
org.apache.spark.mllib.evaluation.MulticlassMetrics.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.evaluation
import scala.collection.Map
import org.apache.spark.annotation.Since
import org.apache.spark.mllib.linalg.{Matrices, Matrix}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.DataFrame
/**
* ::Experimental::
* Evaluator for multiclass classification.
*
* @param predictionAndLabels an RDD of (prediction, label) pairs.
*/
@Since("1.1.0")
class MulticlassMetrics @Since("1.1.0") (predictionAndLabels: RDD[(Double, Double)]) {
/**
* An auxiliary constructor taking a DataFrame.
* @param predictionAndLabels a DataFrame with two double columns: prediction and label
*/
private[mllib] def this(predictionAndLabels: DataFrame) =
this(predictionAndLabels.rdd.map(r => (r.getDouble(0), r.getDouble(1))))
private lazy val labelCountByClass: Map[Double, Long] = predictionAndLabels.values.countByValue()
private lazy val labelCount: Long = labelCountByClass.values.sum
private lazy val tpByClass: Map[Double, Int] = predictionAndLabels
.map { case (prediction, label) =>
(label, if (label == prediction) 1 else 0)
}.reduceByKey(_ + _)
.collectAsMap()
private lazy val fpByClass: Map[Double, Int] = predictionAndLabels
.map { case (prediction, label) =>
(prediction, if (prediction != label) 1 else 0)
}.reduceByKey(_ + _)
.collectAsMap()
private lazy val confusions = predictionAndLabels
.map { case (prediction, label) =>
((label, prediction), 1)
}.reduceByKey(_ + _)
.collectAsMap()
/**
* Returns confusion matrix:
* predicted classes are in columns,
* they are ordered by class label ascending,
* as in "labels"
*/
@Since("1.1.0")
def confusionMatrix: Matrix = {
val n = labels.length
val values = Array.ofDim[Double](n * n)
var i = 0
while (i < n) {
var j = 0
while (j < n) {
values(i + j * n) = confusions.getOrElse((labels(i), labels(j)), 0).toDouble
j += 1
}
i += 1
}
Matrices.dense(n, n, values)
}
/**
* Returns true positive rate for a given label (category)
* @param label the label.
*/
@Since("1.1.0")
def truePositiveRate(label: Double): Double = recall(label)
/**
* Returns false positive rate for a given label (category)
* @param label the label.
*/
@Since("1.1.0")
def falsePositiveRate(label: Double): Double = {
val fp = fpByClass.getOrElse(label, 0)
fp.toDouble / (labelCount - labelCountByClass(label))
}
/**
* Returns precision for a given label (category)
* @param label the label.
*/
@Since("1.1.0")
def precision(label: Double): Double = {
val tp = tpByClass(label)
val fp = fpByClass.getOrElse(label, 0)
if (tp + fp == 0) 0 else tp.toDouble / (tp + fp)
}
/**
* Returns recall for a given label (category)
* @param label the label.
*/
@Since("1.1.0")
def recall(label: Double): Double = tpByClass(label).toDouble / labelCountByClass(label)
/**
* Returns f-measure for a given label (category)
* @param label the label.
* @param beta the beta parameter.
*/
@Since("1.1.0")
def fMeasure(label: Double, beta: Double): Double = {
val p = precision(label)
val r = recall(label)
val betaSqrd = beta * beta
if (p + r == 0) 0 else (1 + betaSqrd) * p * r / (betaSqrd * p + r)
}
/**
* Returns f1-measure for a given label (category)
* @param label the label.
*/
@Since("1.1.0")
def fMeasure(label: Double): Double = fMeasure(label, 1.0)
/**
* Returns precision
*/
@Since("1.1.0")
@deprecated("Use accuracy.", "2.0.0")
lazy val precision: Double = accuracy
/**
* Returns recall
* (equals to precision for multiclass classifier
* because sum of all false positives is equal to sum
* of all false negatives)
*/
@Since("1.1.0")
@deprecated("Use accuracy.", "2.0.0")
lazy val recall: Double = accuracy
/**
* Returns f-measure
* (equals to precision and recall because precision equals recall)
*/
@Since("1.1.0")
@deprecated("Use accuracy.", "2.0.0")
lazy val fMeasure: Double = accuracy
/**
* Returns accuracy
* (equals to the total number of correctly classified instances
* out of the total number of instances.)
*/
@Since("2.0.0")
lazy val accuracy: Double = tpByClass.values.sum.toDouble / labelCount
/**
* Returns weighted true positive rate
* (equals to precision, recall and f-measure)
*/
@Since("1.1.0")
lazy val weightedTruePositiveRate: Double = weightedRecall
/**
* Returns weighted false positive rate
*/
@Since("1.1.0")
lazy val weightedFalsePositiveRate: Double = labelCountByClass.map { case (category, count) =>
falsePositiveRate(category) * count.toDouble / labelCount
}.sum
/**
* Returns weighted averaged recall
* (equals to precision, recall and f-measure)
*/
@Since("1.1.0")
lazy val weightedRecall: Double = labelCountByClass.map { case (category, count) =>
recall(category) * count.toDouble / labelCount
}.sum
/**
* Returns weighted averaged precision
*/
@Since("1.1.0")
lazy val weightedPrecision: Double = labelCountByClass.map { case (category, count) =>
precision(category) * count.toDouble / labelCount
}.sum
/**
* Returns weighted averaged f-measure
* @param beta the beta parameter.
*/
@Since("1.1.0")
def weightedFMeasure(beta: Double): Double = labelCountByClass.map { case (category, count) =>
fMeasure(category, beta) * count.toDouble / labelCount
}.sum
/**
* Returns weighted averaged f1-measure
*/
@Since("1.1.0")
lazy val weightedFMeasure: Double = labelCountByClass.map { case (category, count) =>
fMeasure(category, 1.0) * count.toDouble / labelCount
}.sum
/**
* Returns the sequence of labels in ascending order
*/
@Since("1.1.0")
lazy val labels: Array[Double] = tpByClass.keys.toArray.sorted
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy