All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.solr.ltr.model.LinearModel Maven / Gradle / Ivy

There is a newer version: 9.7.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.solr.ltr.model;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.search.Explanation;
import org.apache.solr.ltr.feature.Feature;
import org.apache.solr.ltr.norm.Normalizer;

/**
 * A scoring model that computes scores using a dot product. Example models are RankSVM and
 * Pranking.
 *
 * 

Example configuration: * *

 * {
 *   "class" : "org.apache.solr.ltr.model.LinearModel",
 *   "name" : "myModelName",
 *   "features" : [
 *     { "name" : "userTextTitleMatch" },
 *     { "name" : "originalScore" },
 *     { "name" : "isBook" }
 *   ],
 *   "params" : {
 *     "weights" : {
 *       "userTextTitleMatch" : 1.0,
 *       "originalScore" : 0.5,
 *       "isBook" : 0.1
 *     }
 *   }
 * }
 * 
* *

Training libraries: * *

* * * *

Background reading: * *

* * */ public class LinearModel extends LTRScoringModel { /** * featureToWeight is part of the LTRScoringModel params map and therefore here it does not * individually influence the class hashCode, equals, etc. */ protected Float[] featureToWeight; public void setWeights(Object weights) { @SuppressWarnings({"unchecked"}) final Map modelWeights = (Map) weights; for (int ii = 0; ii < features.size(); ++ii) { final String key = features.get(ii).getName(); final Number val = modelWeights.get(key); featureToWeight[ii] = (val == null ? null : val.floatValue()); } } public LinearModel( String name, List features, List norms, String featureStoreName, List allFeatures, Map params) { super(name, features, norms, featureStoreName, allFeatures, params); featureToWeight = new Float[features.size()]; } @Override protected void validate() throws ModelException { super.validate(); final ArrayList missingWeightFeatureNames = new ArrayList<>(); for (int i = 0; i < features.size(); ++i) { if (featureToWeight[i] == null) { missingWeightFeatureNames.add(features.get(i).getName()); } } if (missingWeightFeatureNames.size() == features.size()) { throw new ModelException("Model " + name + " doesn't contain any weights"); } if (!missingWeightFeatureNames.isEmpty()) { throw new ModelException( "Model " + name + " lacks weight(s) for " + missingWeightFeatureNames); } } @Override public float score(float[] modelFeatureValuesNormalized) { float score = 0; for (int i = 0; i < modelFeatureValuesNormalized.length; ++i) { score += modelFeatureValuesNormalized[i] * featureToWeight[i]; } return score; } @Override public Explanation explain( LeafReaderContext context, int doc, float finalScore, List featureExplanations) { final List details = new ArrayList<>(); int index = 0; for (final Explanation featureExplain : featureExplanations) { final List featureDetails = new ArrayList<>(); featureDetails.add(Explanation.match(featureToWeight[index], "weight on feature")); featureDetails.add(featureExplain); details.add( Explanation.match( featureExplain.getValue().floatValue() * featureToWeight[index], "prod of:", featureDetails)); index++; } return Explanation.match( finalScore, toString() + " model applied to features, sum of:", details); } @Override public String toString() { final StringBuilder sb = new StringBuilder(getClass().getSimpleName()); sb.append("(name=").append(getName()); sb.append(",featureWeights=["); for (int ii = 0; ii < features.size(); ++ii) { if (ii > 0) { sb.append(','); } final String key = features.get(ii).getName(); sb.append(key).append('=').append(featureToWeight[ii]); } sb.append("])"); return sb.toString(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy