com.google.zxing.oned.ITFReader Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of org.apache.servicemix.bundles.zxing
Show all versions of org.apache.servicemix.bundles.zxing
This OSGi bundle wraps ${pkgArtifactId} ${pkgVersion} jar file.
/*
* Copyright 2008 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.oned;
import com.google.zxing.BarcodeFormat;
import com.google.zxing.DecodeHintType;
import com.google.zxing.FormatException;
import com.google.zxing.NotFoundException;
import com.google.zxing.Result;
import com.google.zxing.ResultMetadataType;
import com.google.zxing.ResultPoint;
import com.google.zxing.common.BitArray;
import java.util.Map;
/**
* Implements decoding of the ITF format, or Interleaved Two of Five.
*
* This Reader will scan ITF barcodes of certain lengths only.
* At the moment it reads length 6, 8, 10, 12, 14, 16, 18, 20, 24, and 44 as these have appeared "in the wild". Not all
* lengths are scanned, especially shorter ones, to avoid false positives. This in turn is due to a lack of
* required checksum function.
*
* The checksum is optional and is not applied by this Reader. The consumer of the decoded
* value will have to apply a checksum if required.
*
* http://en.wikipedia.org/wiki/Interleaved_2_of_5
* is a great reference for Interleaved 2 of 5 information.
*
* @author [email protected], SITA Lab.
*/
public final class ITFReader extends OneDReader {
private static final float MAX_AVG_VARIANCE = 0.38f;
private static final float MAX_INDIVIDUAL_VARIANCE = 0.5f;
private static final int W = 3; // Pixel width of a 3x wide line
private static final int w = 2; // Pixel width of a 2x wide line
private static final int N = 1; // Pixed width of a narrow line
/** Valid ITF lengths. Anything longer than the largest value is also allowed. */
private static final int[] DEFAULT_ALLOWED_LENGTHS = {6, 8, 10, 12, 14};
// Stores the actual narrow line width of the image being decoded.
private int narrowLineWidth = -1;
/**
* Start/end guard pattern.
*
* Note: The end pattern is reversed because the row is reversed before
* searching for the END_PATTERN
*/
private static final int[] START_PATTERN = {N, N, N, N};
private static final int[][] END_PATTERN_REVERSED = {
{N, N, w}, // 2x
{N, N, W} // 3x
};
// See ITFWriter.PATTERNS
/**
* Patterns of Wide / Narrow lines to indicate each digit
*/
private static final int[][] PATTERNS = {
{N, N, w, w, N}, // 0
{w, N, N, N, w}, // 1
{N, w, N, N, w}, // 2
{w, w, N, N, N}, // 3
{N, N, w, N, w}, // 4
{w, N, w, N, N}, // 5
{N, w, w, N, N}, // 6
{N, N, N, w, w}, // 7
{w, N, N, w, N}, // 8
{N, w, N, w, N}, // 9
{N, N, W, W, N}, // 0
{W, N, N, N, W}, // 1
{N, W, N, N, W}, // 2
{W, W, N, N, N}, // 3
{N, N, W, N, W}, // 4
{W, N, W, N, N}, // 5
{N, W, W, N, N}, // 6
{N, N, N, W, W}, // 7
{W, N, N, W, N}, // 8
{N, W, N, W, N} // 9
};
@Override
public Result decodeRow(int rowNumber, BitArray row, Map hints)
throws FormatException, NotFoundException {
// Find out where the Middle section (payload) starts & ends
int[] startRange = decodeStart(row);
int[] endRange = decodeEnd(row);
StringBuilder result = new StringBuilder(20);
decodeMiddle(row, startRange[1], endRange[0], result);
String resultString = result.toString();
int[] allowedLengths = null;
if (hints != null) {
allowedLengths = (int[]) hints.get(DecodeHintType.ALLOWED_LENGTHS);
}
if (allowedLengths == null) {
allowedLengths = DEFAULT_ALLOWED_LENGTHS;
}
// To avoid false positives with 2D barcodes (and other patterns), make
// an assumption that the decoded string must be a 'standard' length if it's short
int length = resultString.length();
boolean lengthOK = false;
int maxAllowedLength = 0;
for (int allowedLength : allowedLengths) {
if (length == allowedLength) {
lengthOK = true;
break;
}
if (allowedLength > maxAllowedLength) {
maxAllowedLength = allowedLength;
}
}
if (!lengthOK && length > maxAllowedLength) {
lengthOK = true;
}
if (!lengthOK) {
throw FormatException.getFormatInstance();
}
Result resultObject = new Result(
resultString,
null, // no natural byte representation for these barcodes
new ResultPoint[] {new ResultPoint(startRange[1], rowNumber),
new ResultPoint(endRange[0], rowNumber)},
BarcodeFormat.ITF);
resultObject.putMetadata(ResultMetadataType.SYMBOLOGY_IDENTIFIER, "]I0");
return resultObject;
}
/**
* @param row row of black/white values to search
* @param payloadStart offset of start pattern
* @param resultString {@link StringBuilder} to append decoded chars to
* @throws NotFoundException if decoding could not complete successfully
*/
private static void decodeMiddle(BitArray row,
int payloadStart,
int payloadEnd,
StringBuilder resultString) throws NotFoundException {
// Digits are interleaved in pairs - 5 black lines for one digit, and the
// 5
// interleaved white lines for the second digit.
// Therefore, need to scan 10 lines and then
// split these into two arrays
int[] counterDigitPair = new int[10];
int[] counterBlack = new int[5];
int[] counterWhite = new int[5];
while (payloadStart < payloadEnd) {
// Get 10 runs of black/white.
recordPattern(row, payloadStart, counterDigitPair);
// Split them into each array
for (int k = 0; k < 5; k++) {
int twoK = 2 * k;
counterBlack[k] = counterDigitPair[twoK];
counterWhite[k] = counterDigitPair[twoK + 1];
}
int bestMatch = decodeDigit(counterBlack);
resultString.append((char) ('0' + bestMatch));
bestMatch = decodeDigit(counterWhite);
resultString.append((char) ('0' + bestMatch));
for (int counterDigit : counterDigitPair) {
payloadStart += counterDigit;
}
}
}
/**
* Identify where the start of the middle / payload section starts.
*
* @param row row of black/white values to search
* @return Array, containing index of start of 'start block' and end of
* 'start block'
*/
private int[] decodeStart(BitArray row) throws NotFoundException {
int endStart = skipWhiteSpace(row);
int[] startPattern = findGuardPattern(row, endStart, START_PATTERN);
// Determine the width of a narrow line in pixels. We can do this by
// getting the width of the start pattern and dividing by 4 because its
// made up of 4 narrow lines.
this.narrowLineWidth = (startPattern[1] - startPattern[0]) / 4;
validateQuietZone(row, startPattern[0]);
return startPattern;
}
/**
* The start & end patterns must be pre/post fixed by a quiet zone. This
* zone must be at least 10 times the width of a narrow line. Scan back until
* we either get to the start of the barcode or match the necessary number of
* quiet zone pixels.
*
* Note: Its assumed the row is reversed when using this method to find
* quiet zone after the end pattern.
*
* ref: http://www.barcode-1.net/i25code.html
*
* @param row bit array representing the scanned barcode.
* @param startPattern index into row of the start or end pattern.
* @throws NotFoundException if the quiet zone cannot be found
*/
private void validateQuietZone(BitArray row, int startPattern) throws NotFoundException {
int quietCount = this.narrowLineWidth * 10; // expect to find this many pixels of quiet zone
// if there are not so many pixel at all let's try as many as possible
quietCount = Math.min(quietCount, startPattern);
for (int i = startPattern - 1; quietCount > 0 && i >= 0; i--) {
if (row.get(i)) {
break;
}
quietCount--;
}
if (quietCount != 0) {
// Unable to find the necessary number of quiet zone pixels.
throw NotFoundException.getNotFoundInstance();
}
}
/**
* Skip all whitespace until we get to the first black line.
*
* @param row row of black/white values to search
* @return index of the first black line.
* @throws NotFoundException Throws exception if no black lines are found in the row
*/
private static int skipWhiteSpace(BitArray row) throws NotFoundException {
int width = row.getSize();
int endStart = row.getNextSet(0);
if (endStart == width) {
throw NotFoundException.getNotFoundInstance();
}
return endStart;
}
/**
* Identify where the end of the middle / payload section ends.
*
* @param row row of black/white values to search
* @return Array, containing index of start of 'end block' and end of 'end
* block'
*/
private int[] decodeEnd(BitArray row) throws NotFoundException {
// For convenience, reverse the row and then
// search from 'the start' for the end block
row.reverse();
try {
int endStart = skipWhiteSpace(row);
int[] endPattern;
try {
endPattern = findGuardPattern(row, endStart, END_PATTERN_REVERSED[0]);
} catch (NotFoundException nfe) {
endPattern = findGuardPattern(row, endStart, END_PATTERN_REVERSED[1]);
}
// The start & end patterns must be pre/post fixed by a quiet zone. This
// zone must be at least 10 times the width of a narrow line.
// ref: http://www.barcode-1.net/i25code.html
validateQuietZone(row, endPattern[0]);
// Now recalculate the indices of where the 'endblock' starts & stops to
// accommodate
// the reversed nature of the search
int temp = endPattern[0];
endPattern[0] = row.getSize() - endPattern[1];
endPattern[1] = row.getSize() - temp;
return endPattern;
} finally {
// Put the row back the right way.
row.reverse();
}
}
/**
* @param row row of black/white values to search
* @param rowOffset position to start search
* @param pattern pattern of counts of number of black and white pixels that are
* being searched for as a pattern
* @return start/end horizontal offset of guard pattern, as an array of two
* ints
* @throws NotFoundException if pattern is not found
*/
private static int[] findGuardPattern(BitArray row,
int rowOffset,
int[] pattern) throws NotFoundException {
int patternLength = pattern.length;
int[] counters = new int[patternLength];
int width = row.getSize();
boolean isWhite = false;
int counterPosition = 0;
int patternStart = rowOffset;
for (int x = rowOffset; x < width; x++) {
if (row.get(x) != isWhite) {
counters[counterPosition]++;
} else {
if (counterPosition == patternLength - 1) {
if (patternMatchVariance(counters, pattern, MAX_INDIVIDUAL_VARIANCE) < MAX_AVG_VARIANCE) {
return new int[]{patternStart, x};
}
patternStart += counters[0] + counters[1];
System.arraycopy(counters, 2, counters, 0, counterPosition - 1);
counters[counterPosition - 1] = 0;
counters[counterPosition] = 0;
counterPosition--;
} else {
counterPosition++;
}
counters[counterPosition] = 1;
isWhite = !isWhite;
}
}
throw NotFoundException.getNotFoundInstance();
}
/**
* Attempts to decode a sequence of ITF black/white lines into single
* digit.
*
* @param counters the counts of runs of observed black/white/black/... values
* @return The decoded digit
* @throws NotFoundException if digit cannot be decoded
*/
private static int decodeDigit(int[] counters) throws NotFoundException {
float bestVariance = MAX_AVG_VARIANCE; // worst variance we'll accept
int bestMatch = -1;
int max = PATTERNS.length;
for (int i = 0; i < max; i++) {
int[] pattern = PATTERNS[i];
float variance = patternMatchVariance(counters, pattern, MAX_INDIVIDUAL_VARIANCE);
if (variance < bestVariance) {
bestVariance = variance;
bestMatch = i;
} else if (variance == bestVariance) {
// if we find a second 'best match' with the same variance, we can not reliably report to have a suitable match
bestMatch = -1;
}
}
if (bestMatch >= 0) {
return bestMatch % 10;
} else {
throw NotFoundException.getNotFoundInstance();
}
}
}