All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.ml.classification.FMClassifier.scala Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.classification

import org.apache.hadoop.fs.Path

import org.apache.spark.annotation.Since
import org.apache.spark.internal.Logging
import org.apache.spark.ml.linalg._
import org.apache.spark.ml.param._
import org.apache.spark.ml.regression.{FactorizationMachines, FactorizationMachinesParams}
import org.apache.spark.ml.regression.FactorizationMachines._
import org.apache.spark.ml.util._
import org.apache.spark.ml.util.DatasetUtils._
import org.apache.spark.ml.util.Instrumentation.instrumented
import org.apache.spark.mllib.linalg.{Vectors => OldVectors}
import org.apache.spark.sql._
import org.apache.spark.storage.StorageLevel

/**
 * Params for FMClassifier.
 */
private[classification] trait FMClassifierParams extends ProbabilisticClassifierParams
  with FactorizationMachinesParams {
}

/**
 * Factorization Machines learning algorithm for classification.
 * It supports normal gradient descent and AdamW solver.
 *
 * The implementation is based upon:
 * 
 * S. Rendle. "Factorization machines" 2010.
 *
 * FM is able to estimate interactions even in problems with huge sparsity
 * (like advertising and recommendation system).
 * FM formula is:
 * 
* $$ * \begin{align} * y = \sigma\left( w_0 + \sum\limits^n_{i-1} w_i x_i + * \sum\limits^n_{i=1} \sum\limits^n_{j=i+1} \langle v_i, v_j \rangle x_i x_j \right) * \end{align} * $$ *
* First two terms denote global bias and linear term (as same as linear regression), * and last term denotes pairwise interactions term. v_i describes the i-th variable * with k factors. * * FM classification model uses logistic loss which can be solved by gradient descent method, and * regularization terms like L2 are usually added to the loss function to prevent overfitting. * * @note Multiclass labels are not currently supported. */ @Since("3.0.0") class FMClassifier @Since("3.0.0") ( @Since("3.0.0") override val uid: String) extends ProbabilisticClassifier[Vector, FMClassifier, FMClassificationModel] with FactorizationMachines with FMClassifierParams with DefaultParamsWritable with Logging { @Since("3.0.0") def this() = this(Identifiable.randomUID("fmc")) /** * Set the dimensionality of the factors. * Default is 8. * * @group setParam */ @Since("3.0.0") def setFactorSize(value: Int): this.type = set(factorSize, value) /** * Set whether to fit intercept term. * Default is true. * * @group setParam */ @Since("3.0.0") def setFitIntercept(value: Boolean): this.type = set(fitIntercept, value) /** * Set whether to fit linear term. * Default is true. * * @group setParam */ @Since("3.0.0") def setFitLinear(value: Boolean): this.type = set(fitLinear, value) /** * Set the L2 regularization parameter. * Default is 0.0. * * @group setParam */ @Since("3.0.0") def setRegParam(value: Double): this.type = set(regParam, value) /** * Set the mini-batch fraction parameter. * Default is 1.0. * * @group setParam */ @Since("3.0.0") def setMiniBatchFraction(value: Double): this.type = set(miniBatchFraction, value) /** * Set the standard deviation of initial coefficients. * Default is 0.01. * * @group setParam */ @Since("3.0.0") def setInitStd(value: Double): this.type = set(initStd, value) /** * Set the maximum number of iterations. * Default is 100. * * @group setParam */ @Since("3.0.0") def setMaxIter(value: Int): this.type = set(maxIter, value) /** * Set the initial step size for the first step (like learning rate). * Default is 1.0. * * @group setParam */ @Since("3.0.0") def setStepSize(value: Double): this.type = set(stepSize, value) /** * Set the convergence tolerance of iterations. * Default is 1E-6. * * @group setParam */ @Since("3.0.0") def setTol(value: Double): this.type = set(tol, value) /** * Set the solver algorithm used for optimization. * Supported options: "gd", "adamW". * Default: "adamW" * * @group setParam */ @Since("3.0.0") def setSolver(value: String): this.type = set(solver, value) /** * Set the random seed for weight initialization. * * @group setParam */ @Since("3.0.0") def setSeed(value: Long): this.type = set(seed, value) override protected def train( dataset: Dataset[_]): FMClassificationModel = instrumented { instr => val numClasses = 2 if (isDefined(thresholds)) { require($(thresholds).length == numClasses, this.getClass.getSimpleName + ".train() called with non-matching numClasses and thresholds.length." + s" numClasses=$numClasses, but thresholds has length ${$(thresholds).length}") } instr.logPipelineStage(this) instr.logDataset(dataset) instr.logParams(this, factorSize, fitIntercept, fitLinear, regParam, miniBatchFraction, initStd, maxIter, stepSize, tol, solver, thresholds) instr.logNumClasses(numClasses) val numFeatures = getNumFeatures(dataset, $(featuresCol)) instr.logNumFeatures(numFeatures) val handlePersistence = dataset.storageLevel == StorageLevel.NONE val data = dataset.select( checkClassificationLabels($(labelCol), Some(2)), checkNonNanVectors($(featuresCol)) ).rdd.map { case Row(l: Double, v: Vector) => (l, OldVectors.fromML(v)) }.setName("training instances") if (handlePersistence) data.persist(StorageLevel.MEMORY_AND_DISK) val (coefficients, objectiveHistory) = trainImpl(data, numFeatures, LogisticLoss) val (intercept, linear, factors) = splitCoefficients( coefficients, numFeatures, $(factorSize), $(fitIntercept), $(fitLinear)) if (handlePersistence) data.unpersist() createModel(dataset, intercept, linear, factors, objectiveHistory) } private def createModel( dataset: Dataset[_], intercept: Double, linear: Vector, factors: Matrix, objectiveHistory: Array[Double]): FMClassificationModel = { val model = copyValues(new FMClassificationModel(uid, intercept, linear, factors)) val weightColName = if (!isDefined(weightCol)) "weightCol" else $(weightCol) val (summaryModel, probabilityColName, predictionColName) = model.findSummaryModel() val summary = new FMClassificationTrainingSummaryImpl( summaryModel.transform(dataset), probabilityColName, predictionColName, $(labelCol), weightColName, objectiveHistory) model.setSummary(Some(summary)) } @Since("3.0.0") override def copy(extra: ParamMap): FMClassifier = defaultCopy(extra) } @Since("3.0.0") object FMClassifier extends DefaultParamsReadable[FMClassifier] { @Since("3.0.0") override def load(path: String): FMClassifier = super.load(path) } /** * Model produced by [[FMClassifier]] */ @Since("3.0.0") class FMClassificationModel private[classification] ( @Since("3.0.0") override val uid: String, @Since("3.0.0") val intercept: Double, @Since("3.0.0") val linear: Vector, @Since("3.0.0") val factors: Matrix) extends ProbabilisticClassificationModel[Vector, FMClassificationModel] with FMClassifierParams with MLWritable with HasTrainingSummary[FMClassificationTrainingSummary]{ @Since("3.0.0") override val numClasses: Int = 2 @Since("3.0.0") override val numFeatures: Int = linear.size /** * Gets summary of model on training set. An exception is thrown * if `hasSummary` is false. */ @Since("3.1.0") override def summary: FMClassificationTrainingSummary = super.summary /** * Evaluates the model on a test dataset. * * @param dataset Test dataset to evaluate model on. */ @Since("3.1.0") def evaluate(dataset: Dataset[_]): FMClassificationSummary = { val weightColName = if (!isDefined(weightCol)) "weightCol" else $(weightCol) // Handle possible missing or invalid probability or prediction columns val (summaryModel, probability, predictionColName) = findSummaryModel() new FMClassificationSummaryImpl(summaryModel.transform(dataset), probability, predictionColName, $(labelCol), weightColName) } @Since("3.0.0") override def predictRaw(features: Vector): Vector = { val rawPrediction = getRawPrediction(features, intercept, linear, factors) Vectors.dense(Array(-rawPrediction, rawPrediction)) } override protected def raw2probabilityInPlace(rawPrediction: Vector): Vector = { rawPrediction match { case dv: DenseVector => dv.values(1) = 1.0 / (1.0 + math.exp(-dv.values(1))) dv.values(0) = 1.0 - dv.values(1) dv case sv: SparseVector => throw new RuntimeException("Unexpected error in FMClassificationModel:" + " raw2probabilityInPlace encountered SparseVector") } } @Since("3.0.0") override def copy(extra: ParamMap): FMClassificationModel = { copyValues(new FMClassificationModel(uid, intercept, linear, factors), extra) } @Since("3.0.0") override def write: MLWriter = new FMClassificationModel.FMClassificationModelWriter(this) override def toString: String = { s"FMClassificationModel: " + s"uid=${super.toString}, numClasses=$numClasses, numFeatures=$numFeatures, " + s"factorSize=${$(factorSize)}, fitLinear=${$(fitLinear)}, fitIntercept=${$(fitIntercept)}" } } @Since("3.0.0") object FMClassificationModel extends MLReadable[FMClassificationModel] { @Since("3.0.0") override def read: MLReader[FMClassificationModel] = new FMClassificationModelReader @Since("3.0.0") override def load(path: String): FMClassificationModel = super.load(path) /** [[MLWriter]] instance for [[FMClassificationModel]] */ private[FMClassificationModel] class FMClassificationModelWriter( instance: FMClassificationModel) extends MLWriter with Logging { private case class Data( intercept: Double, linear: Vector, factors: Matrix) override protected def saveImpl(path: String): Unit = { DefaultParamsWriter.saveMetadata(instance, path, sc) val data = Data(instance.intercept, instance.linear, instance.factors) val dataPath = new Path(path, "data").toString sparkSession.createDataFrame(Seq(data)).repartition(1).write.parquet(dataPath) } } private class FMClassificationModelReader extends MLReader[FMClassificationModel] { private val className = classOf[FMClassificationModel].getName override def load(path: String): FMClassificationModel = { val metadata = DefaultParamsReader.loadMetadata(path, sc, className) val dataPath = new Path(path, "data").toString val data = sparkSession.read.format("parquet").load(dataPath) val Row(intercept: Double, linear: Vector, factors: Matrix) = data.select("intercept", "linear", "factors").head() val model = new FMClassificationModel(metadata.uid, intercept, linear, factors) metadata.getAndSetParams(model) model } } } /** * Abstraction for FMClassifier results for a given model. */ sealed trait FMClassificationSummary extends BinaryClassificationSummary /** * Abstraction for FMClassifier training results. */ sealed trait FMClassificationTrainingSummary extends FMClassificationSummary with TrainingSummary /** * FMClassifier results for a given model. * * @param predictions dataframe output by the model's `transform` method. * @param scoreCol field in "predictions" which gives the probability of each instance. * @param predictionCol field in "predictions" which gives the prediction for a data instance as a * double. * @param labelCol field in "predictions" which gives the true label of each instance. * @param weightCol field in "predictions" which gives the weight of each instance. */ private class FMClassificationSummaryImpl( @transient override val predictions: DataFrame, override val scoreCol: String, override val predictionCol: String, override val labelCol: String, override val weightCol: String) extends FMClassificationSummary /** * FMClassifier training results. * * @param predictions dataframe output by the model's `transform` method. * @param scoreCol field in "predictions" which gives the probability of each instance. * @param predictionCol field in "predictions" which gives the prediction for a data instance as a * double. * @param labelCol field in "predictions" which gives the true label of each instance. * @param weightCol field in "predictions" which gives the weight of each instance. * @param objectiveHistory objective function (scaled loss + regularization) at each iteration. */ private class FMClassificationTrainingSummaryImpl( predictions: DataFrame, scoreCol: String, predictionCol: String, labelCol: String, weightCol: String, override val objectiveHistory: Array[Double]) extends FMClassificationSummaryImpl( predictions, scoreCol, predictionCol, labelCol, weightCol) with FMClassificationTrainingSummary




© 2015 - 2025 Weber Informatics LLC | Privacy Policy