All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.mllib.linalg.EigenValueDecomposition.scala Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.mllib.linalg

import breeze.linalg.{DenseMatrix => BDM, DenseVector => BDV}
import com.github.fommil.netlib.ARPACK
import org.netlib.util.{intW, doubleW}

/**
 * Compute eigen-decomposition.
 */
private[mllib] object EigenValueDecomposition {
  /**
   * Compute the leading k eigenvalues and eigenvectors on a symmetric square matrix using ARPACK.
   * The caller needs to ensure that the input matrix is real symmetric. This function requires
   * memory for `n*(4*k+4)` doubles.
   *
   * @param mul a function that multiplies the symmetric matrix with a DenseVector.
   * @param n dimension of the square matrix (maximum Int.MaxValue).
   * @param k number of leading eigenvalues required, 0 < k < n.
   * @param tol tolerance of the eigs computation.
   * @param maxIterations the maximum number of Arnoldi update iterations.
   * @return a dense vector of eigenvalues in descending order and a dense matrix of eigenvectors
   *         (columns of the matrix).
   * @note The number of computed eigenvalues might be smaller than k when some Ritz values do not
   *       satisfy the convergence criterion specified by tol (see ARPACK Users Guide, Chapter 4.6
   *       for more details). The maximum number of Arnoldi update iterations is set to 300 in this
   *       function.
   */
  def symmetricEigs(
      mul: BDV[Double] => BDV[Double],
      n: Int,
      k: Int,
      tol: Double,
      maxIterations: Int): (BDV[Double], BDM[Double]) = {
    // TODO: remove this function and use eigs in breeze when switching breeze version
    require(n > k, s"Number of required eigenvalues $k must be smaller than matrix dimension $n")

    val arpack = ARPACK.getInstance()

    // tolerance used in stopping criterion
    val tolW = new doubleW(tol)
    // number of desired eigenvalues, 0 < nev < n
    val nev = new intW(k)
    // nev Lanczos vectors are generated in the first iteration
    // ncv-nev Lanczos vectors are generated in each subsequent iteration
    // ncv must be smaller than n
    val ncv = math.min(2 * k, n)

    // "I" for standard eigenvalue problem, "G" for generalized eigenvalue problem
    val bmat = "I"
    // "LM" : compute the NEV largest (in magnitude) eigenvalues
    val which = "LM"

    var iparam = new Array[Int](11)
    // use exact shift in each iteration
    iparam(0) = 1
    // maximum number of Arnoldi update iterations, or the actual number of iterations on output
    iparam(2) = maxIterations
    // Mode 1: A*x = lambda*x, A symmetric
    iparam(6) = 1

    require(n * ncv.toLong <= Integer.MAX_VALUE && ncv * (ncv.toLong + 8) <= Integer.MAX_VALUE,
      s"k = $k and/or n = $n are too large to compute an eigendecomposition")

    var ido = new intW(0)
    var info = new intW(0)
    var resid = new Array[Double](n)
    var v = new Array[Double](n * ncv)
    var workd = new Array[Double](n * 3)
    var workl = new Array[Double](ncv * (ncv + 8))
    var ipntr = new Array[Int](11)

    // call ARPACK's reverse communication, first iteration with ido = 0
    arpack.dsaupd(ido, bmat, n, which, nev.`val`, tolW, resid, ncv, v, n, iparam, ipntr, workd,
      workl, workl.length, info)

    val w = BDV(workd)

    // ido = 99 : done flag in reverse communication
    while (ido.`val` != 99) {
      if (ido.`val` != -1 && ido.`val` != 1) {
        throw new IllegalStateException("ARPACK returns ido = " + ido.`val` +
            " This flag is not compatible with Mode 1: A*x = lambda*x, A symmetric.")
      }
      // multiply working vector with the matrix
      val inputOffset = ipntr(0) - 1
      val outputOffset = ipntr(1) - 1
      val x = w.slice(inputOffset, inputOffset + n)
      val y = w.slice(outputOffset, outputOffset + n)
      y := mul(x)
      // call ARPACK's reverse communication
      arpack.dsaupd(ido, bmat, n, which, nev.`val`, tolW, resid, ncv, v, n, iparam, ipntr,
        workd, workl, workl.length, info)
    }

    if (info.`val` != 0) {
      info.`val` match {
        case 1 => throw new IllegalStateException("ARPACK returns non-zero info = " + info.`val` +
            " Maximum number of iterations taken. (Refer ARPACK user guide for details)")
        case 3 => throw new IllegalStateException("ARPACK returns non-zero info = " + info.`val` +
            " No shifts could be applied. Try to increase NCV. " +
            "(Refer ARPACK user guide for details)")
        case _ => throw new IllegalStateException("ARPACK returns non-zero info = " + info.`val` +
            " Please refer ARPACK user guide for error message.")
      }
    }

    val d = new Array[Double](nev.`val`)
    val select = new Array[Boolean](ncv)
    // copy the Ritz vectors
    val z = java.util.Arrays.copyOfRange(v, 0, nev.`val` * n)

    // call ARPACK's post-processing for eigenvectors
    arpack.dseupd(true, "A", select, d, z, n, 0.0, bmat, n, which, nev, tol, resid, ncv, v, n,
      iparam, ipntr, workd, workl, workl.length, info)

    // number of computed eigenvalues, might be smaller than k
    val computed = iparam(4)

    val eigenPairs = java.util.Arrays.copyOfRange(d, 0, computed).zipWithIndex.map { r =>
      (r._1, java.util.Arrays.copyOfRange(z, r._2 * n, r._2 * n + n))
    }

    // sort the eigen-pairs in descending order
    val sortedEigenPairs = eigenPairs.sortBy(- _._1)

    // copy eigenvectors in descending order of eigenvalues
    val sortedU = BDM.zeros[Double](n, computed)
    sortedEigenPairs.zipWithIndex.foreach { r =>
      val b = r._2 * n
      var i = 0
      while (i < n) {
        sortedU.data(b + i) = r._1._2(i)
        i += 1
      }
    }

    (BDV[Double](sortedEigenPairs.map(_._1)), sortedU)
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy