All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.zxing.common.BitSource Maven / Gradle / Ivy

There is a newer version: 3.5.3_1
Show newest version
/*
 * Copyright 2007 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.zxing.common;

/**
 * 

This provides an easy abstraction to read bits at a time from a sequence of bytes, where the * number of bits read is not often a multiple of 8.

* *

This class is thread-safe but not reentrant -- unless the caller modifies the bytes array * it passed in, in which case all bets are off.

* * @author Sean Owen */ public final class BitSource { private final byte[] bytes; private int byteOffset; private int bitOffset; /** * @param bytes bytes from which this will read bits. Bits will be read from the first byte first. * Bits are read within a byte from most-significant to least-significant bit. */ public BitSource(byte[] bytes) { this.bytes = bytes; } /** * @return index of next bit in current byte which would be read by the next call to {@link #readBits(int)}. */ public int getBitOffset() { return bitOffset; } /** * @return index of next byte in input byte array which would be read by the next call to {@link #readBits(int)}. */ public int getByteOffset() { return byteOffset; } /** * @param numBits number of bits to read * @return int representing the bits read. The bits will appear as the least-significant * bits of the int * @throws IllegalArgumentException if numBits isn't in [1,32] or more than is available */ public int readBits(int numBits) { if (numBits < 1 || numBits > 32 || numBits > available()) { throw new IllegalArgumentException(String.valueOf(numBits)); } int result = 0; // First, read remainder from current byte if (bitOffset > 0) { int bitsLeft = 8 - bitOffset; int toRead = Math.min(numBits, bitsLeft); int bitsToNotRead = bitsLeft - toRead; int mask = (0xFF >> (8 - toRead)) << bitsToNotRead; result = (bytes[byteOffset] & mask) >> bitsToNotRead; numBits -= toRead; bitOffset += toRead; if (bitOffset == 8) { bitOffset = 0; byteOffset++; } } // Next read whole bytes if (numBits > 0) { while (numBits >= 8) { result = (result << 8) | (bytes[byteOffset] & 0xFF); byteOffset++; numBits -= 8; } // Finally read a partial byte if (numBits > 0) { int bitsToNotRead = 8 - numBits; int mask = (0xFF >> bitsToNotRead) << bitsToNotRead; result = (result << numBits) | ((bytes[byteOffset] & mask) >> bitsToNotRead); bitOffset += numBits; } } return result; } /** * @return number of bits that can be read successfully */ public int available() { return 8 * (bytes.length - byteOffset) - bitOffset; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy