All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.collections.StaticBucketMap Maven / Gradle / Ivy

There is a newer version: 2.0.10
Show newest version
/*
 *  Licensed to the Apache Software Foundation (ASF) under one or more
 *  contributor license agreements.  See the NOTICE file distributed with
 *  this work for additional information regarding copyright ownership.
 *  The ASF licenses this file to You under the Apache License, Version 2.0
 *  (the "License"); you may not use this file except in compliance with
 *  the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */
package org.apache.commons.collections;

import java.util.AbstractCollection;
import java.util.AbstractSet;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;

/**
 * A StaticBucketMap is an efficient, thread-safe implementation of
 * java.util.Map that performs well in in a highly
 * thread-contentious environment.  The map supports very efficient
 * {@link #get(Object) get}, {@link #put(Object,Object) put}, 
 * {@link #remove(Object) remove} and {@link #containsKey(Object) containsKey}
 * operations, assuming (approximate) uniform hashing and
 * that the number of entries does not exceed the number of buckets.  If the
 * number of entries exceeds the number of buckets or if the hash codes of the
 * objects are not uniformly distributed, these operations have a worst case
 * scenario that is proportional to the number of elements in the map
 * (O(n)).

* * Each bucket in the hash table has its own monitor, so two threads can * safely operate on the map at the same time, often without incurring any * monitor contention. This means that you don't have to wrap instances * of this class with {@link java.util.Collections#synchronizedMap(Map)}; * instances are already thread-safe. Unfortunately, however, this means * that this map implementation behaves in ways you may find disconcerting. * Bulk operations, such as {@link #putAll(Map) putAll} or the * {@link Collection#retainAll(Collection) retainAll} operation in collection * views, are not atomic. If two threads are simultaneously * executing * *

 *   staticBucketMapInstance.putAll(map);
 * 
* * and * *
 *   staticBucketMapInstance.entrySet().removeAll(map.entrySet());
 * 
* * then the results are generally random. Those two statement could cancel * each other out, leaving staticBucketMapInstance essentially * unchanged, or they could leave some random subset of map in * staticBucketMapInstance.

* * Also, much like an encyclopedia, the results of {@link #size()} and * {@link #isEmpty()} are out-of-date as soon as they are produced.

* * The iterators returned by the collection views of this class are not * fail-fast. They will never raise a * {@link java.util.ConcurrentModificationException}. Keys and values * added to the map after the iterator is created do not necessarily appear * during iteration. Similarly, the iterator does not necessarily fail to * return keys and values that were removed after the iterator was created.

* * Finally, unlike {@link java.util.HashMap}-style implementations, this * class never rehashes the map. The number of buckets is fixed * at construction time and never altered. Performance may degrade if * you do not allocate enough buckets upfront.

* * The {@link #atomic(Runnable)} method is provided to allow atomic iterations * and bulk operations; however, overuse of {@link #atomic(Runnable) atomic} * will basically result in a map that's slower than an ordinary synchronized * {@link java.util.HashMap}. * * Use this class if you do not require reliable bulk operations and * iterations, or if you can make your own guarantees about how bulk * operations will affect the map.

* * @deprecated Moved to map subpackage. Due to be removed in v4.0. * @since Commons Collections 2.1 * @version $Revision: 646777 $ $Date: 2008-04-10 14:33:15 +0200 (Thu, 10 Apr 2008) $ * * @author Berin Loritsch * @author Gerhard Froehlich * @author Michael A. Smith * @author Paul Jack * @author Leo Sutic * @author Janek Bogucki * @author Kazuya Ujihara */ public final class StaticBucketMap implements Map { private static final int DEFAULT_BUCKETS = 255; private Node[] m_buckets; private Lock[] m_locks; /** * Initializes the map with the default number of buckets (255). */ public StaticBucketMap() { this( DEFAULT_BUCKETS ); } /** * Initializes the map with a specified number of buckets. The number * of buckets is never below 17, and is always an odd number (StaticBucketMap * ensures this). The number of buckets is inversely proportional to the * chances for thread contention. The fewer buckets, the more chances for * thread contention. The more buckets the fewer chances for thread * contention. * * @param numBuckets the number of buckets for this map */ public StaticBucketMap( int numBuckets ) { int size = Math.max( 17, numBuckets ); // Ensure that bucketSize is never a power of 2 (to ensure maximal distribution) if( size % 2 == 0 ) { size--; } m_buckets = new Node[ size ]; m_locks = new Lock[ size ]; for( int i = 0; i < size; i++ ) { m_locks[ i ] = new Lock(); } } /** * Determine the exact hash entry for the key. The hash algorithm * is rather simplistic, but it does the job: * *

     *   He = |Hk mod n|
     * 
* *

* He is the entry's hashCode, Hk is the key's hashCode, and n is * the number of buckets. *

*/ private final int getHash( Object key ) { if( key == null ) return 0; int hash = key.hashCode(); hash += ~(hash << 15); hash ^= (hash >>> 10); hash += (hash << 3); hash ^= (hash >>> 6); hash += ~(hash << 11); hash ^= (hash >>> 16); hash %= m_buckets.length; return ( hash < 0 ) ? hash * -1 : hash; } /** * Implements {@link Map#keySet()}. */ public Set keySet() { return new KeySet(); } /** * Implements {@link Map#size()}. */ public int size() { int cnt = 0; for( int i = 0; i < m_buckets.length; i++ ) { cnt += m_locks[i].size; } return cnt; } /** * Implements {@link Map#put(Object, Object)}. */ public Object put( final Object key, final Object value ) { int hash = getHash( key ); synchronized( m_locks[ hash ] ) { Node n = m_buckets[ hash ]; if( n == null ) { n = new Node(); n.key = key; n.value = value; m_buckets[ hash ] = n; m_locks[hash].size++; return null; } // Set n to the last node in the linked list. Check each key along the way // If the key is found, then change the value of that node and return // the old value. for( Node next = n; next != null; next = next.next ) { n = next; if( n.key == key || ( n.key != null && n.key.equals( key ) ) ) { Object returnVal = n.value; n.value = value; return returnVal; } } // The key was not found in the current list of nodes, add it to the end // in a new node. Node newNode = new Node(); newNode.key = key; newNode.value = value; n.next = newNode; m_locks[hash].size++; } return null; } /** * Implements {@link Map#get(Object)}. */ public Object get( final Object key ) { int hash = getHash( key ); synchronized( m_locks[ hash ] ) { Node n = m_buckets[ hash ]; while( n != null ) { if( n.key == key || ( n.key != null && n.key.equals( key ) ) ) { return n.value; } n = n.next; } } return null; } /** * Implements {@link Map#containsKey(Object)}. */ public boolean containsKey( final Object key ) { int hash = getHash( key ); synchronized( m_locks[ hash ] ) { Node n = m_buckets[ hash ]; while( n != null ) { if( n.key == key || ( n.key != null && n.key.equals( key ) ) ) { return true; } n = n.next; } } return false; } /** * Implements {@link Map#containsValue(Object)}. */ public boolean containsValue( final Object value ) { for( int i = 0; i < m_buckets.length; i++ ) { synchronized( m_locks[ i ] ) { Node n = m_buckets[ i ]; while( n != null ) { if( n.value == value || (n.value != null && n.value.equals( value ) ) ) { return true; } n = n.next; } } } return false; } /** * Implements {@link Map#values()}. */ public Collection values() { return new Values(); } /** * Implements {@link Map#entrySet()}. */ public Set entrySet() { return new EntrySet(); } /** * Implements {@link Map#putAll(Map)}. */ public void putAll( Map other ) { Iterator i = other.keySet().iterator(); while( i.hasNext() ) { Object key = i.next(); put( key, other.get( key ) ); } } /** * Implements {@link Map#remove(Object)}. */ public Object remove( Object key ) { int hash = getHash( key ); synchronized( m_locks[ hash ] ) { Node n = m_buckets[ hash ]; Node prev = null; while( n != null ) { if( n.key == key || ( n.key != null && n.key.equals( key ) ) ) { // Remove this node from the linked list of nodes. if( null == prev ) { // This node was the head, set the next node to be the new head. m_buckets[ hash ] = n.next; } else { // Set the next node of the previous node to be the node after this one. prev.next = n.next; } m_locks[hash].size--; return n.value; } prev = n; n = n.next; } } return null; } /** * Implements {@link Map#isEmpty()}. */ public final boolean isEmpty() { return size() == 0; } /** * Implements {@link Map#clear()}. */ public final void clear() { for( int i = 0; i < m_buckets.length; i++ ) { Lock lock = m_locks[i]; synchronized (lock) { m_buckets[ i ] = null; lock.size = 0; } } } /** * Implements {@link Map#equals(Object)}. */ public final boolean equals( Object obj ) { if( obj == null ) return false; if( obj == this ) return true; if( !( obj instanceof Map ) ) return false; Map other = (Map)obj; return entrySet().equals(other.entrySet()); } /** * Implements {@link Map#hashCode()}. */ public final int hashCode() { int hashCode = 0; for( int i = 0; i < m_buckets.length; i++ ) { synchronized( m_locks[ i ] ) { Node n = m_buckets[ i ]; while( n != null ) { hashCode += n.hashCode(); n = n.next; } } } return hashCode; } /** * The Map.Entry for the StaticBucketMap. */ private static final class Node implements Map.Entry, KeyValue { protected Object key; protected Object value; protected Node next; public Object getKey() { return key; } public Object getValue() { return value; } public int hashCode() { return ( ( key == null ? 0 : key.hashCode() ) ^ ( value == null ? 0 : value.hashCode() ) ); } public boolean equals(Object o) { if( o == null ) return false; if( o == this ) return true; if ( ! (o instanceof Map.Entry ) ) return false; Map.Entry e2 = (Map.Entry)o; return ((key == null ? e2.getKey() == null : key.equals(e2.getKey())) && (value == null ? e2.getValue() == null : value.equals(e2.getValue()))); } public Object setValue( Object val ) { Object retVal = value; value = val; return retVal; } } private final static class Lock { public int size; } private class EntryIterator implements Iterator { private ArrayList current = new ArrayList(); private int bucket; private Map.Entry last; public boolean hasNext() { if (current.size() > 0) return true; while (bucket < m_buckets.length) { synchronized (m_locks[bucket]) { Node n = m_buckets[bucket]; while (n != null) { current.add(n); n = n.next; } bucket++; if (current.size() > 0) return true; } } return false; } protected Map.Entry nextEntry() { if (!hasNext()) throw new NoSuchElementException(); last = (Map.Entry)current.remove(current.size() - 1); return last; } public Object next() { return nextEntry(); } public void remove() { if (last == null) throw new IllegalStateException(); StaticBucketMap.this.remove(last.getKey()); last = null; } } private class ValueIterator extends EntryIterator { public Object next() { return nextEntry().getValue(); } } private class KeyIterator extends EntryIterator { public Object next() { return nextEntry().getKey(); } } private class EntrySet extends AbstractSet { public int size() { return StaticBucketMap.this.size(); } public void clear() { StaticBucketMap.this.clear(); } public Iterator iterator() { return new EntryIterator(); } public boolean contains(Object o) { Map.Entry entry = (Map.Entry)o; int hash = getHash(entry.getKey()); synchronized (m_locks[hash]) { for (Node n = m_buckets[hash]; n != null; n = n.next) { if (n.equals(entry)) return true; } } return false; } public boolean remove(Object obj) { if (obj instanceof Map.Entry == false) { return false; } Map.Entry entry = (Map.Entry) obj; int hash = getHash(entry.getKey()); synchronized (m_locks[hash]) { for (Node n = m_buckets[hash]; n != null; n = n.next) { if (n.equals(entry)) { StaticBucketMap.this.remove(n.getKey()); return true; } } } return false; } } private class KeySet extends AbstractSet { public int size() { return StaticBucketMap.this.size(); } public void clear() { StaticBucketMap.this.clear(); } public Iterator iterator() { return new KeyIterator(); } public boolean contains(Object o) { return StaticBucketMap.this.containsKey(o); } public boolean remove(Object o) { int hash = getHash(o); synchronized (m_locks[hash]) { for (Node n = m_buckets[hash]; n != null; n = n.next) { Object k = n.getKey(); if ((k == o) || ((k != null) && k.equals(o))) { StaticBucketMap.this.remove(k); return true; } } } return false; } } private class Values extends AbstractCollection { public int size() { return StaticBucketMap.this.size(); } public void clear() { StaticBucketMap.this.clear(); } public Iterator iterator() { return new ValueIterator(); } } /** * Prevents any operations from occurring on this map while the * given {@link Runnable} executes. This method can be used, for * instance, to execute a bulk operation atomically: * *
     *    staticBucketMapInstance.atomic(new Runnable() {
     *        public void run() {
     *            staticBucketMapInstance.putAll(map);
     *        }
     *    });
     *  
* * It can also be used if you need a reliable iterator: * *
     *    staticBucketMapInstance.atomic(new Runnable() {
     *        public void run() {
     *            Iterator iterator = staticBucketMapInstance.iterator();
     *            while (iterator.hasNext()) {
     *                foo(iterator.next();
     *            }
     *        }
     *    });
     *  
* * Implementation note: This method requires a lot of time * and a ton of stack space. Essentially a recursive algorithm is used * to enter each bucket's monitor. If you have twenty thousand buckets * in your map, then the recursive method will be invoked twenty thousand * times. You have been warned. * * @param r the code to execute atomically */ public void atomic(Runnable r) { if (r == null) throw new NullPointerException(); atomic(r, 0); } private void atomic(Runnable r, int bucket) { if (bucket >= m_buckets.length) { r.run(); return; } synchronized (m_locks[bucket]) { atomic(r, bucket + 1); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy