All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.streaming.examples.TwitterAlgebirdCMS.scala Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.streaming.examples

import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.storage.StorageLevel
import com.twitter.algebird._
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.SparkContext._

/**
 * Illustrates the use of the Count-Min Sketch, from Twitter's Algebird library, to compute
 * windowed and global Top-K estimates of user IDs occurring in a Twitter stream.
 * 
* Note that since Algebird's implementation currently only supports Long inputs, * the example operates on Long IDs. Once the implementation supports other inputs (such as String), * the same approach could be used for computing popular topics for example. *

*

* * This blog post has a good overview of the Count-Min Sketch (CMS). The CMS is a datastructure * for approximate frequency estimation in data streams (e.g. Top-K elements, frequency of any given element, etc), * that uses space sub-linear in the number of elements in the stream. Once elements are added to the CMS, the * estimated count of an element can be computed, as well as "heavy-hitters" that occur more than a threshold * percentage of the overall total count. *

* Algebird's implementation is a monoid, so we can succinctly merge two CMS instances in the reduce operation. */ object TwitterAlgebirdCMS { def main(args: Array[String]) { if (args.length < 1) { System.err.println("Usage: TwitterAlgebirdCMS " + " [filter1] [filter2] ... [filter n]") System.exit(1) } // CMS parameters val DELTA = 1E-3 val EPS = 0.01 val SEED = 1 val PERC = 0.001 // K highest frequency elements to take val TOPK = 10 val (master, filters) = (args.head, args.tail) val ssc = new StreamingContext(master, "TwitterAlgebirdCMS", Seconds(10), System.getenv("SPARK_HOME"), Seq(System.getenv("SPARK_EXAMPLES_JAR"))) val stream = ssc.twitterStream(None, filters, StorageLevel.MEMORY_ONLY_SER) val users = stream.map(status => status.getUser.getId) val cms = new CountMinSketchMonoid(EPS, DELTA, SEED, PERC) var globalCMS = cms.zero val mm = new MapMonoid[Long, Int]() var globalExact = Map[Long, Int]() val approxTopUsers = users.mapPartitions(ids => { ids.map(id => cms.create(id)) }).reduce(_ ++ _) val exactTopUsers = users.map(id => (id, 1)) .reduceByKey((a, b) => a + b) approxTopUsers.foreach(rdd => { if (rdd.count() != 0) { val partial = rdd.first() val partialTopK = partial.heavyHitters.map(id => (id, partial.frequency(id).estimate)).toSeq.sortBy(_._2).reverse.slice(0, TOPK) globalCMS ++= partial val globalTopK = globalCMS.heavyHitters.map(id => (id, globalCMS.frequency(id).estimate)).toSeq.sortBy(_._2).reverse.slice(0, TOPK) println("Approx heavy hitters at %2.2f%% threshold this batch: %s".format(PERC, partialTopK.mkString("[", ",", "]"))) println("Approx heavy hitters at %2.2f%% threshold overall: %s".format(PERC, globalTopK.mkString("[", ",", "]"))) } }) exactTopUsers.foreach(rdd => { if (rdd.count() != 0) { val partialMap = rdd.collect().toMap val partialTopK = rdd.map( {case (id, count) => (count, id)}) .sortByKey(ascending = false).take(TOPK) globalExact = mm.plus(globalExact.toMap, partialMap) val globalTopK = globalExact.toSeq.sortBy(_._2).reverse.slice(0, TOPK) println("Exact heavy hitters this batch: %s".format(partialTopK.mkString("[", ",", "]"))) println("Exact heavy hitters overall: %s".format(globalTopK.mkString("[", ",", "]"))) } }) ssc.start() } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy