {
synchronized (threadStatesLock) {
// StreamThreads first
if (thread instanceof StreamThread) {
final StreamThread.State newState = (StreamThread.State) abstractNewState;
threadState.put(thread.getId(), newState);
if (newState == StreamThread.State.PARTITIONS_REVOKED || newState == StreamThread.State.PARTITIONS_ASSIGNED) {
setState(State.REBALANCING);
} else if (newState == StreamThread.State.RUNNING) {
maybeSetRunning();
} else if (newState == StreamThread.State.DEAD) {
maybeSetError();
}
} else if (thread instanceof GlobalStreamThread) {
// global stream thread has different invariants
final GlobalStreamThread.State newState = (GlobalStreamThread.State) abstractNewState;
globalThreadState = newState;
if (newState == GlobalStreamThread.State.RUNNING) {
maybeSetRunning();
} else if (newState == GlobalStreamThread.State.DEAD) {
if (setState(State.ERROR)) {
log.error("Global thread has died. The instance will be in error state and should be closed.");
}
}
}
}
}
}
final class DelegatingStateRestoreListener implements StateRestoreListener {
private void throwOnFatalException(final Exception fatalUserException,
final TopicPartition topicPartition,
final String storeName) {
throw new StreamsException(
String.format("Fatal user code error in store restore listener for store %s, partition %s.",
storeName,
topicPartition),
fatalUserException);
}
@Override
public void onRestoreStart(final TopicPartition topicPartition,
final String storeName,
final long startingOffset,
final long endingOffset) {
if (globalStateRestoreListener != null) {
try {
globalStateRestoreListener.onRestoreStart(topicPartition, storeName, startingOffset, endingOffset);
} catch (final Exception fatalUserException) {
throwOnFatalException(fatalUserException, topicPartition, storeName);
}
}
}
@Override
public void onBatchRestored(final TopicPartition topicPartition,
final String storeName,
final long batchEndOffset,
final long numRestored) {
if (globalStateRestoreListener != null) {
try {
globalStateRestoreListener.onBatchRestored(topicPartition, storeName, batchEndOffset, numRestored);
} catch (final Exception fatalUserException) {
throwOnFatalException(fatalUserException, topicPartition, storeName);
}
}
}
@Override
public void onRestoreEnd(final TopicPartition topicPartition, final String storeName, final long totalRestored) {
if (globalStateRestoreListener != null) {
try {
globalStateRestoreListener.onRestoreEnd(topicPartition, storeName, totalRestored);
} catch (final Exception fatalUserException) {
throwOnFatalException(fatalUserException, topicPartition, storeName);
}
}
}
}
/**
* Create a {@code KafkaStreams} instance.
*
* Note: even if you never call {@link #start()} on a {@code KafkaStreams} instance,
* you still must {@link #close()} it to avoid resource leaks.
*
* @param topology the topology specifying the computational logic
* @param props properties for {@link StreamsConfig}
* @throws StreamsException if any fatal error occurs
*/
public KafkaStreams(final Topology topology,
final Properties props) {
this(topology.internalTopologyBuilder, new StreamsConfig(props), new DefaultKafkaClientSupplier());
}
/**
* Create a {@code KafkaStreams} instance.
*
* Note: even if you never call {@link #start()} on a {@code KafkaStreams} instance,
* you still must {@link #close()} it to avoid resource leaks.
*
* @param topology the topology specifying the computational logic
* @param props properties for {@link StreamsConfig}
* @param clientSupplier the Kafka clients supplier which provides underlying producer and consumer clients
* for the new {@code KafkaStreams} instance
* @throws StreamsException if any fatal error occurs
*/
public KafkaStreams(final Topology topology,
final Properties props,
final KafkaClientSupplier clientSupplier) {
this(topology.internalTopologyBuilder, new StreamsConfig(props), clientSupplier, Time.SYSTEM);
}
/**
* Create a {@code KafkaStreams} instance.
*
* Note: even if you never call {@link #start()} on a {@code KafkaStreams} instance,
* you still must {@link #close()} it to avoid resource leaks.
*
* @param topology the topology specifying the computational logic
* @param props properties for {@link StreamsConfig}
* @param time {@code Time} implementation; cannot be null
* @throws StreamsException if any fatal error occurs
*/
public KafkaStreams(final Topology topology,
final Properties props,
final Time time) {
this(topology.internalTopologyBuilder, new StreamsConfig(props), new DefaultKafkaClientSupplier(), time);
}
/**
* Create a {@code KafkaStreams} instance.
*
* Note: even if you never call {@link #start()} on a {@code KafkaStreams} instance,
* you still must {@link #close()} it to avoid resource leaks.
*
* @param topology the topology specifying the computational logic
* @param props properties for {@link StreamsConfig}
* @param clientSupplier the Kafka clients supplier which provides underlying producer and consumer clients
* for the new {@code KafkaStreams} instance
* @param time {@code Time} implementation; cannot be null
* @throws StreamsException if any fatal error occurs
*/
public KafkaStreams(final Topology topology,
final Properties props,
final KafkaClientSupplier clientSupplier,
final Time time) {
this(topology.internalTopologyBuilder, new StreamsConfig(props), clientSupplier, time);
}
/**
* @deprecated use {@link #KafkaStreams(Topology, Properties)} instead
*/
@Deprecated
public KafkaStreams(final Topology topology,
final StreamsConfig config) {
this(topology, config, new DefaultKafkaClientSupplier());
}
/**
* @deprecated use {@link #KafkaStreams(Topology, Properties, KafkaClientSupplier)} instead
*/
@Deprecated
public KafkaStreams(final Topology topology,
final StreamsConfig config,
final KafkaClientSupplier clientSupplier) {
this(topology.internalTopologyBuilder, config, clientSupplier);
}
/**
* @deprecated use {@link #KafkaStreams(Topology, Properties, Time)} instead
*/
@Deprecated
public KafkaStreams(final Topology topology,
final StreamsConfig config,
final Time time) {
this(topology.internalTopologyBuilder, config, new DefaultKafkaClientSupplier(), time);
}
private KafkaStreams(final InternalTopologyBuilder internalTopologyBuilder,
final StreamsConfig config,
final KafkaClientSupplier clientSupplier) throws StreamsException {
this(internalTopologyBuilder, config, clientSupplier, Time.SYSTEM);
}
private KafkaStreams(final InternalTopologyBuilder internalTopologyBuilder,
final StreamsConfig config,
final KafkaClientSupplier clientSupplier,
final Time time) throws StreamsException {
this.config = config;
this.time = time;
// re-write the physical topology according to the config
internalTopologyBuilder.rewriteTopology(config);
// sanity check to fail-fast in case we cannot build a ProcessorTopology due to an exception
taskTopology = internalTopologyBuilder.buildTopology();
globalTaskTopology = internalTopologyBuilder.buildGlobalStateTopology();
final boolean hasGlobalTopology = globalTaskTopology != null;
final boolean hasPersistentStores = taskTopology.hasPersistentLocalStore() ||
(hasGlobalTopology && globalTaskTopology.hasPersistentGlobalStore());
final UUID processId;
try {
stateDirectory = new StateDirectory(config, time, hasPersistentStores);
processId = stateDirectory.initializeProcessId();
} catch (final ProcessorStateException fatal) {
throw new StreamsException(fatal);
}
final String userClientId = config.getString(StreamsConfig.CLIENT_ID_CONFIG);
final String applicationId = config.getString(StreamsConfig.APPLICATION_ID_CONFIG);
if (userClientId.length() <= 0) {
clientId = applicationId + "-" + processId;
} else {
clientId = userClientId;
}
final LogContext logContext = new LogContext(String.format("stream-client [%s] ", clientId));
this.log = logContext.logger(getClass());
final MetricConfig metricConfig = new MetricConfig()
.samples(config.getInt(StreamsConfig.METRICS_NUM_SAMPLES_CONFIG))
.recordLevel(Sensor.RecordingLevel.forName(config.getString(StreamsConfig.METRICS_RECORDING_LEVEL_CONFIG)))
.timeWindow(config.getLong(StreamsConfig.METRICS_SAMPLE_WINDOW_MS_CONFIG), TimeUnit.MILLISECONDS);
final List reporters = config.getConfiguredInstances(StreamsConfig.METRIC_REPORTER_CLASSES_CONFIG,
MetricsReporter.class,
Collections.singletonMap(StreamsConfig.CLIENT_ID_CONFIG, clientId));
final JmxReporter jmxReporter = new JmxReporter();
jmxReporter.configure(config.originals());
reporters.add(jmxReporter);
final MetricsContext metricsContext = new KafkaMetricsContext(JMX_PREFIX,
config.originalsWithPrefix(CommonClientConfigs.METRICS_CONTEXT_PREFIX));
metrics = new Metrics(metricConfig, reporters, time, metricsContext);
streamsMetrics =
new StreamsMetricsImpl(metrics, clientId, config.getString(StreamsConfig.BUILT_IN_METRICS_VERSION_CONFIG));
rocksDBMetricsRecordingTrigger = new RocksDBMetricsRecordingTrigger(time);
streamsMetrics.setRocksDBMetricsRecordingTrigger(rocksDBMetricsRecordingTrigger);
ClientMetrics.addVersionMetric(streamsMetrics);
ClientMetrics.addCommitIdMetric(streamsMetrics);
ClientMetrics.addApplicationIdMetric(streamsMetrics, config.getString(StreamsConfig.APPLICATION_ID_CONFIG));
ClientMetrics.addTopologyDescriptionMetric(streamsMetrics, internalTopologyBuilder.describe().toString());
ClientMetrics.addStateMetric(streamsMetrics, (metricsConfig, now) -> state);
log.info("Kafka Streams version: {}", ClientMetrics.version());
log.info("Kafka Streams commit ID: {}", ClientMetrics.commitId());
streamsMetadataState = new StreamsMetadataState(
internalTopologyBuilder,
parseHostInfo(config.getString(StreamsConfig.APPLICATION_SERVER_CONFIG)));
final int numStreamThreads;
if (internalTopologyBuilder.hasNoNonGlobalTopology()) {
log.info("Overriding number of StreamThreads to zero for global-only topology");
numStreamThreads = 0;
} else {
numStreamThreads = config.getInt(StreamsConfig.NUM_STREAM_THREADS_CONFIG);
}
// create the stream thread, global update thread, and cleanup thread
threads = new StreamThread[numStreamThreads];
if (numStreamThreads == 0 && !hasGlobalTopology) {
log.error("Topology with no input topics will create no stream threads and no global thread.");
throw new TopologyException("Topology has no stream threads and no global threads, " +
"must subscribe to at least one source topic or global table.");
}
long totalCacheSize = config.getLong(StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG);
if (totalCacheSize < 0) {
totalCacheSize = 0;
log.warn("Negative cache size passed in. Reverting to cache size of 0 bytes.");
}
final long cacheSizePerThread = totalCacheSize / (threads.length + (hasGlobalTopology ? 1 : 0));
final StateRestoreListener delegatingStateRestoreListener = new DelegatingStateRestoreListener();
GlobalStreamThread.State globalThreadState = null;
if (hasGlobalTopology) {
final String globalThreadId = clientId + "-GlobalStreamThread";
globalStreamThread = new GlobalStreamThread(
globalTaskTopology,
config,
clientSupplier.getGlobalConsumer(config.getGlobalConsumerConfigs(clientId)),
stateDirectory,
cacheSizePerThread,
streamsMetrics,
time,
globalThreadId,
delegatingStateRestoreListener
);
globalThreadState = globalStreamThread.state();
}
// use client id instead of thread client id since this admin client may be shared among threads
adminClient = clientSupplier.getAdmin(config.getAdminConfigs(ClientUtils.getSharedAdminClientId(clientId)));
final Map threadState = new HashMap<>(threads.length);
final ArrayList storeProviders = new ArrayList<>();
for (int i = 0; i < threads.length; i++) {
threads[i] = StreamThread.create(
internalTopologyBuilder,
config,
clientSupplier,
adminClient,
processId,
clientId,
streamsMetrics,
time,
streamsMetadataState,
cacheSizePerThread,
stateDirectory,
delegatingStateRestoreListener,
i + 1);
threadState.put(threads[i].getId(), threads[i].state());
storeProviders.add(new StreamThreadStateStoreProvider(threads[i]));
}
ClientMetrics.addNumAliveStreamThreadMetric(streamsMetrics, (metricsConfig, now) ->
Math.toIntExact(Arrays.stream(threads).filter(thread -> thread.state().isAlive()).count()));
final StreamStateListener streamStateListener = new StreamStateListener(threadState, globalThreadState);
if (hasGlobalTopology) {
globalStreamThread.setStateListener(streamStateListener);
}
for (final StreamThread thread : threads) {
thread.setStateListener(streamStateListener);
}
final GlobalStateStoreProvider globalStateStoreProvider = new GlobalStateStoreProvider(internalTopologyBuilder.globalStateStores());
queryableStoreProvider = new QueryableStoreProvider(storeProviders, globalStateStoreProvider);
stateDirCleaner = setupStateDirCleaner();
maybeWarnAboutCodeInRocksDBConfigSetter(log, config);
rocksDBMetricsRecordingService = maybeCreateRocksDBMetricsRecordingService(clientId, config);
}
private ScheduledExecutorService setupStateDirCleaner() {
return Executors.newSingleThreadScheduledExecutor(r -> {
final Thread thread = new Thread(r, clientId + "-CleanupThread");
thread.setDaemon(true);
return thread;
});
}
private static ScheduledExecutorService maybeCreateRocksDBMetricsRecordingService(final String clientId,
final StreamsConfig config) {
if (RecordingLevel.forName(config.getString(METRICS_RECORDING_LEVEL_CONFIG)) == RecordingLevel.DEBUG) {
return Executors.newSingleThreadScheduledExecutor(r -> {
final Thread thread = new Thread(r, clientId + "-RocksDBMetricsRecordingTrigger");
thread.setDaemon(true);
return thread;
});
}
return null;
}
private static void maybeWarnAboutCodeInRocksDBConfigSetter(final Logger log,
final StreamsConfig config) {
if (config.getClass(StreamsConfig.ROCKSDB_CONFIG_SETTER_CLASS_CONFIG) != null) {
RocksDBGenericOptionsToDbOptionsColumnFamilyOptionsAdapter.logWarning(log);
}
}
private static HostInfo parseHostInfo(final String endPoint) {
final HostInfo hostInfo = HostInfo.buildFromEndpoint(endPoint);
if (hostInfo == null) {
return StreamsMetadataState.UNKNOWN_HOST;
} else {
return hostInfo;
}
}
/**
* Start the {@code KafkaStreams} instance by starting all its threads.
* This function is expected to be called only once during the life cycle of the client.
*
* Because threads are started in the background, this method does not block.
* However, if you have global stores in your topology, this method blocks until all global stores are restored.
* As a consequence, any fatal exception that happens during processing is by default only logged.
* If you want to be notified about dying threads, you can
* {@link #setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler) register an uncaught exception handler}
* before starting the {@code KafkaStreams} instance.
*
* Note, for brokers with version {@code 0.9.x} or lower, the broker version cannot be checked.
* There will be no error and the client will hang and retry to verify the broker version until it
* {@link StreamsConfig#REQUEST_TIMEOUT_MS_CONFIG times out}.
* @throws IllegalStateException if process was already started
* @throws StreamsException if the Kafka brokers have version 0.10.0.x or
* if {@link StreamsConfig#PROCESSING_GUARANTEE_CONFIG exactly-once} is enabled for pre 0.11.0.x brokers
*/
public synchronized void start() throws IllegalStateException, StreamsException {
if (setState(State.REBALANCING)) {
log.debug("Starting Streams client");
if (globalStreamThread != null) {
globalStreamThread.start();
}
for (final StreamThread thread : threads) {
thread.start();
}
final Long cleanupDelay = config.getLong(StreamsConfig.STATE_CLEANUP_DELAY_MS_CONFIG);
stateDirCleaner.scheduleAtFixedRate(() -> {
// we do not use lock here since we only read on the value and act on it
if (state == State.RUNNING) {
stateDirectory.cleanRemovedTasks(cleanupDelay);
}
}, cleanupDelay, cleanupDelay, TimeUnit.MILLISECONDS);
final long recordingDelay = 0;
final long recordingInterval = 1;
if (rocksDBMetricsRecordingService != null) {
rocksDBMetricsRecordingService.scheduleAtFixedRate(
rocksDBMetricsRecordingTrigger,
recordingDelay,
recordingInterval,
TimeUnit.MINUTES
);
}
} else {
throw new IllegalStateException("The client is either already started or already stopped, cannot re-start");
}
}
/**
* Shutdown this {@code KafkaStreams} instance by signaling all the threads to stop, and then wait for them to join.
* This will block until all threads have stopped.
*/
public void close() {
close(Long.MAX_VALUE);
}
/**
* Shutdown this {@code KafkaStreams} by signaling all the threads to stop, and then wait up to the timeout for the
* threads to join.
* A {@code timeout} of 0 means to wait forever.
*
* @param timeout how long to wait for the threads to shutdown. Can't be negative. If {@code timeout=0} just checking the state and return immediately.
* @param timeUnit unit of time used for timeout
* @return {@code true} if all threads were successfully stopped—{@code false} if the timeout was reached
* before all threads stopped
* Note that this method must not be called in the {@code onChange} callback of {@link StateListener}.
* @deprecated Use {@link #close(Duration)} instead; note, that {@link #close(Duration)} has different semantics and does not block on zero, e.g., `Duration.ofMillis(0)`.
*/
@Deprecated
public synchronized boolean close(final long timeout, final TimeUnit timeUnit) {
long timeoutMs = timeUnit.toMillis(timeout);
log.debug("Stopping Streams client with timeoutMillis = {} ms. You are using deprecated method. " +
"Please, consider update your code.", timeoutMs);
if (timeoutMs < 0) {
timeoutMs = 0;
} else if (timeoutMs == 0) {
timeoutMs = Long.MAX_VALUE;
}
return close(timeoutMs);
}
private boolean close(final long timeoutMs) {
if (!setState(State.PENDING_SHUTDOWN)) {
// if transition failed, it means it was either in PENDING_SHUTDOWN
// or NOT_RUNNING already; just check that all threads have been stopped
log.info("Already in the pending shutdown state, wait to complete shutdown");
} else {
stateDirCleaner.shutdownNow();
if (rocksDBMetricsRecordingService != null) {
rocksDBMetricsRecordingService.shutdownNow();
}
// wait for all threads to join in a separate thread;
// save the current thread so that if it is a stream thread
// we don't attempt to join it and cause a deadlock
final Thread shutdownThread = new Thread(() -> {
// notify all the threads to stop; avoid deadlocks by stopping any
// further state reports from the thread since we're shutting down
for (final StreamThread thread : threads) {
thread.shutdown();
}
for (final StreamThread thread : threads) {
try {
if (!thread.isRunning()) {
thread.join();
}
} catch (final InterruptedException ex) {
Thread.currentThread().interrupt();
}
}
if (globalStreamThread != null) {
globalStreamThread.shutdown();
}
if (globalStreamThread != null && !globalStreamThread.stillRunning()) {
try {
globalStreamThread.join();
} catch (final InterruptedException e) {
Thread.currentThread().interrupt();
}
globalStreamThread = null;
}
stateDirectory.close();
adminClient.close();
streamsMetrics.removeAllClientLevelMetrics();
metrics.close();
setState(State.NOT_RUNNING);
}, "kafka-streams-close-thread");
shutdownThread.setDaemon(true);
shutdownThread.start();
}
if (waitOnState(State.NOT_RUNNING, timeoutMs)) {
log.info("Streams client stopped completely");
return true;
} else {
log.info("Streams client cannot stop completely within the timeout");
return false;
}
}
/**
* Shutdown this {@code KafkaStreams} by signaling all the threads to stop, and then wait up to the timeout for the
* threads to join.
* A {@code timeout} of Duration.ZERO (or any other zero duration) makes the close operation asynchronous.
* Negative-duration timeouts are rejected.
*
* @param timeout how long to wait for the threads to shutdown
* @return {@code true} if all threads were successfully stopped—{@code false} if the timeout was reached
* before all threads stopped
* Note that this method must not be called in the {@link StateListener#onChange(KafkaStreams.State, KafkaStreams.State)} callback of {@link StateListener}.
* @throws IllegalArgumentException if {@code timeout} can't be represented as {@code long milliseconds}
*/
public synchronized boolean close(final Duration timeout) throws IllegalArgumentException {
final String msgPrefix = prepareMillisCheckFailMsgPrefix(timeout, "timeout");
final long timeoutMs = ApiUtils.validateMillisecondDuration(timeout, msgPrefix);
if (timeoutMs < 0) {
throw new IllegalArgumentException("Timeout can't be negative.");
}
log.debug("Stopping Streams client with timeoutMillis = {} ms.", timeoutMs);
return close(timeoutMs);
}
/**
* Do a clean up of the local {@link StateStore} directory ({@link StreamsConfig#STATE_DIR_CONFIG}) by deleting all
* data with regard to the {@link StreamsConfig#APPLICATION_ID_CONFIG application ID}.
*
* May only be called either before this {@code KafkaStreams} instance is {@link #start() started} or after the
* instance is {@link #close() closed}.
*
* Calling this method triggers a restore of local {@link StateStore}s on the next {@link #start() application start}.
*
* @throws IllegalStateException if this {@code KafkaStreams} instance is currently {@link State#RUNNING running}
* @throws StreamsException if cleanup failed
*/
public void cleanUp() {
if (isRunningOrRebalancing()) {
throw new IllegalStateException("Cannot clean up while running.");
}
stateDirectory.clean();
}
/**
* Find all currently running {@code KafkaStreams} instances (potentially remotely) that use the same
* {@link StreamsConfig#APPLICATION_ID_CONFIG application ID} as this instance (i.e., all instances that belong to
* the same Kafka Streams application) and return {@link StreamsMetadata} for each discovered instance.
*
* Note: this is a point in time view and it may change due to partition reassignment.
*
* @return {@link StreamsMetadata} for each {@code KafkaStreams} instances of this application
*/
public Collection allMetadata() {
validateIsRunningOrRebalancing();
return streamsMetadataState.getAllMetadata();
}
/**
* Find all currently running {@code KafkaStreams} instances (potentially remotely) that
*
* - use the same {@link StreamsConfig#APPLICATION_ID_CONFIG application ID} as this instance (i.e., all
* instances that belong to the same Kafka Streams application)
* - and that contain a {@link StateStore} with the given {@code storeName}
*
* and return {@link StreamsMetadata} for each discovered instance.
*
* Note: this is a point in time view and it may change due to partition reassignment.
*
* @param storeName the {@code storeName} to find metadata for
* @return {@link StreamsMetadata} for each {@code KafkaStreams} instances with the provide {@code storeName} of
* this application
*/
public Collection allMetadataForStore(final String storeName) {
validateIsRunningOrRebalancing();
return streamsMetadataState.getAllMetadataForStore(storeName);
}
/**
* Find the currently running {@code KafkaStreams} instance (potentially remotely) that
*
* - use the same {@link StreamsConfig#APPLICATION_ID_CONFIG application ID} as this instance (i.e., all
* instances that belong to the same Kafka Streams application)
* - and that contain a {@link StateStore} with the given {@code storeName}
* - and the {@link StateStore} contains the given {@code key}
*
* and return {@link StreamsMetadata} for it.
*
* This will use the default Kafka Streams partitioner to locate the partition.
* If a {@link StreamPartitioner custom partitioner} has been
* {@link ProducerConfig#PARTITIONER_CLASS_CONFIG configured} via {@link StreamsConfig} or
* {@link KStream#repartition(Repartitioned)}, or if the original {@link KTable}'s input
* {@link StreamsBuilder#table(String) topic} is partitioned differently, please use
* {@link #metadataForKey(String, Object, StreamPartitioner)}.
*
* Note:
*
* - this is a point in time view and it may change due to partition reassignment
* - the key may not exist in the {@link StateStore}; this method provides a way of finding which host it
* would exist on
* - if this is for a window store the serializer should be the serializer for the record key,
* not the window serializer
*
*
* @param storeName the {@code storeName} to find metadata for
* @param key the key to find metadata for
* @param keySerializer serializer for the key
* @param key type
* @return {@link StreamsMetadata} for the {@code KafkaStreams} instance with the provided {@code storeName} and
* {@code key} of this application or {@link StreamsMetadata#NOT_AVAILABLE} if Kafka Streams is (re-)initializing,
* or {@code null} if no matching metadata could be found.
* @deprecated Since 2.5. Use {@link #queryMetadataForKey(String, Object, Serializer)} instead.
*/
@Deprecated
public StreamsMetadata metadataForKey(final String storeName,
final K key,
final Serializer keySerializer) {
validateIsRunningOrRebalancing();
return streamsMetadataState.getMetadataWithKey(storeName, key, keySerializer);
}
/**
* Find the currently running {@code KafkaStreams} instance (potentially remotely) that
*
* - use the same {@link StreamsConfig#APPLICATION_ID_CONFIG application ID} as this instance (i.e., all
* instances that belong to the same Kafka Streams application)
* - and that contain a {@link StateStore} with the given {@code storeName}
* - and the {@link StateStore} contains the given {@code key}
*
* and return {@link StreamsMetadata} for it.
*
* Note:
*
* - this is a point in time view and it may change due to partition reassignment
* - the key may not exist in the {@link StateStore}; this method provides a way of finding which host it
* would exist on
*
*
* @param storeName the {@code storeName} to find metadata for
* @param key the key to find metadata for
* @param partitioner the partitioner to be use to locate the host for the key
* @param key type
* @return {@link StreamsMetadata} for the {@code KafkaStreams} instance with the provided {@code storeName} and
* {@code key} of this application or {@link StreamsMetadata#NOT_AVAILABLE} if Kafka Streams is (re-)initializing,
* or {@code null} if no matching metadata could be found.
* @deprecated Since 2.5. Use {@link #queryMetadataForKey(String, Object, StreamPartitioner)} instead.
*/
@Deprecated
public StreamsMetadata metadataForKey(final String storeName,
final K key,
final StreamPartitioner super K, ?> partitioner) {
validateIsRunningOrRebalancing();
return streamsMetadataState.getMetadataWithKey(storeName, key, partitioner);
}
/**
* Finds the metadata containing the active hosts and standby hosts where the key being queried would reside.
*
* @param storeName the {@code storeName} to find metadata for
* @param key the key to find metadata for
* @param keySerializer serializer for the key
* @param key type
* Returns {@link KeyQueryMetadata} containing all metadata about hosting the given key for the given store,
* or {@code null} if no matching metadata could be found.
*/
public KeyQueryMetadata queryMetadataForKey(final String storeName,
final K key,
final Serializer keySerializer) {
validateIsRunningOrRebalancing();
return streamsMetadataState.getKeyQueryMetadataForKey(storeName, key, keySerializer);
}
/**
* Finds the metadata containing the active hosts and standby hosts where the key being queried would reside.
*
* @param storeName the {@code storeName} to find metadata for
* @param key the key to find metadata for
* @param partitioner the partitioner to be use to locate the host for the key
* @param key type
* Returns {@link KeyQueryMetadata} containing all metadata about hosting the given key for the given store, using the
* the supplied partitioner, or {@code null} if no matching metadata could be found.
*/
public KeyQueryMetadata queryMetadataForKey(final String storeName,
final K key,
final StreamPartitioner super K, ?> partitioner) {
validateIsRunningOrRebalancing();
return streamsMetadataState.getKeyQueryMetadataForKey(storeName, key, partitioner);
}
/**
* @deprecated since 2.5 release; use {@link #store(StoreQueryParameters)} instead
*/
@Deprecated
public T store(final String storeName, final QueryableStoreType queryableStoreType) {
return store(StoreQueryParameters.fromNameAndType(storeName, queryableStoreType));
}
/**
* Get a facade wrapping the local {@link StateStore} instances with the provided {@link StoreQueryParameters}.
* The returned object can be used to query the {@link StateStore} instances.
*
* @param storeQueryParameters the parameters used to fetch a queryable store
* @return A facade wrapping the local {@link StateStore} instances
* @throws InvalidStateStoreException If the specified store name does not exist in the topology
* or if the Streams instance isn't in a queryable state.
* If the store's type does not match the QueryableStoreType,
* the Streams instance is not in a queryable state with respect
* to the parameters, or if the store is not available locally, then
* an InvalidStateStoreException is thrown upon store access.
*/
public T store(final StoreQueryParameters storeQueryParameters) {
final String storeName = storeQueryParameters.storeName();
if ((taskTopology == null || !taskTopology.hasStore(storeName))
&& (globalTaskTopology == null || !globalTaskTopology.hasStore(storeName))) {
throw new InvalidStateStoreException(
"Cannot get state store " + storeName + " because no such store is registered in the topology."
);
}
validateIsRunningOrRebalancing();
return queryableStoreProvider.getStore(storeQueryParameters);
}
/**
* Returns runtime information about the local threads of this {@link KafkaStreams} instance.
*
* @return the set of {@link ThreadMetadata}.
*/
public Set localThreadsMetadata() {
validateIsRunningOrRebalancing();
final Set threadMetadata = new HashSet<>();
for (final StreamThread thread : threads) {
threadMetadata.add(thread.threadMetadata());
}
return threadMetadata;
}
/**
* Returns {@link LagInfo}, for all store partitions (active or standby) local to this Streams instance. Note that the
* values returned are just estimates and meant to be used for making soft decisions on whether the data in the store
* partition is fresh enough for querying.
*
* Note: Each invocation of this method issues a call to the Kafka brokers. Thus its advisable to limit the frequency
* of invocation to once every few seconds.
*
* @return map of store names to another map of partition to {@link LagInfo}s
* @throws StreamsException if the admin client request throws exception
*/
public Map> allLocalStorePartitionLags() {
final Map> localStorePartitionLags = new TreeMap<>();
final Collection allPartitions = new LinkedList<>();
final Map allChangelogPositions = new HashMap<>();
// Obtain the current positions, of all the active-restoring and standby tasks
for (final StreamThread streamThread : threads) {
for (final Task task : streamThread.allTasks().values()) {
allPartitions.addAll(task.changelogPartitions());
// Note that not all changelog partitions, will have positions; since some may not have started
allChangelogPositions.putAll(task.changelogOffsets());
}
}
log.debug("Current changelog positions: {}", allChangelogPositions);
final Map allEndOffsets;
try {
allEndOffsets = fetchEndOffsets(allPartitions, adminClient);
} catch (final TimeoutException e) {
throw new StreamsException("Timed out obtaining end offsets from kafka", e);
}
log.debug("Current end offsets :{}", allEndOffsets);
for (final Map.Entry entry : allEndOffsets.entrySet()) {
// Avoiding an extra admin API lookup by computing lags for not-yet-started restorations
// from zero instead of the real "earliest offset" for the changelog.
// This will yield the correct relative order of lagginess for the tasks in the cluster,
// but it is an over-estimate of how much work remains to restore the task from scratch.
final long earliestOffset = 0L;
final long changelogPosition = allChangelogPositions.getOrDefault(entry.getKey(), earliestOffset);
final long latestOffset = entry.getValue().offset();
final LagInfo lagInfo = new LagInfo(changelogPosition == Task.LATEST_OFFSET ? latestOffset : changelogPosition, latestOffset);
final String storeName = streamsMetadataState.getStoreForChangelogTopic(entry.getKey().topic());
localStorePartitionLags.computeIfAbsent(storeName, ignored -> new TreeMap<>())
.put(entry.getKey().partition(), lagInfo);
}
return Collections.unmodifiableMap(localStorePartitionLags);
}
}