
org.apache.spark.mllib.evaluation.RankingMetrics.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.evaluation
import java.{lang => jl}
import scala.collection.JavaConverters._
import scala.reflect.ClassTag
import org.apache.spark.annotation.Since
import org.apache.spark.api.java.{JavaRDD, JavaSparkContext}
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.RDD
/**
* ::Experimental::
* Evaluator for ranking algorithms.
*
* Java users should use [[RankingMetrics$.of]] to create a [[RankingMetrics]] instance.
*
* @param predictionAndLabels an RDD of (predicted ranking, ground truth set) pairs.
*/
@Since("1.2.0")
class RankingMetrics[T: ClassTag](predictionAndLabels: RDD[(Array[T], Array[T])])
extends Logging with Serializable {
/**
* Compute the average precision of all the queries, truncated at ranking position k.
*
* If for a query, the ranking algorithm returns n (n < k) results, the precision value will be
* computed as #(relevant items retrieved) / k. This formula also applies when the size of the
* ground truth set is less than k.
*
* If a query has an empty ground truth set, zero will be used as precision together with
* a log warning.
*
* See the following paper for detail:
*
* IR evaluation methods for retrieving highly relevant documents. K. Jarvelin and J. Kekalainen
*
* @param k the position to compute the truncated precision, must be positive
* @return the average precision at the first k ranking positions
*/
@Since("1.2.0")
def precisionAt(k: Int): Double = {
require(k > 0, "ranking position k should be positive")
predictionAndLabels.map { case (pred, lab) =>
val labSet = lab.toSet
if (labSet.nonEmpty) {
val n = math.min(pred.length, k)
var i = 0
var cnt = 0
while (i < n) {
if (labSet.contains(pred(i))) {
cnt += 1
}
i += 1
}
cnt.toDouble / k
} else {
logWarning("Empty ground truth set, check input data")
0.0
}
}.mean()
}
/**
* Returns the mean average precision (MAP) of all the queries.
* If a query has an empty ground truth set, the average precision will be zero and a log
* warning is generated.
*/
lazy val meanAveragePrecision: Double = {
predictionAndLabels.map { case (pred, lab) =>
val labSet = lab.toSet
if (labSet.nonEmpty) {
var i = 0
var cnt = 0
var precSum = 0.0
val n = pred.length
while (i < n) {
if (labSet.contains(pred(i))) {
cnt += 1
precSum += cnt.toDouble / (i + 1)
}
i += 1
}
precSum / labSet.size
} else {
logWarning("Empty ground truth set, check input data")
0.0
}
}.mean()
}
/**
* Compute the average NDCG value of all the queries, truncated at ranking position k.
* The discounted cumulative gain at position k is computed as:
* sum,,i=1,,^k^ (2^{relevance of ''i''th item}^ - 1) / log(i + 1),
* and the NDCG is obtained by dividing the DCG value on the ground truth set. In the current
* implementation, the relevance value is binary.
* If a query has an empty ground truth set, zero will be used as ndcg together with
* a log warning.
*
* See the following paper for detail:
*
* IR evaluation methods for retrieving highly relevant documents. K. Jarvelin and J. Kekalainen
*
* @param k the position to compute the truncated ndcg, must be positive
* @return the average ndcg at the first k ranking positions
*/
@Since("1.2.0")
def ndcgAt(k: Int): Double = {
require(k > 0, "ranking position k should be positive")
predictionAndLabels.map { case (pred, lab) =>
val labSet = lab.toSet
if (labSet.nonEmpty) {
val labSetSize = labSet.size
val n = math.min(math.max(pred.length, labSetSize), k)
var maxDcg = 0.0
var dcg = 0.0
var i = 0
while (i < n) {
val gain = 1.0 / math.log(i + 2)
if (i < pred.length && labSet.contains(pred(i))) {
dcg += gain
}
if (i < labSetSize) {
maxDcg += gain
}
i += 1
}
dcg / maxDcg
} else {
logWarning("Empty ground truth set, check input data")
0.0
}
}.mean()
}
}
object RankingMetrics {
/**
* Creates a [[RankingMetrics]] instance (for Java users).
* @param predictionAndLabels a JavaRDD of (predicted ranking, ground truth set) pairs
*/
@Since("1.4.0")
def of[E, T <: jl.Iterable[E]](predictionAndLabels: JavaRDD[(T, T)]): RankingMetrics[E] = {
implicit val tag = JavaSparkContext.fakeClassTag[E]
val rdd = predictionAndLabels.rdd.map { case (predictions, labels) =>
(predictions.asScala.toArray, labels.asScala.toArray)
}
new RankingMetrics(rdd)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy