All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.solr.util.OpenBitSet Maven / Gradle / Ivy

The newest version!
/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.solr.util;

import java.io.Serializable;

/** An "open" BitSet implementation that allows direct access to the array of words
 * storing the bits.
 * 

* Unlike java.util.bitet, the fact that bits are packed into an array of longs * is part of the interface. This allows efficient implementation of other algorithms * by someone other than the author. It also allows one to efficiently implement * alternate serialization or interchange formats. *

* OpenBitSet is faster than java.util.BitSet in most operations * and *much* faster at calculating cardinality of sets and results of set operations. * It can also handle sets of larger cardinality (up to 64 * 2**32-1) *

* The goals of OpenBitSet are the fastest implementation possible, and * maximum code reuse. Extra safety and encapsulation * may always be built on top, but if that's built in, the cost can never be removed (and * hence people re-implement their own version in order to get better performance). * If you want a "safe", totally encapsulated (and slower and limited) BitSet * class, use java.util.BitSet. *

*

Performance Results

* Test system: Pentium 4, Sun Java 1.5_06 -server -Xbatch -Xmx64M
BitSet size = 1,000,000
Results are java.util.BitSet time divided by OpenBitSet time.
cardinality intersect_count union nextSetBit get iterator
50% full 3.36 3.96 1.44 1.46 1.99 1.58
1% full 3.31 3.90   1.04   0.99

Test system: AMD Opteron, 64 bit linux, Sun Java 1.5_06 -server -Xbatch -Xmx64M
BitSet size = 1,000,000
Results are java.util.BitSet time divided by OpenBitSet time.
cardinality intersect_count union nextSetBit get iterator
50% full 2.50 3.50 1.00 1.03 1.12 1.25
1% full 2.51 3.49   1.00   1.02
@deprecated Use {@link org.apache.lucene.util.OpenBitSet} directly. * @version $Id$ */ public class OpenBitSet extends org.apache.lucene.util.OpenBitSet implements Cloneable, Serializable { /** Constructs an OpenBitSet large enough to hold numBits. * * @param numBits */ public OpenBitSet(long numBits) { super(numBits); } public OpenBitSet() { super(); } /** Constructs an OpenBitSet from an existing long[]. *
* The first 64 bits are in long[0], * with bit index 0 at the least significant bit, and bit index 63 at the most significant. * Given a bit index, * the word containing it is long[index/64], and it is at bit number index%64 within that word. *

* numWords are the number of elements in the array that contain * set bits (non-zero longs). * numWords should be <= bits.length, and * any existing words in the array at position >= numWords should be zero. * */ public OpenBitSet(long[] bits, int numWords) { super(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy