org.apache.spark.examples.SkewedGroupByTest.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import java.util.Random
object SkewedGroupByTest {
def main(args: Array[String]) {
if (args.length == 0) {
System.err.println("Usage: GroupByTest [numMappers] [numKVPairs] [KeySize] [numReducers]")
System.exit(1)
}
var numMappers = if (args.length > 1) args(1).toInt else 2
var numKVPairs = if (args.length > 2) args(2).toInt else 1000
var valSize = if (args.length > 3) args(3).toInt else 1000
var numReducers = if (args.length > 4) args(4).toInt else numMappers
val sc = new SparkContext(args(0), "GroupBy Test",
System.getenv("SPARK_HOME"), Seq(System.getenv("SPARK_EXAMPLES_JAR")))
val pairs1 = sc.parallelize(0 until numMappers, numMappers).flatMap { p =>
val ranGen = new Random
// map output sizes lineraly increase from the 1st to the last
numKVPairs = (1.0 * (p + 1) / numMappers * numKVPairs).toInt
var arr1 = new Array[(Int, Array[Byte])](numKVPairs)
for (i <- 0 until numKVPairs) {
val byteArr = new Array[Byte](valSize)
ranGen.nextBytes(byteArr)
arr1(i) = (ranGen.nextInt(Int.MaxValue), byteArr)
}
arr1
}.cache()
// Enforce that everything has been calculated and in cache
pairs1.count()
println(pairs1.groupByKey(numReducers).count())
System.exit(0)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy