
org.apache.spark.ml.r.NaiveBayesWrapper.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.ml.r
import org.apache.hadoop.fs.Path
import org.json4s._
import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._
import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.attribute.{Attribute, AttributeGroup, NominalAttribute}
import org.apache.spark.ml.classification.{NaiveBayes, NaiveBayesModel}
import org.apache.spark.ml.feature.{IndexToString, RFormula}
import org.apache.spark.ml.util._
import org.apache.spark.sql.{DataFrame, Dataset}
private[r] class NaiveBayesWrapper private (
val pipeline: PipelineModel,
val labels: Array[String],
val features: Array[String]) extends MLWritable {
import NaiveBayesWrapper._
private val naiveBayesModel: NaiveBayesModel = pipeline.stages(1).asInstanceOf[NaiveBayesModel]
lazy val apriori: Array[Double] = naiveBayesModel.pi.toArray.map(math.exp)
lazy val tables: Array[Double] = naiveBayesModel.theta.toArray.map(math.exp)
def transform(dataset: Dataset[_]): DataFrame = {
pipeline.transform(dataset)
.drop(PREDICTED_LABEL_INDEX_COL)
.drop(naiveBayesModel.getFeaturesCol)
}
override def write: MLWriter = new NaiveBayesWrapper.NaiveBayesWrapperWriter(this)
}
private[r] object NaiveBayesWrapper extends MLReadable[NaiveBayesWrapper] {
val PREDICTED_LABEL_INDEX_COL = "pred_label_idx"
val PREDICTED_LABEL_COL = "prediction"
def fit(formula: String, data: DataFrame, smoothing: Double): NaiveBayesWrapper = {
val rFormula = new RFormula()
.setFormula(formula)
.fit(data)
// get labels and feature names from output schema
val schema = rFormula.transform(data).schema
val labelAttr = Attribute.fromStructField(schema(rFormula.getLabelCol))
.asInstanceOf[NominalAttribute]
val labels = labelAttr.values.get
val featureAttrs = AttributeGroup.fromStructField(schema(rFormula.getFeaturesCol))
.attributes.get
val features = featureAttrs.map(_.name.get)
// assemble and fit the pipeline
val naiveBayes = new NaiveBayes()
.setSmoothing(smoothing)
.setModelType("bernoulli")
.setPredictionCol(PREDICTED_LABEL_INDEX_COL)
val idxToStr = new IndexToString()
.setInputCol(PREDICTED_LABEL_INDEX_COL)
.setOutputCol(PREDICTED_LABEL_COL)
.setLabels(labels)
val pipeline = new Pipeline()
.setStages(Array(rFormula, naiveBayes, idxToStr))
.fit(data)
new NaiveBayesWrapper(pipeline, labels, features)
}
override def read: MLReader[NaiveBayesWrapper] = new NaiveBayesWrapperReader
override def load(path: String): NaiveBayesWrapper = super.load(path)
class NaiveBayesWrapperWriter(instance: NaiveBayesWrapper) extends MLWriter {
override protected def saveImpl(path: String): Unit = {
val rMetadataPath = new Path(path, "rMetadata").toString
val pipelinePath = new Path(path, "pipeline").toString
val rMetadata = ("class" -> instance.getClass.getName) ~
("labels" -> instance.labels.toSeq) ~
("features" -> instance.features.toSeq)
val rMetadataJson: String = compact(render(rMetadata))
sc.parallelize(Seq(rMetadataJson), 1).saveAsTextFile(rMetadataPath)
instance.pipeline.save(pipelinePath)
}
}
class NaiveBayesWrapperReader extends MLReader[NaiveBayesWrapper] {
override def load(path: String): NaiveBayesWrapper = {
implicit val format = DefaultFormats
val rMetadataPath = new Path(path, "rMetadata").toString
val pipelinePath = new Path(path, "pipeline").toString
val rMetadataStr = sc.textFile(rMetadataPath, 1).first()
val rMetadata = parse(rMetadataStr)
val labels = (rMetadata \ "labels").extract[Array[String]]
val features = (rMetadata \ "features").extract[Array[String]]
val pipeline = PipelineModel.load(pipelinePath)
new NaiveBayesWrapper(pipeline, labels, features)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy