
org.apache.spark.ml.classification.GBTClassifier.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.ml.classification
import com.github.fommil.netlib.BLAS.{getInstance => blas}
import org.json4s.{DefaultFormats, JObject}
import org.json4s.JsonDSL._
import org.apache.spark.annotation.{Experimental, Since}
import org.apache.spark.internal.Logging
import org.apache.spark.ml.{PredictionModel, Predictor}
import org.apache.spark.ml.feature.LabeledPoint
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.ml.param.ParamMap
import org.apache.spark.ml.regression.DecisionTreeRegressionModel
import org.apache.spark.ml.tree._
import org.apache.spark.ml.tree.impl.GradientBoostedTrees
import org.apache.spark.ml.util._
import org.apache.spark.ml.util.DefaultParamsReader.Metadata
import org.apache.spark.mllib.tree.configuration.{Algo => OldAlgo}
import org.apache.spark.mllib.tree.model.{GradientBoostedTreesModel => OldGBTModel}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset, Row}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.DoubleType
/**
* :: Experimental ::
* [[http://en.wikipedia.org/wiki/Gradient_boosting Gradient-Boosted Trees (GBTs)]]
* learning algorithm for classification.
* It supports binary labels, as well as both continuous and categorical features.
* Note: Multiclass labels are not currently supported.
*
* The implementation is based upon: J.H. Friedman. "Stochastic Gradient Boosting." 1999.
*
* Notes on Gradient Boosting vs. TreeBoost:
* - This implementation is for Stochastic Gradient Boosting, not for TreeBoost.
* - Both algorithms learn tree ensembles by minimizing loss functions.
* - TreeBoost (Friedman, 1999) additionally modifies the outputs at tree leaf nodes
* based on the loss function, whereas the original gradient boosting method does not.
* - We expect to implement TreeBoost in the future:
* [https://issues.apache.org/jira/browse/SPARK-4240]
*/
@Since("1.4.0")
@Experimental
class GBTClassifier @Since("1.4.0") (
@Since("1.4.0") override val uid: String)
extends Predictor[Vector, GBTClassifier, GBTClassificationModel]
with GBTClassifierParams with DefaultParamsWritable with Logging {
@Since("1.4.0")
def this() = this(Identifiable.randomUID("gbtc"))
// Override parameter setters from parent trait for Java API compatibility.
// Parameters from TreeClassifierParams:
@Since("1.4.0")
override def setMaxDepth(value: Int): this.type = super.setMaxDepth(value)
@Since("1.4.0")
override def setMaxBins(value: Int): this.type = super.setMaxBins(value)
@Since("1.4.0")
override def setMinInstancesPerNode(value: Int): this.type =
super.setMinInstancesPerNode(value)
@Since("1.4.0")
override def setMinInfoGain(value: Double): this.type = super.setMinInfoGain(value)
@Since("1.4.0")
override def setMaxMemoryInMB(value: Int): this.type = super.setMaxMemoryInMB(value)
@Since("1.4.0")
override def setCacheNodeIds(value: Boolean): this.type = super.setCacheNodeIds(value)
@Since("1.4.0")
override def setCheckpointInterval(value: Int): this.type = super.setCheckpointInterval(value)
/**
* The impurity setting is ignored for GBT models.
* Individual trees are built using impurity "Variance."
*/
@Since("1.4.0")
override def setImpurity(value: String): this.type = {
logWarning("GBTClassifier.setImpurity should NOT be used")
this
}
// Parameters from TreeEnsembleParams:
@Since("1.4.0")
override def setSubsamplingRate(value: Double): this.type = super.setSubsamplingRate(value)
@Since("1.4.0")
override def setSeed(value: Long): this.type = super.setSeed(value)
// Parameters from GBTParams:
@Since("1.4.0")
override def setMaxIter(value: Int): this.type = super.setMaxIter(value)
@Since("1.4.0")
override def setStepSize(value: Double): this.type = super.setStepSize(value)
// Parameters from GBTClassifierParams:
/** @group setParam */
@Since("1.4.0")
def setLossType(value: String): this.type = set(lossType, value)
override protected def train(dataset: Dataset[_]): GBTClassificationModel = {
val categoricalFeatures: Map[Int, Int] =
MetadataUtils.getCategoricalFeatures(dataset.schema($(featuresCol)))
// We copy and modify this from Classifier.extractLabeledPoints since GBT only supports
// 2 classes now. This lets us provide a more precise error message.
val oldDataset: RDD[LabeledPoint] =
dataset.select(col($(labelCol)).cast(DoubleType), col($(featuresCol))).rdd.map {
case Row(label: Double, features: Vector) =>
require(label == 0 || label == 1, s"GBTClassifier was given" +
s" dataset with invalid label $label. Labels must be in {0,1}; note that" +
s" GBTClassifier currently only supports binary classification.")
LabeledPoint(label, features)
}
val numFeatures = oldDataset.first().features.size
val boostingStrategy = super.getOldBoostingStrategy(categoricalFeatures, OldAlgo.Classification)
val (baseLearners, learnerWeights) = GradientBoostedTrees.run(oldDataset, boostingStrategy,
$(seed))
new GBTClassificationModel(uid, baseLearners, learnerWeights, numFeatures)
}
@Since("1.4.1")
override def copy(extra: ParamMap): GBTClassifier = defaultCopy(extra)
}
@Since("1.4.0")
@Experimental
object GBTClassifier extends DefaultParamsReadable[GBTClassifier] {
/** Accessor for supported loss settings: logistic */
@Since("1.4.0")
final val supportedLossTypes: Array[String] = GBTClassifierParams.supportedLossTypes
@Since("2.0.0")
override def load(path: String): GBTClassifier = super.load(path)
}
/**
* :: Experimental ::
* [[http://en.wikipedia.org/wiki/Gradient_boosting Gradient-Boosted Trees (GBTs)]]
* model for classification.
* It supports binary labels, as well as both continuous and categorical features.
* Note: Multiclass labels are not currently supported.
*
* @param _trees Decision trees in the ensemble.
* @param _treeWeights Weights for the decision trees in the ensemble.
*/
@Since("1.6.0")
@Experimental
class GBTClassificationModel private[ml](
@Since("1.6.0") override val uid: String,
private val _trees: Array[DecisionTreeRegressionModel],
private val _treeWeights: Array[Double],
@Since("1.6.0") override val numFeatures: Int)
extends PredictionModel[Vector, GBTClassificationModel]
with GBTClassifierParams with TreeEnsembleModel[DecisionTreeRegressionModel]
with MLWritable with Serializable {
require(_trees.nonEmpty, "GBTClassificationModel requires at least 1 tree.")
require(_trees.length == _treeWeights.length, "GBTClassificationModel given trees, treeWeights" +
s" of non-matching lengths (${_trees.length}, ${_treeWeights.length}, respectively).")
/**
* Construct a GBTClassificationModel
*
* @param _trees Decision trees in the ensemble.
* @param _treeWeights Weights for the decision trees in the ensemble.
*/
@Since("1.6.0")
def this(uid: String, _trees: Array[DecisionTreeRegressionModel], _treeWeights: Array[Double]) =
this(uid, _trees, _treeWeights, -1)
@Since("1.4.0")
override def trees: Array[DecisionTreeRegressionModel] = _trees
@Since("1.4.0")
override def treeWeights: Array[Double] = _treeWeights
override protected def transformImpl(dataset: Dataset[_]): DataFrame = {
val bcastModel = dataset.sparkSession.sparkContext.broadcast(this)
val predictUDF = udf { (features: Any) =>
bcastModel.value.predict(features.asInstanceOf[Vector])
}
dataset.withColumn($(predictionCol), predictUDF(col($(featuresCol))))
}
override protected def predict(features: Vector): Double = {
// TODO: When we add a generic Boosting class, handle transform there? SPARK-7129
// Classifies by thresholding sum of weighted tree predictions
val treePredictions = _trees.map(_.rootNode.predictImpl(features).prediction)
val prediction = blas.ddot(numTrees, treePredictions, 1, _treeWeights, 1)
if (prediction > 0.0) 1.0 else 0.0
}
/** Number of trees in ensemble */
val numTrees: Int = trees.length
@Since("1.4.0")
override def copy(extra: ParamMap): GBTClassificationModel = {
copyValues(new GBTClassificationModel(uid, _trees, _treeWeights, numFeatures),
extra).setParent(parent)
}
@Since("1.4.0")
override def toString: String = {
s"GBTClassificationModel (uid=$uid) with $numTrees trees"
}
/**
* Estimate of the importance of each feature.
*
* Each feature's importance is the average of its importance across all trees in the ensemble
* The importance vector is normalized to sum to 1. This method is suggested by Hastie et al.
* (Hastie, Tibshirani, Friedman. "The Elements of Statistical Learning, 2nd Edition." 2001.)
* and follows the implementation from scikit-learn.
*
* @see [[DecisionTreeClassificationModel.featureImportances]]
*/
@Since("2.0.0")
lazy val featureImportances: Vector = TreeEnsembleModel.featureImportances(trees, numFeatures)
/** (private[ml]) Convert to a model in the old API */
private[ml] def toOld: OldGBTModel = {
new OldGBTModel(OldAlgo.Classification, _trees.map(_.toOld), _treeWeights)
}
@Since("2.0.0")
override def write: MLWriter = new GBTClassificationModel.GBTClassificationModelWriter(this)
}
@Since("2.0.0")
object GBTClassificationModel extends MLReadable[GBTClassificationModel] {
@Since("2.0.0")
override def read: MLReader[GBTClassificationModel] = new GBTClassificationModelReader
@Since("2.0.0")
override def load(path: String): GBTClassificationModel = super.load(path)
private[GBTClassificationModel]
class GBTClassificationModelWriter(instance: GBTClassificationModel) extends MLWriter {
override protected def saveImpl(path: String): Unit = {
val extraMetadata: JObject = Map(
"numFeatures" -> instance.numFeatures,
"numTrees" -> instance.getNumTrees)
EnsembleModelReadWrite.saveImpl(instance, path, sqlContext, extraMetadata)
}
}
private class GBTClassificationModelReader extends MLReader[GBTClassificationModel] {
/** Checked against metadata when loading model */
private val className = classOf[GBTClassificationModel].getName
private val treeClassName = classOf[DecisionTreeRegressionModel].getName
override def load(path: String): GBTClassificationModel = {
implicit val format = DefaultFormats
val (metadata: Metadata, treesData: Array[(Metadata, Node)], treeWeights: Array[Double]) =
EnsembleModelReadWrite.loadImpl(path, sqlContext, className, treeClassName)
val numFeatures = (metadata.metadata \ "numFeatures").extract[Int]
val numTrees = (metadata.metadata \ "numTrees").extract[Int]
val trees: Array[DecisionTreeRegressionModel] = treesData.map {
case (treeMetadata, root) =>
val tree =
new DecisionTreeRegressionModel(treeMetadata.uid, root, numFeatures)
DefaultParamsReader.getAndSetParams(tree, treeMetadata)
tree
}
require(numTrees == trees.length, s"GBTClassificationModel.load expected $numTrees" +
s" trees based on metadata but found ${trees.length} trees.")
val model = new GBTClassificationModel(metadata.uid, trees, treeWeights, numFeatures)
DefaultParamsReader.getAndSetParams(model, metadata)
model
}
}
/** Convert a model from the old API */
private[ml] def fromOld(
oldModel: OldGBTModel,
parent: GBTClassifier,
categoricalFeatures: Map[Int, Int],
numFeatures: Int = -1): GBTClassificationModel = {
require(oldModel.algo == OldAlgo.Classification, "Cannot convert GradientBoostedTreesModel" +
s" with algo=${oldModel.algo} (old API) to GBTClassificationModel (new API).")
val newTrees = oldModel.trees.map { tree =>
// parent for each tree is null since there is no good way to set this.
DecisionTreeRegressionModel.fromOld(tree, null, categoricalFeatures)
}
val uid = if (parent != null) parent.uid else Identifiable.randomUID("gbtc")
new GBTClassificationModel(uid, newTrees, oldModel.treeWeights, numFeatures)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy