org.apache.spark.mllib.rdd.RDDFunctions.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.rdd
import scala.language.implicitConversions
import scala.reflect.ClassTag
import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.rdd.RDD
/**
* Machine learning specific RDD functions.
*/
@DeveloperApi
class RDDFunctions[T: ClassTag](self: RDD[T]) extends Serializable {
/**
* Returns a RDD from grouping items of its parent RDD in fixed size blocks by passing a sliding
* window over them. The ordering is first based on the partition index and then the ordering of
* items within each partition. This is similar to sliding in Scala collections, except that it
* becomes an empty RDD if the window size is greater than the total number of items. It needs to
* trigger a Spark job if the parent RDD has more than one partitions and the window size is
* greater than 1.
*/
def sliding(windowSize: Int, step: Int): RDD[Array[T]] = {
require(windowSize > 0, s"Sliding window size must be positive, but got $windowSize.")
if (windowSize == 1 && step == 1) {
self.map(Array(_))
} else {
new SlidingRDD[T](self, windowSize, step)
}
}
/**
* [[sliding(Int, Int)*]] with step = 1.
*/
def sliding(windowSize: Int): RDD[Array[T]] = sliding(windowSize, 1)
/**
* Reduces the elements of this RDD in a multi-level tree pattern.
*
* @param depth suggested depth of the tree (default: 2)
* @see [[org.apache.spark.rdd.RDD#treeReduce]]
* @deprecated Use [[org.apache.spark.rdd.RDD#treeReduce]] instead.
*/
@deprecated("Use RDD.treeReduce instead.", "1.3.0")
def treeReduce(f: (T, T) => T, depth: Int = 2): T = self.treeReduce(f, depth)
/**
* Aggregates the elements of this RDD in a multi-level tree pattern.
*
* @param depth suggested depth of the tree (default: 2)
* @see [[org.apache.spark.rdd.RDD#treeAggregate]]
* @deprecated Use [[org.apache.spark.rdd.RDD#treeAggregate]] instead.
*/
@deprecated("Use RDD.treeAggregate instead.", "1.3.0")
def treeAggregate[U: ClassTag](zeroValue: U)(
seqOp: (U, T) => U,
combOp: (U, U) => U,
depth: Int = 2): U = {
self.treeAggregate(zeroValue)(seqOp, combOp, depth)
}
}
@DeveloperApi
object RDDFunctions {
/** Implicit conversion from an RDD to RDDFunctions. */
implicit def fromRDD[T: ClassTag](rdd: RDD[T]): RDDFunctions[T] = new RDDFunctions[T](rdd)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy