
org.apache.spark.ml.util.SchemaUtils.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.ml.util
import org.apache.spark.sql.types.{DataType, NumericType, StructField, StructType}
/**
* Utils for handling schemas.
*/
private[spark] object SchemaUtils {
// TODO: Move the utility methods to SQL.
/**
* Check whether the given schema contains a column of the required data type.
* @param colName column name
* @param dataType required column data type
*/
def checkColumnType(
schema: StructType,
colName: String,
dataType: DataType,
msg: String = ""): Unit = {
val actualDataType = schema(colName).dataType
val message = if (msg != null && msg.trim.length > 0) " " + msg else ""
require(actualDataType.equals(dataType),
s"Column $colName must be of type $dataType but was actually $actualDataType.$message")
}
/**
* Check whether the given schema contains a column of one of the require data types.
* @param colName column name
* @param dataTypes required column data types
*/
def checkColumnTypes(
schema: StructType,
colName: String,
dataTypes: Seq[DataType],
msg: String = ""): Unit = {
val actualDataType = schema(colName).dataType
val message = if (msg != null && msg.trim.length > 0) " " + msg else ""
require(dataTypes.exists(actualDataType.equals),
s"Column $colName must be of type equal to one of the following types: " +
s"${dataTypes.mkString("[", ", ", "]")} but was actually of type $actualDataType.$message")
}
/**
* Check whether the given schema contains a column of the numeric data type.
* @param colName column name
*/
def checkNumericType(
schema: StructType,
colName: String,
msg: String = ""): Unit = {
val actualDataType = schema(colName).dataType
val message = if (msg != null && msg.trim.length > 0) " " + msg else ""
require(actualDataType.isInstanceOf[NumericType], s"Column $colName must be of type " +
s"NumericType but was actually of type $actualDataType.$message")
}
/**
* Appends a new column to the input schema. This fails if the given output column already exists.
* @param schema input schema
* @param colName new column name. If this column name is an empty string "", this method returns
* the input schema unchanged. This allows users to disable output columns.
* @param dataType new column data type
* @return new schema with the input column appended
*/
def appendColumn(
schema: StructType,
colName: String,
dataType: DataType,
nullable: Boolean = false): StructType = {
if (colName.isEmpty) return schema
appendColumn(schema, StructField(colName, dataType, nullable))
}
/**
* Appends a new column to the input schema. This fails if the given output column already exists.
* @param schema input schema
* @param col New column schema
* @return new schema with the input column appended
*/
def appendColumn(schema: StructType, col: StructField): StructType = {
require(!schema.fieldNames.contains(col.name), s"Column ${col.name} already exists.")
StructType(schema.fields :+ col)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy