
org.apache.lucene.util.SloppyMath Maven / Gradle / Ivy
Show all versions of org.apache.servicemix.bundles.lucene
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.util;
/* some code derived from jodk: http://code.google.com/p/jodk/ (apache 2.0)
* asin() derived from fdlibm: http://www.netlib.org/fdlibm/e_asin.c (public domain):
* =============================================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* =============================================================================
*/
/** Math functions that trade off accuracy for speed. */
public class SloppyMath {
/**
* Returns the Haversine distance in meters between two points specified in decimal degrees
* (latitude/longitude). This works correctly even if the dateline is between the two points.
*
* Error is at most 4E-1 (40cm) from the actual haversine distance, but is typically much
* smaller for reasonable distances: around 1E-5 (0.01mm) for distances less than 1000km.
*
* @param lat1 Latitude of the first point.
* @param lon1 Longitude of the first point.
* @param lat2 Latitude of the second point.
* @param lon2 Longitude of the second point.
* @return distance in meters.
*/
public static double haversinMeters(double lat1, double lon1, double lat2, double lon2) {
return haversinMeters(haversinSortKey(lat1, lon1, lat2, lon2));
}
/**
* Returns the Haversine distance in meters between two points given the previous result from
* {@link #haversinSortKey(double, double, double, double)}
*
* @return distance in meters.
*/
public static double haversinMeters(double sortKey) {
return TO_METERS * 2 * asin(Math.min(1, Math.sqrt(sortKey * 0.5)));
}
/**
* Returns a sort key for distance. This is less expensive to compute than {@link
* #haversinMeters(double, double, double, double)}, but it always compares the same. This can be
* converted into an actual distance with {@link #haversinMeters(double)}, which effectively does
* the second half of the computation.
*/
public static double haversinSortKey(double lat1, double lon1, double lat2, double lon2) {
double x1 = Math.toRadians(lat1);
double x2 = Math.toRadians(lat2);
double h1 = 1 - cos(x1 - x2);
double h2 = 1 - cos(Math.toRadians(lon1 - lon2));
double h = h1 + cos(x1) * cos(x2) * h2;
// clobber crazy precision so subsequent rounding does not create ties.
return Double.longBitsToDouble(Double.doubleToRawLongBits(h) & 0xFFFFFFFFFFFFFFF8L);
}
/**
* Returns the trigonometric cosine of an angle.
*
*
Error is around 1E-15.
*
*
Special cases:
*
*
* - If the argument is {@code NaN} or an infinity, then the result is {@code NaN}.
*
*
* @param a an angle, in radians.
* @return the cosine of the argument.
* @see Math#cos(double)
*/
public static double cos(double a) {
if (a < 0.0) {
a = -a;
}
if (a > SIN_COS_MAX_VALUE_FOR_INT_MODULO) {
return Math.cos(a);
}
// index: possibly outside tables range.
int index = (int) (a * SIN_COS_INDEXER + 0.5);
double delta = (a - index * SIN_COS_DELTA_HI) - index * SIN_COS_DELTA_LO;
// Making sure index is within tables range.
// Last value of each table is the same than first, so we ignore it (tabs size minus one) for
// modulo.
index &= (SIN_COS_TABS_SIZE - 2); // index % (SIN_COS_TABS_SIZE-1)
double indexCos = cosTab[index];
double indexSin = sinTab[index];
return indexCos
+ delta
* (-indexSin
+ delta
* (-indexCos * ONE_DIV_F2
+ delta * (indexSin * ONE_DIV_F3 + delta * indexCos * ONE_DIV_F4)));
}
/**
* Returns the arc sine of a value.
*
* The returned angle is in the range -pi/2 through pi/2. Error is around 1E-7.
*
*
Special cases:
*
*
* - If the argument is {@code NaN} or its absolute value is greater than 1, then the result
* is {@code NaN}.
*
*
* @param a the value whose arc sine is to be returned.
* @return arc sine of the argument
* @see Math#asin(double)
*/
// because asin(-x) = -asin(x), asin(x) only needs to be computed on [0,1].
// ---> we only have to compute asin(x) on [0,1].
// For values not close to +-1, we use look-up tables;
// for values near +-1, we use code derived from fdlibm.
public static double asin(double a) {
boolean negateResult;
if (a < 0.0) {
a = -a;
negateResult = true;
} else {
negateResult = false;
}
if (a <= ASIN_MAX_VALUE_FOR_TABS) {
int index = (int) (a * ASIN_INDEXER + 0.5);
double delta = a - index * ASIN_DELTA;
double result =
asinTab[index]
+ delta
* (asinDer1DivF1Tab[index]
+ delta
* (asinDer2DivF2Tab[index]
+ delta
* (asinDer3DivF3Tab[index] + delta * asinDer4DivF4Tab[index])));
return negateResult ? -result : result;
} else { // value > ASIN_MAX_VALUE_FOR_TABS, or value is NaN
// This part is derived from fdlibm.
if (a < 1.0) {
double t = (1.0 - a) * 0.5;
double p =
t
* (ASIN_PS0
+ t
* (ASIN_PS1
+ t * (ASIN_PS2 + t * (ASIN_PS3 + t * (ASIN_PS4 + t * ASIN_PS5)))));
double q = 1.0 + t * (ASIN_QS1 + t * (ASIN_QS2 + t * (ASIN_QS3 + t * ASIN_QS4)));
double s = Math.sqrt(t);
double z = s + s * (p / q);
double result = ASIN_PIO2_HI - ((z + z) - ASIN_PIO2_LO);
return negateResult ? -result : result;
} else { // value >= 1.0, or value is NaN
if (a == 1.0) {
return negateResult ? -Math.PI / 2 : Math.PI / 2;
} else {
return Double.NaN;
}
}
}
}
// Earth's mean radius, in meters and kilometers; see
// http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf
private static final double TO_METERS = 6_371_008.7714D; // equatorial radius
// cos/asin
private static final double ONE_DIV_F2 = 1 / 2.0;
private static final double ONE_DIV_F3 = 1 / 6.0;
private static final double ONE_DIV_F4 = 1 / 24.0;
// 1.57079632673412561417e+00 first 33 bits of pi/2
private static final double PIO2_HI = Double.longBitsToDouble(0x3FF921FB54400000L);
// 6.07710050650619224932e-11 pi/2 - PIO2_HI
private static final double PIO2_LO = Double.longBitsToDouble(0x3DD0B4611A626331L);
private static final double TWOPI_HI = 4 * PIO2_HI;
private static final double TWOPI_LO = 4 * PIO2_LO;
private static final int SIN_COS_TABS_SIZE = (1 << 11) + 1;
private static final double SIN_COS_DELTA_HI = TWOPI_HI / (SIN_COS_TABS_SIZE - 1);
private static final double SIN_COS_DELTA_LO = TWOPI_LO / (SIN_COS_TABS_SIZE - 1);
private static final double SIN_COS_INDEXER = 1 / (SIN_COS_DELTA_HI + SIN_COS_DELTA_LO);
private static final double[] sinTab = new double[SIN_COS_TABS_SIZE];
private static final double[] cosTab = new double[SIN_COS_TABS_SIZE];
// Max abs value for fast modulo, above which we use regular angle normalization.
// This value must be < (Integer.MAX_VALUE / SIN_COS_INDEXER), to stay in range of int type.
// The higher it is, the higher the error, but also the faster it is for lower values.
// If you set it to ((Integer.MAX_VALUE / SIN_COS_INDEXER) * 0.99), worse accuracy on double range
// is about 1e-10.
static final double SIN_COS_MAX_VALUE_FOR_INT_MODULO =
((Integer.MAX_VALUE >> 9) / SIN_COS_INDEXER) * 0.99;
// Supposed to be >= sin(77.2deg), as fdlibm code is supposed to work with values > 0.975,
// but seems to work well enough as long as value >= sin(25deg).
private static final double ASIN_MAX_VALUE_FOR_TABS = StrictMath.sin(Math.toRadians(73.0));
private static final int ASIN_TABS_SIZE = (1 << 13) + 1;
private static final double ASIN_DELTA = ASIN_MAX_VALUE_FOR_TABS / (ASIN_TABS_SIZE - 1);
private static final double ASIN_INDEXER = 1 / ASIN_DELTA;
private static final double[] asinTab = new double[ASIN_TABS_SIZE];
private static final double[] asinDer1DivF1Tab = new double[ASIN_TABS_SIZE];
private static final double[] asinDer2DivF2Tab = new double[ASIN_TABS_SIZE];
private static final double[] asinDer3DivF3Tab = new double[ASIN_TABS_SIZE];
private static final double[] asinDer4DivF4Tab = new double[ASIN_TABS_SIZE];
// 1.57079632679489655800e+00
private static final double ASIN_PIO2_HI = Double.longBitsToDouble(0x3FF921FB54442D18L);
// 6.12323399573676603587e-17
private static final double ASIN_PIO2_LO = Double.longBitsToDouble(0x3C91A62633145C07L);
// 1.66666666666666657415e-01
private static final double ASIN_PS0 = Double.longBitsToDouble(0x3fc5555555555555L);
// -3.25565818622400915405e-01
private static final double ASIN_PS1 = Double.longBitsToDouble(0xbfd4d61203eb6f7dL);
// 2.01212532134862925881e-01
private static final double ASIN_PS2 = Double.longBitsToDouble(0x3fc9c1550e884455L);
// -4.00555345006794114027e-02
private static final double ASIN_PS3 = Double.longBitsToDouble(0xbfa48228b5688f3bL);
// 7.91534994289814532176e-04
private static final double ASIN_PS4 = Double.longBitsToDouble(0x3f49efe07501b288L);
// 3.47933107596021167570e-05
private static final double ASIN_PS5 = Double.longBitsToDouble(0x3f023de10dfdf709L);
// -2.40339491173441421878e+00
private static final double ASIN_QS1 = Double.longBitsToDouble(0xc0033a271c8a2d4bL);
// 2.02094576023350569471e+00
private static final double ASIN_QS2 = Double.longBitsToDouble(0x40002ae59c598ac8L);
// -6.88283971605453293030e-01
private static final double ASIN_QS3 = Double.longBitsToDouble(0xbfe6066c1b8d0159L);
// 7.70381505559019352791e-02
private static final double ASIN_QS4 = Double.longBitsToDouble(0x3fb3b8c5b12e9282L);
/* Initializes look-up tables. */
static {
// sin and cos
final int SIN_COS_PI_INDEX = (SIN_COS_TABS_SIZE - 1) / 2;
final int SIN_COS_PI_MUL_2_INDEX = 2 * SIN_COS_PI_INDEX;
final int SIN_COS_PI_MUL_0_5_INDEX = SIN_COS_PI_INDEX / 2;
final int SIN_COS_PI_MUL_1_5_INDEX = 3 * SIN_COS_PI_INDEX / 2;
for (int i = 0; i < SIN_COS_TABS_SIZE; i++) {
// angle: in [0,2*PI].
double angle = i * SIN_COS_DELTA_HI + i * SIN_COS_DELTA_LO;
double sinAngle = StrictMath.sin(angle);
double cosAngle = StrictMath.cos(angle);
// For indexes corresponding to null cosine or sine, we make sure the value is zero
// and not an epsilon. This allows for a much better accuracy for results close to zero.
if (i == SIN_COS_PI_INDEX) {
sinAngle = 0.0;
} else if (i == SIN_COS_PI_MUL_2_INDEX) {
sinAngle = 0.0;
} else if (i == SIN_COS_PI_MUL_0_5_INDEX) {
cosAngle = 0.0;
} else if (i == SIN_COS_PI_MUL_1_5_INDEX) {
cosAngle = 0.0;
}
sinTab[i] = sinAngle;
cosTab[i] = cosAngle;
}
// asin
for (int i = 0; i < ASIN_TABS_SIZE; i++) {
// x: in [0,ASIN_MAX_VALUE_FOR_TABS].
double x = i * ASIN_DELTA;
asinTab[i] = StrictMath.asin(x);
double oneMinusXSqInv = 1.0 / (1 - x * x);
double oneMinusXSqInv0_5 = StrictMath.sqrt(oneMinusXSqInv);
double oneMinusXSqInv1_5 = oneMinusXSqInv0_5 * oneMinusXSqInv;
double oneMinusXSqInv2_5 = oneMinusXSqInv1_5 * oneMinusXSqInv;
double oneMinusXSqInv3_5 = oneMinusXSqInv2_5 * oneMinusXSqInv;
asinDer1DivF1Tab[i] = oneMinusXSqInv0_5;
asinDer2DivF2Tab[i] = (x * oneMinusXSqInv1_5) * ONE_DIV_F2;
asinDer3DivF3Tab[i] = ((1 + 2 * x * x) * oneMinusXSqInv2_5) * ONE_DIV_F3;
asinDer4DivF4Tab[i] = ((5 + 2 * x * (2 + x * (5 - 2 * x))) * oneMinusXSqInv3_5) * ONE_DIV_F4;
}
}
}