All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.zxing.oned.ITFReader Maven / Gradle / Ivy

There is a newer version: 3.5.3_1
Show newest version
/*
 * Copyright 2008 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.zxing.oned;

import com.google.zxing.BarcodeFormat;
import com.google.zxing.DecodeHintType;
import com.google.zxing.FormatException;
import com.google.zxing.NotFoundException;
import com.google.zxing.Result;
import com.google.zxing.ResultMetadataType;
import com.google.zxing.ResultPoint;
import com.google.zxing.common.BitArray;

import java.util.Map;

/**
 * 

Implements decoding of the ITF format, or Interleaved Two of Five.

* *

This Reader will scan ITF barcodes of certain lengths only. * At the moment it reads length 6, 8, 10, 12, 14, 16, 18, 20, 24, and 44 as these have appeared "in the wild". Not all * lengths are scanned, especially shorter ones, to avoid false positives. This in turn is due to a lack of * required checksum function.

* *

The checksum is optional and is not applied by this Reader. The consumer of the decoded * value will have to apply a checksum if required.

* *

http://en.wikipedia.org/wiki/Interleaved_2_of_5 * is a great reference for Interleaved 2 of 5 information.

* * @author [email protected], SITA Lab. */ public final class ITFReader extends OneDReader { private static final float MAX_AVG_VARIANCE = 0.38f; private static final float MAX_INDIVIDUAL_VARIANCE = 0.5f; private static final int W = 3; // Pixel width of a 3x wide line private static final int w = 2; // Pixel width of a 2x wide line private static final int N = 1; // Pixed width of a narrow line /** Valid ITF lengths. Anything longer than the largest value is also allowed. */ private static final int[] DEFAULT_ALLOWED_LENGTHS = {6, 8, 10, 12, 14}; // Stores the actual narrow line width of the image being decoded. private int narrowLineWidth = -1; /** * Start/end guard pattern. * * Note: The end pattern is reversed because the row is reversed before * searching for the END_PATTERN */ private static final int[] START_PATTERN = {N, N, N, N}; private static final int[][] END_PATTERN_REVERSED = { {N, N, w}, // 2x {N, N, W} // 3x }; // See ITFWriter.PATTERNS /** * Patterns of Wide / Narrow lines to indicate each digit */ private static final int[][] PATTERNS = { {N, N, w, w, N}, // 0 {w, N, N, N, w}, // 1 {N, w, N, N, w}, // 2 {w, w, N, N, N}, // 3 {N, N, w, N, w}, // 4 {w, N, w, N, N}, // 5 {N, w, w, N, N}, // 6 {N, N, N, w, w}, // 7 {w, N, N, w, N}, // 8 {N, w, N, w, N}, // 9 {N, N, W, W, N}, // 0 {W, N, N, N, W}, // 1 {N, W, N, N, W}, // 2 {W, W, N, N, N}, // 3 {N, N, W, N, W}, // 4 {W, N, W, N, N}, // 5 {N, W, W, N, N}, // 6 {N, N, N, W, W}, // 7 {W, N, N, W, N}, // 8 {N, W, N, W, N} // 9 }; @Override public Result decodeRow(int rowNumber, BitArray row, Map hints) throws FormatException, NotFoundException { // Find out where the Middle section (payload) starts & ends int[] startRange = decodeStart(row); int[] endRange = decodeEnd(row); StringBuilder result = new StringBuilder(20); decodeMiddle(row, startRange[1], endRange[0], result); String resultString = result.toString(); int[] allowedLengths = null; if (hints != null) { allowedLengths = (int[]) hints.get(DecodeHintType.ALLOWED_LENGTHS); } if (allowedLengths == null) { allowedLengths = DEFAULT_ALLOWED_LENGTHS; } // To avoid false positives with 2D barcodes (and other patterns), make // an assumption that the decoded string must be a 'standard' length if it's short int length = resultString.length(); boolean lengthOK = false; int maxAllowedLength = 0; for (int allowedLength : allowedLengths) { if (length == allowedLength) { lengthOK = true; break; } if (allowedLength > maxAllowedLength) { maxAllowedLength = allowedLength; } } if (!lengthOK && length > maxAllowedLength) { lengthOK = true; } if (!lengthOK) { throw FormatException.getFormatInstance(); } Result resultObject = new Result( resultString, null, // no natural byte representation for these barcodes new ResultPoint[] {new ResultPoint(startRange[1], rowNumber), new ResultPoint(endRange[0], rowNumber)}, BarcodeFormat.ITF); resultObject.putMetadata(ResultMetadataType.SYMBOLOGY_IDENTIFIER, "]I0"); return resultObject; } /** * @param row row of black/white values to search * @param payloadStart offset of start pattern * @param resultString {@link StringBuilder} to append decoded chars to * @throws NotFoundException if decoding could not complete successfully */ private static void decodeMiddle(BitArray row, int payloadStart, int payloadEnd, StringBuilder resultString) throws NotFoundException { // Digits are interleaved in pairs - 5 black lines for one digit, and the // 5 // interleaved white lines for the second digit. // Therefore, need to scan 10 lines and then // split these into two arrays int[] counterDigitPair = new int[10]; int[] counterBlack = new int[5]; int[] counterWhite = new int[5]; while (payloadStart < payloadEnd) { // Get 10 runs of black/white. recordPattern(row, payloadStart, counterDigitPair); // Split them into each array for (int k = 0; k < 5; k++) { int twoK = 2 * k; counterBlack[k] = counterDigitPair[twoK]; counterWhite[k] = counterDigitPair[twoK + 1]; } int bestMatch = decodeDigit(counterBlack); resultString.append((char) ('0' + bestMatch)); bestMatch = decodeDigit(counterWhite); resultString.append((char) ('0' + bestMatch)); for (int counterDigit : counterDigitPair) { payloadStart += counterDigit; } } } /** * Identify where the start of the middle / payload section starts. * * @param row row of black/white values to search * @return Array, containing index of start of 'start block' and end of * 'start block' */ private int[] decodeStart(BitArray row) throws NotFoundException { int endStart = skipWhiteSpace(row); int[] startPattern = findGuardPattern(row, endStart, START_PATTERN); // Determine the width of a narrow line in pixels. We can do this by // getting the width of the start pattern and dividing by 4 because its // made up of 4 narrow lines. this.narrowLineWidth = (startPattern[1] - startPattern[0]) / 4; validateQuietZone(row, startPattern[0]); return startPattern; } /** * The start & end patterns must be pre/post fixed by a quiet zone. This * zone must be at least 10 times the width of a narrow line. Scan back until * we either get to the start of the barcode or match the necessary number of * quiet zone pixels. * * Note: Its assumed the row is reversed when using this method to find * quiet zone after the end pattern. * * ref: http://www.barcode-1.net/i25code.html * * @param row bit array representing the scanned barcode. * @param startPattern index into row of the start or end pattern. * @throws NotFoundException if the quiet zone cannot be found */ private void validateQuietZone(BitArray row, int startPattern) throws NotFoundException { int quietCount = this.narrowLineWidth * 10; // expect to find this many pixels of quiet zone // if there are not so many pixel at all let's try as many as possible quietCount = Math.min(quietCount, startPattern); for (int i = startPattern - 1; quietCount > 0 && i >= 0; i--) { if (row.get(i)) { break; } quietCount--; } if (quietCount != 0) { // Unable to find the necessary number of quiet zone pixels. throw NotFoundException.getNotFoundInstance(); } } /** * Skip all whitespace until we get to the first black line. * * @param row row of black/white values to search * @return index of the first black line. * @throws NotFoundException Throws exception if no black lines are found in the row */ private static int skipWhiteSpace(BitArray row) throws NotFoundException { int width = row.getSize(); int endStart = row.getNextSet(0); if (endStart == width) { throw NotFoundException.getNotFoundInstance(); } return endStart; } /** * Identify where the end of the middle / payload section ends. * * @param row row of black/white values to search * @return Array, containing index of start of 'end block' and end of 'end * block' */ private int[] decodeEnd(BitArray row) throws NotFoundException { // For convenience, reverse the row and then // search from 'the start' for the end block row.reverse(); try { int endStart = skipWhiteSpace(row); int[] endPattern; try { endPattern = findGuardPattern(row, endStart, END_PATTERN_REVERSED[0]); } catch (NotFoundException nfe) { endPattern = findGuardPattern(row, endStart, END_PATTERN_REVERSED[1]); } // The start & end patterns must be pre/post fixed by a quiet zone. This // zone must be at least 10 times the width of a narrow line. // ref: http://www.barcode-1.net/i25code.html validateQuietZone(row, endPattern[0]); // Now recalculate the indices of where the 'endblock' starts & stops to // accommodate // the reversed nature of the search int temp = endPattern[0]; endPattern[0] = row.getSize() - endPattern[1]; endPattern[1] = row.getSize() - temp; return endPattern; } finally { // Put the row back the right way. row.reverse(); } } /** * @param row row of black/white values to search * @param rowOffset position to start search * @param pattern pattern of counts of number of black and white pixels that are * being searched for as a pattern * @return start/end horizontal offset of guard pattern, as an array of two * ints * @throws NotFoundException if pattern is not found */ private static int[] findGuardPattern(BitArray row, int rowOffset, int[] pattern) throws NotFoundException { int patternLength = pattern.length; int[] counters = new int[patternLength]; int width = row.getSize(); boolean isWhite = false; int counterPosition = 0; int patternStart = rowOffset; for (int x = rowOffset; x < width; x++) { if (row.get(x) != isWhite) { counters[counterPosition]++; } else { if (counterPosition == patternLength - 1) { if (patternMatchVariance(counters, pattern, MAX_INDIVIDUAL_VARIANCE) < MAX_AVG_VARIANCE) { return new int[]{patternStart, x}; } patternStart += counters[0] + counters[1]; System.arraycopy(counters, 2, counters, 0, counterPosition - 1); counters[counterPosition - 1] = 0; counters[counterPosition] = 0; counterPosition--; } else { counterPosition++; } counters[counterPosition] = 1; isWhite = !isWhite; } } throw NotFoundException.getNotFoundInstance(); } /** * Attempts to decode a sequence of ITF black/white lines into single * digit. * * @param counters the counts of runs of observed black/white/black/... values * @return The decoded digit * @throws NotFoundException if digit cannot be decoded */ private static int decodeDigit(int[] counters) throws NotFoundException { float bestVariance = MAX_AVG_VARIANCE; // worst variance we'll accept int bestMatch = -1; int max = PATTERNS.length; for (int i = 0; i < max; i++) { int[] pattern = PATTERNS[i]; float variance = patternMatchVariance(counters, pattern, MAX_INDIVIDUAL_VARIANCE); if (variance < bestVariance) { bestVariance = variance; bestMatch = i; } else if (variance == bestVariance) { // if we find a second 'best match' with the same variance, we can not reliably report to have a suitable match bestMatch = -1; } } if (bestMatch >= 0) { return bestMatch % 10; } else { throw NotFoundException.getNotFoundInstance(); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy