org.apache.spark.graphx.Pregel.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.graphx
import scala.reflect.ClassTag
import org.apache.spark.graphx.util.PeriodicGraphCheckpointer
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.RDD
import org.apache.spark.rdd.util.PeriodicRDDCheckpointer
/**
* Implements a Pregel-like bulk-synchronous message-passing API.
*
* Unlike the original Pregel API, the GraphX Pregel API factors the sendMessage computation over
* edges, enables the message sending computation to read both vertex attributes, and constrains
* messages to the graph structure. These changes allow for substantially more efficient
* distributed execution while also exposing greater flexibility for graph-based computation.
*
* @example We can use the Pregel abstraction to implement PageRank:
* {{{
* val pagerankGraph: Graph[Double, Double] = graph
* // Associate the degree with each vertex
* .outerJoinVertices(graph.outDegrees) {
* (vid, vdata, deg) => deg.getOrElse(0)
* }
* // Set the weight on the edges based on the degree
* .mapTriplets(e => 1.0 / e.srcAttr)
* // Set the vertex attributes to the initial pagerank values
* .mapVertices((id, attr) => 1.0)
*
* def vertexProgram(id: VertexId, attr: Double, msgSum: Double): Double =
* resetProb + (1.0 - resetProb) * msgSum
* def sendMessage(id: VertexId, edge: EdgeTriplet[Double, Double]): Iterator[(VertexId, Double)] =
* Iterator((edge.dstId, edge.srcAttr * edge.attr))
* def messageCombiner(a: Double, b: Double): Double = a + b
* val initialMessage = 0.0
* // Execute Pregel for a fixed number of iterations.
* Pregel(pagerankGraph, initialMessage, numIter)(
* vertexProgram, sendMessage, messageCombiner)
* }}}
*
*/
object Pregel extends Logging {
/**
* Execute a Pregel-like iterative vertex-parallel abstraction. The
* user-defined vertex-program `vprog` is executed in parallel on
* each vertex receiving any inbound messages and computing a new
* value for the vertex. The `sendMsg` function is then invoked on
* all out-edges and is used to compute an optional message to the
* destination vertex. The `mergeMsg` function is a commutative
* associative function used to combine messages destined to the
* same vertex.
*
* On the first iteration all vertices receive the `initialMsg` and
* on subsequent iterations if a vertex does not receive a message
* then the vertex-program is not invoked.
*
* This function iterates until there are no remaining messages, or
* for `maxIterations` iterations.
*
* @tparam VD the vertex data type
* @tparam ED the edge data type
* @tparam A the Pregel message type
*
* @param graph the input graph.
*
* @param initialMsg the message each vertex will receive at the first
* iteration
*
* @param maxIterations the maximum number of iterations to run for
*
* @param activeDirection the direction of edges incident to a vertex that received a message in
* the previous round on which to run `sendMsg`. For example, if this is `EdgeDirection.Out`, only
* out-edges of vertices that received a message in the previous round will run. The default is
* `EdgeDirection.Either`, which will run `sendMsg` on edges where either side received a message
* in the previous round. If this is `EdgeDirection.Both`, `sendMsg` will only run on edges where
* *both* vertices received a message.
*
* @param vprog the user-defined vertex program which runs on each
* vertex and receives the inbound message and computes a new vertex
* value. On the first iteration the vertex program is invoked on
* all vertices and is passed the default message. On subsequent
* iterations the vertex program is only invoked on those vertices
* that receive messages.
*
* @param sendMsg a user supplied function that is applied to out
* edges of vertices that received messages in the current
* iteration
*
* @param mergeMsg a user supplied function that takes two incoming
* messages of type A and merges them into a single message of type
* A. ''This function must be commutative and associative and
* ideally the size of A should not increase.''
*
* @return the resulting graph at the end of the computation
*
*/
def apply[VD: ClassTag, ED: ClassTag, A: ClassTag]
(graph: Graph[VD, ED],
initialMsg: A,
maxIterations: Int = Int.MaxValue,
activeDirection: EdgeDirection = EdgeDirection.Either)
(vprog: (VertexId, VD, A) => VD,
sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
mergeMsg: (A, A) => A)
: Graph[VD, ED] =
{
require(maxIterations > 0, s"Maximum number of iterations must be greater than 0," +
s" but got ${maxIterations}")
val checkpointInterval = graph.vertices.sparkContext.getConf
.getInt("spark.graphx.pregel.checkpointInterval", -1)
var g = graph.mapVertices((vid, vdata) => vprog(vid, vdata, initialMsg))
val graphCheckpointer = new PeriodicGraphCheckpointer[VD, ED](
checkpointInterval, graph.vertices.sparkContext)
graphCheckpointer.update(g)
// compute the messages
var messages = GraphXUtils.mapReduceTriplets(g, sendMsg, mergeMsg)
val messageCheckpointer = new PeriodicRDDCheckpointer[(VertexId, A)](
checkpointInterval, graph.vertices.sparkContext)
messageCheckpointer.update(messages.asInstanceOf[RDD[(VertexId, A)]])
var activeMessages = messages.count()
// Loop
var prevG: Graph[VD, ED] = null
var i = 0
while (activeMessages > 0 && i < maxIterations) {
// Receive the messages and update the vertices.
prevG = g
g = g.joinVertices(messages)(vprog)
graphCheckpointer.update(g)
val oldMessages = messages
// Send new messages, skipping edges where neither side received a message. We must cache
// messages so it can be materialized on the next line, allowing us to uncache the previous
// iteration.
messages = GraphXUtils.mapReduceTriplets(
g, sendMsg, mergeMsg, Some((oldMessages, activeDirection)))
// The call to count() materializes `messages` and the vertices of `g`. This hides oldMessages
// (depended on by the vertices of g) and the vertices of prevG (depended on by oldMessages
// and the vertices of g).
messageCheckpointer.update(messages.asInstanceOf[RDD[(VertexId, A)]])
activeMessages = messages.count()
logInfo("Pregel finished iteration " + i)
// Unpersist the RDDs hidden by newly-materialized RDDs
oldMessages.unpersist(blocking = false)
prevG.unpersistVertices(blocking = false)
prevG.edges.unpersist(blocking = false)
// count the iteration
i += 1
}
messageCheckpointer.unpersistDataSet()
graphCheckpointer.deleteAllCheckpoints()
messageCheckpointer.deleteAllCheckpoints()
g
} // end of apply
} // end of class Pregel
© 2015 - 2025 Weber Informatics LLC | Privacy Policy