All Downloads are FREE. Search and download functionalities are using the official Maven repository.

scala.tools.nsc.interpreter.IMain.scala Maven / Gradle / Ivy

There is a newer version: 2.10.2_1
Show newest version
/* NSC -- new Scala compiler
 * Copyright 2005-2011 LAMP/EPFL
 * @author  Martin Odersky
 */

package scala.tools.nsc
package interpreter

import Predef.{ println => _, _ }
import util.{ Set => _, _ }
import scala.collection.{ mutable, immutable }
import scala.sys.BooleanProp
import Exceptional.unwrap
import ScalaClassLoader.URLClassLoader
import symtab.Flags
import io.VirtualDirectory
import scala.tools.nsc.io.AbstractFile
import reporters._
import symtab.Flags
import scala.reflect.generic.Names
import scala.tools.util.PathResolver
import scala.tools.nsc.util.{ ScalaClassLoader, Exceptional }
import ScalaClassLoader.URLClassLoader
import Exceptional.unwrap
import scala.collection.{ mutable, immutable }
import scala.PartialFunction.{ cond, condOpt }
import scala.util.control.Exception.{ ultimately }
import scala.reflect.NameTransformer
import IMain._

/** An interpreter for Scala code.
 *
 *  The main public entry points are compile(), interpret(), and bind().
 *  The compile() method loads a complete Scala file.  The interpret() method
 *  executes one line of Scala code at the request of the user.  The bind()
 *  method binds an object to a variable that can then be used by later
 *  interpreted code.
 *
 *  The overall approach is based on compiling the requested code and then
 *  using a Java classloader and Java reflection to run the code
 *  and access its results.
 *
 *  In more detail, a single compiler instance is used
 *  to accumulate all successfully compiled or interpreted Scala code.  To
 *  "interpret" a line of code, the compiler generates a fresh object that
 *  includes the line of code and which has public member(s) to export
 *  all variables defined by that code.  To extract the result of an
 *  interpreted line to show the user, a second "result object" is created
 *  which imports the variables exported by the above object and then
 *  exports members called "$eval" and "$print". To accomodate user expressions
 *  that read from variables or methods defined in previous statements, "import"
 *  statements are used.
 *
 *  This interpreter shares the strengths and weaknesses of using the
 *  full compiler-to-Java.  The main strength is that interpreted code
 *  behaves exactly as does compiled code, including running at full speed.
 *  The main weakness is that redefining classes and methods is not handled
 *  properly, because rebinding at the Java level is technically difficult.
 *
 *  @author Moez A. Abdel-Gawad
 *  @author Lex Spoon
 */
class IMain(val settings: Settings, protected val out: JPrintWriter) extends Imports {
  imain =>

  /** construct an interpreter that reports to Console */
  def this(settings: Settings) = this(settings, new NewLinePrintWriter(new ConsoleWriter, true))
  def this() = this(new Settings())

  lazy val repllog: Logger = new Logger {
    val out: JPrintWriter = imain.out
    val isInfo: Boolean  = BooleanProp keyExists "scala.repl.info"
    val isDebug: Boolean = BooleanProp keyExists "scala.repl.debug"
    val isTrace: Boolean = BooleanProp keyExists "scala.repl.trace"
  }
  lazy val formatting: Formatting = new Formatting {
    val prompt = Properties.shellPromptString
  }
  lazy val reporter: ConsoleReporter = new ReplReporter(this)

  import formatting._
  import reporter.{ printMessage, withoutTruncating }

  private[nsc] var printResults: Boolean = true   // whether to print result lines
  private[nsc] var totalSilence: Boolean = false  // whether to print anything

  /** directory to save .class files to */
  val virtualDirectory = new VirtualDirectory("(memory)", None) {
    private def pp(root: io.AbstractFile, indentLevel: Int) {
      val spaces = "    " * indentLevel
      out.println(spaces + root.name)
      if (root.isDirectory)
        root.toList sortBy (_.name) foreach (x => pp(x, indentLevel + 1))
    }
    // print the contents hierarchically
    def show() = pp(this, 0)
  }

  // This exists mostly because using the reporter too early leads to deadlock.
  private def echo(msg: String) { Console println msg }

  /** We're going to go to some trouble to initialize the compiler asynchronously.
   *  It's critical that nothing call into it until it's been initialized or we will
   *  run into unrecoverable issues, but the perceived repl startup time goes
   *  through the roof if we wait for it.  So we initialize it with a future and
   *  use a lazy val to ensure that any attempt to use the compiler object waits
   *  on the future.
   */
  private val _compiler: Global = newCompiler(settings, reporter)
  private var _initializeComplete = false
  private def _initSources = List(new BatchSourceFile("", "class $repl_$init { }"))
  private def _initialize() = {
    try {
      new _compiler.Run() compileSources _initSources
      _initializeComplete = true
      true
    }
    catch AbstractOrMissingHandler()
  }

  // set up initialization future
  private var _isInitialized: () => Boolean = null
  // argument is a thunk to execute after init is done
  def initialize(postInitSignal: => Unit): Unit = synchronized {
    if (_isInitialized == null)
      _isInitialized = scala.concurrent.ops future {
        val result = _initialize()
        postInitSignal
        result
      }
  }
  def initializeSynchronous(): Unit = {
    if (!isInitializeComplete) {
      _initialize()
      assert(global != null, global)
    }
  }
  def isInitializeComplete = _initializeComplete

  /** the public, go through the future compiler */
  lazy val global: Global = {
    if (isInitializeComplete) _compiler
    else {
      // If init hasn't been called yet you're on your own.
      if (_isInitialized == null) {
        repldbg("Warning: compiler accessed before init set up.  Assuming no postInit code.")
        initialize(())
      }
      // blocks until it is ; false means catastrophic failure
      if (_isInitialized()) _compiler
      else null
    }
  }
  @deprecated("Use `global` for access to the compiler instance.", "2.9.0")
  lazy val compiler: global.type = global

  // import global.{ treeWrapper => _, _ }
  import global._
  import definitions.{ ScalaPackage, JavaLangPackage, PredefModule, RootClass }
  //
  // private implicit def privateTreeOps(t: Tree): List[Tree] = {
  //   (new Traversable[Tree] {
  //     def foreach[U](f: Tree => U): Unit = t foreach { x => f(x) ; () }
  //   }).toList
  // }

  // TODO: If we try to make naming a lazy val, we run into big time
  // scalac unhappiness with what look like cycles.  It has not been easy to
  // reduce, but name resolution clearly takes different paths.
  object naming extends {
    val global: imain.global.type = imain.global
  } with Naming {
    // make sure we don't overwrite their unwisely named res3 etc.
    override def freshUserVarName(): String = {
      val name = super.freshUserVarName()
      if (definedNameMap contains name) freshUserVarName()
      else name
    }
    def isInternalVarName(name: Name): Boolean = isInternalVarName("" + name)
  }
  import naming._

  // object dossiers extends {
  //   val intp: imain.type = imain
  // } with Dossiers { }
  // import dossiers._

  lazy val memberHandlers = new {
    val intp: imain.type = imain
  } with MemberHandlers
  import memberHandlers._

  def atPickler[T](op: => T): T = atPhase(currentRun.picklerPhase)(op)
  def afterTyper[T](op: => T): T = atPhase(currentRun.typerPhase.next)(op)

  /** Temporarily be quiet */
  def beQuietDuring[T](body: => T): T = {
    val saved = printResults
    printResults = false
    try body
    finally printResults = saved
  }
  def beSilentDuring[T](operation: => T): T = {
    val saved = totalSilence
    totalSilence = true
    try operation
    finally totalSilence = saved
  }

  def quietRun[T](code: String) = beQuietDuring(interpret(code))

  private def logAndDiscard[T](label: String, alt: => T): PartialFunction[Throwable, T] = {
    case t => repldbg(label + ": " + t) ; alt
  }

  /** whether to bind the lastException variable */
  private var bindExceptions = true
  /** takes AnyRef because it may be binding a Throwable or an Exceptional */
  private def withLastExceptionLock[T](body: => T): T = {
    assert(bindExceptions, "withLastExceptionLock called incorrectly.")
    bindExceptions = false

    try     beQuietDuring(body)
    catch   logAndDiscard("bindLastException", null.asInstanceOf[T])
    finally bindExceptions = true
  }

  /** A string representing code to be wrapped around all lines. */
  private var _executionWrapper: String = ""
  def executionWrapper = _executionWrapper
  def setExecutionWrapper(code: String) = _executionWrapper = code
  def clearExecutionWrapper() = _executionWrapper = ""

  lazy val lineManager = createLineManager()

  /** interpreter settings */
  lazy val isettings = new ISettings(this)

  /** Create a line manager.  Overridable.  */
  protected def createLineManager(): Line.Manager =
    if (ReplPropsKludge.noThreadCreation(settings)) null else new Line.Manager

  /** Instantiate a compiler.  Overridable. */
  protected def newCompiler(settings: Settings, reporter: Reporter) = {
    settings.outputDirs setSingleOutput virtualDirectory
    settings.exposeEmptyPackage.value = true

    new Global(settings, reporter)
  }

  /** Parent classloader.  Overridable. */
  protected def parentClassLoader: ClassLoader =
    settings.explicitParentLoader.getOrElse( this.getClass.getClassLoader() )

  /** the compiler's classpath, as URL's */
  lazy val compilerClasspath = global.classPath.asURLs

  /* A single class loader is used for all commands interpreted by this Interpreter.
     It would also be possible to create a new class loader for each command
     to interpret.  The advantages of the current approach are:

       - Expressions are only evaluated one time.  This is especially
         significant for I/O, e.g. "val x = Console.readLine"

     The main disadvantage is:

       - Objects, classes, and methods cannot be rebound.  Instead, definitions
         shadow the old ones, and old code objects refer to the old
         definitions.
  */
  private var _classLoader: AbstractFileClassLoader = null
  def resetClassLoader() = {
    repldbg("Setting new classloader: was " + _classLoader)
    _classLoader = makeClassLoader()
  }
  def classLoader: AbstractFileClassLoader = {
    if (_classLoader == null)
      resetClassLoader()

    _classLoader
  }
  private def makeClassLoader(): AbstractFileClassLoader = {
    val parent =
      if (parentClassLoader == null)  ScalaClassLoader fromURLs compilerClasspath
      else                            new URLClassLoader(compilerClasspath, parentClassLoader)

    new AbstractFileClassLoader(virtualDirectory, parent) {
      /** Overridden here to try translating a simple name to the generated
       *  class name if the original attempt fails.  This method is used by
       *  getResourceAsStream as well as findClass.
       */
      override protected def findAbstractFile(name: String): AbstractFile = {
        super.findAbstractFile(name) match {
          // deadlocks on startup if we try to translate names too early
          case null if isInitializeComplete =>
            generatedName(name) map (x => super.findAbstractFile(x)) orNull
          case file                         =>
            file
        }
      }
    }
  }

  def getInterpreterClassLoader() = classLoader

  // Set the current Java "context" class loader to this interpreter's class loader
  def setContextClassLoader() = classLoader.setAsContext()

  /** Given a simple repl-defined name, returns the real name of
   *  the class representing it, e.g. for "Bippy" it may return
   *  {{{
   *    $line19.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$Bippy
   *  }}}
   */
  def generatedName(simpleName: String): Option[String] = {
    if (simpleName endsWith "$") optFlatName(simpleName.init) map (_ + "$")
    else optFlatName(simpleName)
  }
  def flatName(id: String)    = optFlatName(id) getOrElse id
  def optFlatName(id: String) = requestForIdent(id) map (_ fullFlatName id)

  def allDefinedNames = definedNameMap.keys.toList sortBy (_.toString)
  def pathToType(id: String): String = pathToName(newTypeName(id))
  def pathToTerm(id: String): String = pathToName(newTermName(id))
  def pathToName(name: Name): String = {
    if (definedNameMap contains name)
      definedNameMap(name) fullPath name
    else name.toString
  }

  /** Most recent tree handled which wasn't wholly synthetic. */
  private def mostRecentlyHandledTree: Option[Tree] = {
    prevRequests.reverse foreach { req =>
      req.handlers.reverse foreach {
        case x: MemberDefHandler if x.definesValue && !isInternalVarName(x.name) => return Some(x.member)
        case _ => ()
      }
    }
    None
  }

  /** Stubs for work in progress. */
  def handleTypeRedefinition(name: TypeName, old: Request, req: Request) = {
    for (t1 <- old.simpleNameOfType(name) ; t2 <- req.simpleNameOfType(name)) {
      repldbg("Redefining type '%s'\n  %s -> %s".format(name, t1, t2))
    }
  }

  def handleTermRedefinition(name: TermName, old: Request, req: Request) = {
    for (t1 <- old.compilerTypeOf get name ; t2 <- req.compilerTypeOf get name) {
      // Printing the types here has a tendency to cause assertion errors, like
      //   assertion failed: fatal:  has owner value x, but a class owner is required
      // so DBG is by-name now to keep it in the family.  (It also traps the assertion error,
      // but we don't want to unnecessarily risk hosing the compiler's internal state.)
      repldbg("Redefining term '%s'\n  %s -> %s".format(name, t1, t2))
    }
  }

  def recordRequest(req: Request) {
    if (req == null || referencedNameMap == null)
      return

    prevRequests += req
    req.referencedNames foreach (x => referencedNameMap(x) = req)

    // warning about serially defining companions.  It'd be easy
    // enough to just redefine them together but that may not always
    // be what people want so I'm waiting until I can do it better.
    for {
      name   <- req.definedNames filterNot (x => req.definedNames contains x.companionName)
      oldReq <- definedNameMap get name.companionName
      newSym <- req.definedSymbols get name
      oldSym <- oldReq.definedSymbols get name.companionName
    } {
      replwarn("warning: previously defined %s is not a companion to %s.".format(
        stripString("" + oldSym), stripString("" + newSym)))
      replwarn("Companions must be defined together; you may wish to use :paste mode for this.")
    }

    // Updating the defined name map
    req.definedNames foreach { name =>
      if (definedNameMap contains name) {
        if (name.isTypeName) handleTypeRedefinition(name.toTypeName, definedNameMap(name), req)
        else handleTermRedefinition(name.toTermName, definedNameMap(name), req)
      }
      definedNameMap(name) = req
    }
  }

  private[nsc] def replwarn(msg: => String) {
    if (!settings.nowarnings.value)
      printMessage(msg)
  }

  def isParseable(line: String): Boolean = {
    beSilentDuring {
      try parse(line) match {
        case Some(xs) => xs.nonEmpty  // parses as-is
        case None     => true         // incomplete
      }
      catch { case x: Exception =>    // crashed the compiler
        replwarn("Exception in isParseable(\"" + line + "\"): " + x)
        false
      }
    }
  }

  /** Compile an nsc SourceFile.  Returns true if there are
   *  no compilation errors, or false otherwise.
   */
  def compileSources(sources: SourceFile*): Boolean = {
    reporter.reset()
    new Run() compileSources sources.toList
    !reporter.hasErrors
  }

  /** Compile a string.  Returns true if there are no
   *  compilation errors, or false otherwise.
   */
  def compileString(code: String): Boolean =
    compileSources(new BatchSourceFile("