org.apache.spark.graphx.EdgeRDD.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.graphx
import scala.language.existentials
import scala.reflect.ClassTag
import org.apache.spark.Dependency
import org.apache.spark.Partition
import org.apache.spark.SparkContext
import org.apache.spark.TaskContext
import org.apache.spark.graphx.impl.EdgePartition
import org.apache.spark.graphx.impl.EdgePartitionBuilder
import org.apache.spark.graphx.impl.EdgeRDDImpl
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
/**
* `EdgeRDD[ED, VD]` extends `RDD[Edge[ED]]` by storing the edges in columnar format on each
* partition for performance. It may additionally store the vertex attributes associated with each
* edge to provide the triplet view. Shipping of the vertex attributes is managed by
* `impl.ReplicatedVertexView`.
*/
abstract class EdgeRDD[ED](
sc: SparkContext,
deps: Seq[Dependency[_]]) extends RDD[Edge[ED]](sc, deps) {
// scalastyle:off structural.type
private[graphx] def partitionsRDD: RDD[(PartitionID, EdgePartition[ED, VD])] forSome { type VD }
// scalastyle:on structural.type
override protected def getPartitions: Array[Partition] = partitionsRDD.partitions
override def compute(part: Partition, context: TaskContext): Iterator[Edge[ED]] = {
val p = firstParent[(PartitionID, EdgePartition[ED, _])].iterator(part, context)
if (p.hasNext) {
p.next()._2.iterator.map(_.copy())
} else {
Iterator.empty
}
}
/**
* Map the values in an edge partitioning preserving the structure but changing the values.
*
* @tparam ED2 the new edge value type
* @param f the function from an edge to a new edge value
* @return a new EdgeRDD containing the new edge values
*/
def mapValues[ED2: ClassTag](f: Edge[ED] => ED2): EdgeRDD[ED2]
/**
* Reverse all the edges in this RDD.
*
* @return a new EdgeRDD containing all the edges reversed
*/
def reverse: EdgeRDD[ED]
/**
* Inner joins this EdgeRDD with another EdgeRDD, assuming both are partitioned using the same
* [[PartitionStrategy]].
*
* @param other the EdgeRDD to join with
* @param f the join function applied to corresponding values of `this` and `other`
* @return a new EdgeRDD containing only edges that appear in both `this` and `other`,
* with values supplied by `f`
*/
def innerJoin[ED2: ClassTag, ED3: ClassTag]
(other: EdgeRDD[ED2])
(f: (VertexId, VertexId, ED, ED2) => ED3): EdgeRDD[ED3]
/**
* Changes the target storage level while preserving all other properties of the
* EdgeRDD. Operations on the returned EdgeRDD will preserve this storage level.
*
* This does not actually trigger a cache; to do this, call
* [[org.apache.spark.graphx.EdgeRDD#cache]] on the returned EdgeRDD.
*/
private[graphx] def withTargetStorageLevel(targetStorageLevel: StorageLevel): EdgeRDD[ED]
}
object EdgeRDD {
/**
* Creates an EdgeRDD from a set of edges.
*
* @tparam ED the edge attribute type
* @tparam VD the type of the vertex attributes that may be joined with the returned EdgeRDD
*/
def fromEdges[ED: ClassTag, VD: ClassTag](edges: RDD[Edge[ED]]): EdgeRDDImpl[ED, VD] = {
val edgePartitions = edges.mapPartitionsWithIndex { (pid, iter) =>
val builder = new EdgePartitionBuilder[ED, VD]
iter.foreach { e =>
builder.add(e.srcId, e.dstId, e.attr)
}
Iterator((pid, builder.toEdgePartition))
}
EdgeRDD.fromEdgePartitions(edgePartitions)
}
/**
* Creates an EdgeRDD from already-constructed edge partitions.
*
* @tparam ED the edge attribute type
* @tparam VD the type of the vertex attributes that may be joined with the returned EdgeRDD
*/
private[graphx] def fromEdgePartitions[ED: ClassTag, VD: ClassTag](
edgePartitions: RDD[(Int, EdgePartition[ED, VD])]): EdgeRDDImpl[ED, VD] = {
new EdgeRDDImpl(edgePartitions)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy